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Abstract A new class of discrete distributions analogous to Burr family has been chararacterized
by Sreehari (2010)[1]. The d-th member of this class is structurally equivalent to Poisson distribution.
Nanjundan and Naika (2012, 2015)[2] [3] have discussed the maximum likelihood and the moment
estimators of the parameter in the distribution. In this paper, a minimum variance unbiased
estimator of the parameter is obtained and its properties are discussed. Further, an asymptotic
comparison of these three estimators is done.
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1 Introduction

New distributions arise due to theoretical developments and situations wherein the existing statistical
models or distributions become inadequate. Characterization of distributions is another source of getting
new distributions. Discretization of continuous distributions also has added new entries to literature [See
Chakraborty (2015)][4]. Estimation of parameters involved in such distributions is a worthy exercise.

The d-th member of the class of distributions characterized by Sreehari (2010)[1] has the probability
mass function (pmf)

p(x) =

 (x+ 1− θ) θx

(x+ 1)! , x = 0, 1, 2, . . . , 0 < θ < 1

0 , otherwise.
(1)

The mean and the variance of this distribution are respectively eθ−1 and eθ(2θ−eθ+1). This distribution
being underdispersed is structurally equivalent to Poisson but does not belong to exponential family.
Nanjundan and Naika (2012)[2] have named this as S(d) distribution. Sreehari (2010)[1] has illustrated
that the S(d) distribution fits better than the Poisson distribution for a real life clinical trial dataset.

2 Maximum Likelihood and Moment Estimators

The maximum likelihood and the method of moment estimators of θ in the above pmf specified by (1)
have been discussed by Nanjundan and Naika (2012, 2015)[2][3].

If X = (X1, X2, . . . , Xn) is a random sample on X having the pmf in (1), then the maximum

likelihood estimate of θ is the solution of Σn
j=1

θ

xj + 1− θ − nx̄ = 0 where x̄ =
∑n
j=1 xj

n
. The maximum

likelihood estimate (MLE) of θ does not have a closed form expression. Hence a numerical procedure like
Newton-Raphson method can be employed to compute θ̂mle, the MLE of θ.

By proving that the pmf in (1) satisfies the Cramer regularity conditions, Nanjundan and Naika (2012,
2015)[2][3] claim the following result which states the consistent asymptotic normality (CAN) of θ̂mle:

√
n(θ̂mle − θ)

L−→ N

(
0, 1
I(θ)

)
, as n→∞ (2)
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where I(θ) = −E
[
d2 log p
dθ2

]
=
∑∞
x=0

1
x+ 1− θ

θx

(x+ 1)! + (eθ − 1)
θ2 is the Fisher information.

The infinite series
∑∞
x=0

1
x+ 1− θ

θx

(x+ 1)! is not tractable but it is convergent for 0 < θ < 1 and it

can be evaluated numerically correct to a desired number of decimal places.
The method of moment estimator (MME) of θ is θ̂mme = log(X̄ + 1). The following result which states

that the moment estimator is also consistent and asymptotically normal (CAN) is due to Nanjundan and
Naika (2012, 2015)[2][3].

If X = (X1, X2, . . . , Xn) is a random sample on X having the pmf specified in (1), then

√
n(θ̂mme − θ)

L−→ N

(
0, eθ(2θ − eθ + 1) 1

(1 + θ)2

)
, as n→∞. (3)

The asymptotic efficiency of the MLE and the MME are compared with respect to the minimum
variance unbiased estimator (MVUE) in Section-4.

3 Minimum Variance Unbiased Estimator

We now show that the pmf in (1) is complete. For a function h(.), suppose that Eθ[h(X)] = 0.

Then
∑∞
x=0 h(x)(x+ 1− θ) θx

(x+ 1)! = 0 ⇒
∑∞
x=0 h(x)

{
θx

x! −
θx+1

(x+ 1)!

}
= 0.

That is h(0)(1− θ) + h(1)
(
θ

1! −
θ2

2!

)
+ h(2)

(
θ2

2! −
θ3

3!

)
+ · · · = 0.

It is easily verifiable that
(
θx

x! −
θx+1

(x+ 1)!

)
> 0,∀ x ≥ 0. Hence the coefficients of h(0), h(1), h(2), . . .

are unequal and positive. In turn, we get h(0) = h(1) = h(2) = · · · = 0 and h(x) ≡ 0. Therefore
p(x, θ), 0 < θ < 1 is a complete family. Though p(x, θ), 0 < θ < 1 is complete, since it does not belong to
the exponential family, a minimum sufficient statistic cannot be identified in a straight forward manner.
Also, the entire sample (X1, X2, . . . , Xn) is the only sufficient statistic.

When X = (X1, X2, . . . , Xn) is a random sample on X having the pmf mentioned in (1), define

Yj =
{

0 ,if Xj = 0
1 ,if Xj 6= 0. Then E(Yj) = P (Xj 6= 0) = θ, ∀ j. Take T (X) =

∑n
j=1 Yj

n
. Then E(T (X)) =

θ, ∀ θ ∈ (0, 1) and hence T (X) is an unbiased estimator of θ.
It can be observed that, P (Xj 6= 0) = θ irrespective of the magnitude of Xj and P (Xj = 0) = 1−θ, ∀j.

This is intrinistic due to the structure of the pmf. Hence the expected value of the proportion of nonzero
X ′js turns out to be an unbiased estimator of θ.

Note that Yj ∼ b(1, θ) and
∑n
j=1 Yj ∼ b(n, θ). Since −∞ < E(Yj) <∞, by Kintchine’s weak law of

large numbers, T (X) P−→ θ, as n→∞. (Of course, T (X) a.s.−−→ θ, as n→∞ by Kolmogrov’s strong law
of large numbers.) That is T (X) is consistent for θ. Further, since Y ′j s are independent and identically
distributed random variables with E(Yj) = θ and V ar(Yj) = θ(1− θ) <∞, by Levy-Lindeberg central
limit theorem

Zn =
√
n(T (X)− θ)√
θ(1− θ)

L−→ Z ∼ N(0, 1), as n→∞. (4)

Therefore T (X) is CAN for θ.
Since Yj ∼ b(1, θ) and b(1, θ) is a member of the exponential family,

∑n
j=1 Yj is minimal sufficient for

θ. It is easy to see that V ar(T (X)) = θ(1− θ)
n

and the Fisher information of T (X) is n

θ(1− θ) . Hence the

Cramer-Rao lower bound for V ar(T (X)) turns out to be θ(1−θ)
n . Therefore T (X) is a minimum variance

unbiased estimator (MVUE) for θ [See Bickel and Doksum (2001)][5].
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4 Asymptotic Relative Efficiency

Using the asymptotic relative efficiency (ARE), an asymptotic comparison of these three estimators is
done in this section.

The asymptotic relative efficiency of the proposed MVUE over the MLE is given by

AREMVUEvsMLE = Asymptotic variance of θ̂mle
Asymptotic variance of θ̂mvue

.

Similarly, the asymptotic relative efficiency of the MVUE over the MME is

AREMVUEvsMME = Asymptotic variance of θ̂mme
Asymptotic variance of θ̂mvue

.

The results are given in the table below.

Table 1. ARE of MVUE over MLE and MME of the parameter

θ Over MLE Over MME

0.1 1.051 0.9624
0.2 1.1055 0.9468
0.3 1.1666 0.9514
0.4 1.2409 0.9773
0.5 1.3401 1.0296
0.6 1.4885 1.1207
0.7 1.7419 1.2816
0.8 2.2658 1.6076
0.9 3.885 2.5769

It is evident from the table above that the MVUE is asymptotically more efficient than the MLE
uniformly over the entire range of θ. Whereas the MVUE is asymptotically more efficient than the MME
when θ lies between 0.5 and 1.0.

5 Simulation Study

As a part of the further study of the performance of the three estimators, samples each of size n = 1000
were generated from the S(d) distribution fixing θ = 0.2, 0.6, and 0.8 and the S(d) distribution was
fitted using the three estimators. The values of the Chisquare statistics for goodness of fit test have been
calcualated and are presented in the following tables.

It is observed that the values of Chi-square goodness of fit statistics when the MVUE is used as the
estimate of θ is lower than the corresponding values with respect to both the MME and the MLE for the
chosen values of θ.
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Table 2. Chisquare statistic values for θ = 0.2

x Frequency Expected Frequency

MME MLE MVUE

0 802 808.5535 808.0808 802.0000
1 185 173.1206 173.5027 178.3980
2 13 17.1564 17.2383 18.3083

Chi-square value 1.875226 1.849699 1.783391

Table 3. Chi-square statistic values for θ = 0.6

x Frequency Expected Frequency

MME MLE MVUE

0 374 379.9613 378.2759 374.0000
1 444 427.8147 428.4537 430.0620
2 142 152.4952 153.2168 155.0523
3 29 33.5704 33.8281 34.4871
4 11 5.3947 5.4515 5.5975

Chi-square value 7.874654 7.770024 7.637757

Table 4. Chi-square statistic values for θ = 0.8

x Frequency Expected Frequency

MME MLE MVUE

0 197 197.9984 197.2116 197.0000
1 477 480.3983 480.5538 480.5955
2 237 235.6278 236.0059 236.1076
3 77 68.7373 68.9229 68.9728
4 12 14.4731 14.5273 14.5419

Chi-square value 1.452886 1.41692 1.408795

6 Discussions and Summary

The MVUE is asymptotically more efficient than the MLE of θ. The MVUE is easy to compute for a
given sample from the S(d) distribution whereas the MLE needs computing facilities. Further, since the
MVUE is also CAN, it can be used for further inference on θ. The simulations and computations in this
paper have been done using the R software.
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