Bayes and Invariante Estimation of Parameters Under a Bounded Asymmetric Loss Function

N. Sanjari Farsipour

Department of Statistics, Faculty of Mathematical sciences, Alzahra University, Tehran, Iran Email: sanjari_n@yahoo.com

Abstract. In this paper we consider the estimation of parameters under a bounded asymmetric loss function. The Bayes and invariant estimator of location and scale parameters in the presence and absence of a nuisance parameter is considered. Some examples in this regard are included.

Keywords: Bayes estimation; invariance; location parameter; scale parameter; bounded Asymmetric loss.

1 Introduction

In the literature, the estimation of a parameter is usually considered when the loss is squared error or in general any convex and symmetric function. The quadratic loss function has been criticized by some researches (e.g., [4], [5], [6] and [7]). The proposed loss function is

$$L(\delta, \theta) = k\left\{1 - e^{b\left\{1 + a\left(\delta - \theta\right) - e^{a\left(\delta - \theta\right)}\right\}}\right\}$$
(1.1)

where $a \neq 0$ determines the shape of the loss function, b > 0 serves to scale the loss and k > 0 is the maximum loss parameter. The general form of the loss function is illustrated in Figure 1. This is obviously a bounded asymmetric loss function.

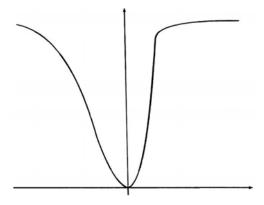


Figure 1. The loss function (1.1) for a=1.

In this paper, we first study the problem of estimation of a location parameter, using the loss function (1.1). In section 2 we introduce the best location-invariant estimator of θ under the loss (1.1). In section 3, Bayesian estimation of the normal mean is obtained under the loss (1.1). Then we study the problem of estimation of a scale parameter, using the loss function

$$L(\delta, \tau) = k \left\{ 1 - e^{b \left\{ 1 + a \left(\frac{\delta}{\tau} - 1 \right) - e^{a \left(\frac{\delta}{\tau} - 1 \right)} \right\}} \right\}$$
 (1.2)

where $a \neq 0$, b, k > 0. The loss (1.2) is scale invariant and bounded. In section 4 we introduce the best invariant estimator of the scale parameter τ under the loss (1.2). Finally in section 5 we consider a

subclass of the exponential family and obtain the Bayes estimates of τ under the loss (1.2). Since the parameters b and k do not have any influence on our results, so without loss of generality we take b = k = 1 in the rest of the paper.

2 Best Location-Invariant Estimator

Let $\mathbf{X} = (X_1, ..., X_n)$ have a joint distribution with probability density $f(\mathbf{X} - \theta) = f(X_1 - \theta, ..., X_n - \theta)$ where f is known and θ is an unknown location parameter. The class of all location invariant estimators of a location parameter θ is of the form [3]

$$\delta(\mathbf{X}) = \delta_0(\mathbf{X}) - v(\mathbf{Y})$$

where δ_0 is any location-invariant estimator and $\mathbf{Y} = (Y_1, \dots, Y_{n-1})$ with $Y_i = X_i - X_n$, $i = 1, \dots, n-1$ and the best location-invariant estimator δ^* of θ under the loss function(1.1), is $\delta^*(\mathbf{X}) = \delta_0(\mathbf{X}) - v^*(\mathbf{y})$, where $v^*(\mathbf{y})$ is a number which minimizes

$$E_{\theta=0} \left[1 - e^{1+a \left(\delta_0(\mathbf{X}) - v(\mathbf{y}) \right) - e^{a \left(\delta_0(\mathbf{X}) - v(\mathbf{y}) \right)}} \, \middle| \, \mathbf{Y} = \mathbf{y} \right]$$

(see [3]). Differentiating with respect to $v(\mathbf{y})$ and equating to zero, it can be seen that $v^*(\mathbf{y})$ must satisfy the following equation

$$E_{\theta=0} \left[\left(e^{a(\delta_0(\mathbf{X}) - v^*(\mathbf{y}))} - 1 \right) e^{a(\delta_0(\mathbf{X}) - v^*(\mathbf{y})) - e^{a(\delta_0(\mathbf{X}) - v^*(\mathbf{y}))}} \, \middle| \, \mathbf{Y} = \mathbf{y} \right] = 0$$
(2.1)

Example 2.1: (normal mean) Let $X_1, ..., X_n$ be i.i.d. random variables having normal distribution with mean θ (real but unknown) and known variance σ^2 . If $\delta_0(\mathbf{X}) = \overline{X}$, it follows from Basu's theorem that $\delta_0(\mathbf{X})$ is independent of \mathbf{Y} and hence the best location-invariant estimator of θ is given by $\boldsymbol{\delta}^*(\mathbf{X}) = \overline{X} - v^*$, when v^* is a number which satisfies (2.1), i.e.

$$\int_{-\infty}^{\infty} e^{-\frac{n}{2\sigma^2} (\mathbf{x} - \frac{2a\sigma^2}{n})^2 - e^{a\mathbf{x} - av^*}} \, \mathrm{d} \, x = e^{av^* - \frac{a^2\sigma^2}{n}} \int_{-\infty}^{\infty} e^{-\frac{n}{2\sigma^2} (\mathbf{x} - \frac{a\sigma^2}{n})^2 - e^{a\mathbf{x} - av^*}} \, \mathrm{d} \, x \tag{2.2}$$

So, we can find v^* by a numerical solution.

Example 2.2: (Uniform) Let X_1, \dots, X_n be i.i.d. according to the uniform distribution on $\left(\theta - \frac{\beta}{2}, \theta + \frac{\beta}{2}\right)$ where θ is real (but unknown) and $\beta(>0)$ is known. Taking $\delta_0(\mathbf{X}) = (X_{(1)} + X_{(2)})/2$ which is an invariant estimator of θ , the conditional distribution of $\delta_0(\mathbf{X})$ given $\mathbf{Y} = \mathbf{y}$ depends on \mathbf{y} only through differences $X_{(i)} - X_{(1)} = V_i$, $i = 2, \dots, n$. Now, note that $\left(X_{(1)}, X_{(n)}\right)$ is a complete sufficient statistic for $\left(\theta, \beta\right)$ and is independent of $Z_i = \frac{X_{(i)} - X_{(1)}}{X_{(n)} - X_{(1)}}$, $i = 2, \dots, n-1$ for all θ, β by Basu's theorem. Hence $\left(X_{(1)}, X_{(n)}\right)$ and Z_i 's are independent for all θ and any given β . Also, note that the conditional distribution of $\delta_0(\mathbf{X})$ given V_i 's which is equivalent to conditional distribution of $\delta_0(\mathbf{X})$ given $X_{(n)} - X_{(1)}$ and Z_i 's depends only on $X_{(n)} - X_{(1)}$. On the other hand, the conditional distribution of $\delta_0(\mathbf{X})$ given $W = X_{(n)} - X_{(1)}$ at $\theta = 0$ is of the form

$$f_{\delta_0(\mathbf{X}) \mid W = w}(t) = \frac{1}{\beta - w} \quad \text{if } \mid t \mid < \frac{\beta - w}{2}; \ \beta > w$$

Hence the estimator $\delta^*(\mathbf{X}) = \frac{X_{(1)} + X_{(n)}}{2} - v^*$ is the MRE estimator of θ , if v^* satisfies (2.1), which simplifies to

$$e^{-a(\frac{\beta-w}{2}+v^*)-e^{-a(\frac{\beta-w}{2}+v^*)}}-e^{a(\frac{\beta-w}{2}-v^*)-e^{a(\frac{\beta-w}{2}-v^*)}}=(1+a)e^{-e^{-a(\frac{\beta-w}{2}-v^*)}}-(1+a)e^{-e^{-a(\frac{\beta-w}{2}+v^*)}}$$

So, we can find v^* by a numerical solution.

Example 2.3: (Exponential distribution) Let $X_1, ..., X_n$ be i.i.d. random variables with the density

$$f_{\theta}(x) = \frac{1}{\beta} e^{-(x-\theta)/\beta}$$
 $x \ge \theta$

where $\theta \in R$ is unknown and $\beta(>0)$ is known. $\delta_0(\mathbf{X}) = X_{(1)}$ is an equivariant estimator and by the Basu's theorem, it is independent of \mathbf{Y} . Therefore, $\delta^*(\mathbf{X}) = X_{(1)} - \nu^*$ is the MRE estimator of θ , if ν^* satisfies (2.1), i.e. satisfies

$$\int_{0}^{e^{-av^{*}}} x^{1-\frac{n}{a\beta}} e^{-x} dx = e^{\frac{nv^{*}}{\beta}} \int_{0}^{e^{-av^{*}}} x^{-\frac{n}{a\beta}} e^{-x} dx \qquad ; a < 0$$

$$\int_{-av^{*}}^{\infty} x^{1-\frac{n}{a\beta}} e^{-x} dx = e^{\frac{nv^{*}}{\beta}} \int_{-av^{*}}^{\infty} x^{-\frac{n}{a\beta}} e^{-x} dx \qquad ; a > 0$$

which simplifies to

$$\sum_{r=0}^{1-\frac{n}{a\beta}} \frac{(1-\frac{n}{a\beta})!}{(1-\frac{n}{a\beta}-r)!} e^{av^*(1-\frac{n}{a\beta}-r)} = e^{\frac{av^*}{\beta}} \sum_{r=0}^{-\frac{n}{a\beta}} \frac{(-\frac{n}{a\beta})!}{(-\frac{n}{a\beta}-r)!} e^{av^*(\frac{n}{a\beta}+r)}$$
(2.4)

So, we can find ν^* by a numerical solution.

3 Bayes Estimation of the Normal Mean

Let $X_1, ..., X_n$ be a random sample of size n from a normal distribution with mean θ (unknown parameter) and variance σ^2 (known parameter). In this section we consider Bayesian estimation of the parameter θ using the loss function (1.1).

If the conjugate family of prior distributions for θ is the family normal distributions $N(\mu, b^2)$, then the posterior distribution of θ is $N(m, \nu)$ where

$$m = \frac{\frac{nx}{\sigma^2} + \frac{\mu}{b^2}}{\frac{n}{\sigma^2} + \frac{1}{b^2}} \qquad \& \qquad \upsilon = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{b^2}},$$

and the posterior risk of an estimator $\delta(\mathbf{X})$ under the loss function (1.1) is

$$\left\{1 - E\left[e^{1 + a\left(\theta - \delta(\mathbf{X})\right) - e^{a\left(\theta - \delta(\mathbf{X})\right)}} \,\middle|\mathbf{X}\right]\right\} = 1 - \int_{-\infty}^{\infty} e^{1 + a\left(\theta - \delta(\mathbf{X})\right) - e^{a\left(\theta - \delta(\mathbf{X})\right)}} \frac{1}{\sqrt{n\pi\upsilon}} e^{-\frac{1}{2\upsilon}\left(\theta - m\right)^2} \, d\theta$$

so, $\delta_{\scriptscriptstyle R}(\mathbf{X})$ is the solution of the following integral equation

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2\nu}(\theta - 2a\nu - m)^2 - e^{a(\theta - \delta_B)}} d\theta = e^{a(\delta_B - a\nu - m)} \int_{-\infty}^{\infty} e^{-\frac{1}{2\nu}(\theta - a\nu - m)^2 - e^{a(\theta - \delta_B)}} d\theta$$
(3.1)

Hence, we can find δ_{B} from the equation (3.1) by a numerical solution.

Also, notice that the generalized Bayes estimator relative to a diffuse prior, $\pi(\theta) = 1$ for all $\theta \in R$ can be found by letting $b \to \infty$, i.e. $\upsilon \to \frac{\sigma^2}{n}$.

In the presence of a nuisance parameter σ^2 , i.e. when σ^2 is unknown, a modified loss function is as follows

$$L(\delta; \theta, \sigma) = 1 - e^{1+a\left(\frac{\delta - \theta}{\sigma}\right) - e^{a\left(\frac{\delta - \theta}{\sigma}\right)}}$$
(3.2)

 $a \neq 0$ which is a location scale invariant loss function.

In this position, we obtain a class of Bayes estimators of the location parameter θ . Let $\tau = \frac{1}{\sigma^2}$ be the precision which is unknown and suppose that conditional on τ , θ has a normal distribution with mean μ and variance $1/\lambda \tau$, where $\mu \in R, \lambda > 0$ are both known constants, i.e., $\theta \mid \tau \sim N\left(\mu, \frac{1}{\lambda \tau}\right)$ and τ has a p.d.f g(τ). In this case, one can easily verify that

$$\pi\left(\theta\left|\mathbf{x}, au
ight) \propto e^{-rac{r}{2}\sum\limits_{i=1}^{n}(x_{i}- heta)^{2}}e^{-rac{r\lambda}{2}(heta-\mu)^{2}}$$

Or

$$\pi\left(\theta \,\middle|\, \mathbf{x}\,,\tau\right) \propto \exp\left\{-\frac{\tau}{2} \Big(n+\lambda\Big) \left[\theta - \left(\frac{n}{n+\lambda}\,\overline{x}\,+\frac{\lambda}{n+\lambda}\,\mu\right)\right]^2\right\}$$

It is clear that $\theta \mid \mathbf{x}, \tau \sim N\left(\eta, \frac{1}{\tau(n+\lambda)}\right)$, with $\eta = \frac{n}{n+\lambda}\overline{x} + \frac{\lambda}{n+\lambda}\mu$. To obtain the Bayes estimate of θ for our problem, it is enough to find an estimate $\delta(x)$ which minimizes $E\left[L\left(\delta(\mathbf{X}); \theta, \tau\right) \middle| \mathbf{X}, \tau\right]$ for any \mathbf{X}, τ . This expectation is under the distribution of $\theta \mid \mathbf{X}, \tau$. So δ_B is the solution of the following integral equation

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{a\sqrt{\tau} \left(\theta - \delta_{B}\right) - e^{a\sqrt{\tau} \left(\theta - \delta_{B}\right) - \frac{r}{2}(n+\lambda)(\theta - \eta)^{2}}} g(\tau) d\theta d\tau = \int_{0}^{\infty} \int_{-\infty}^{\infty} e^{2a\sqrt{\tau} \left(\theta - \delta_{B}\right) - e^{a\sqrt{\tau} \left(\theta - \delta_{B}\right) - \frac{r}{2}(n+\lambda)(\theta - \eta)^{2}}} g(\tau) d\theta d\tau$$
 (3.3) which can be solved numerically.

4 Best Scale Invariant Estimator

Consider a random sample $X_1,...,X_n$ from $\frac{1}{\tau}f(\frac{\mathbf{x}}{\tau})$, where f is a known function, and τ is an unknown scale parameter. It is desired to estimate τ under the loss function (1.2). The class of all scale-invariant estimators of τ is of the form

$$\delta(\mathbf{X}) = \delta_0(\mathbf{X}) / W(\mathbf{Z})$$

where δ_0 is any scale-invariant estimator, $\mathbf{X}=(X_1,...,X_n)$, and $\mathbf{Z}=(Z_1,...,Z_n)$ with $Z_i=\frac{X_i}{X_n}$; $i=1,...,n-1,Z_n=\frac{X_n}{\left|X_n\right|}$. Moreover the best scale-invariant (minimum risk equivariant (MRE)) estimator δ^* of τ is given by

$$\delta^*(\mathbf{X}) = \delta_0(\mathbf{X}) / w^*(\mathbf{Z})$$

where $w^*(\mathbf{Z})$ is a function of \mathbf{Z} which maximizes

$$E_{\tau=1} \left[e^{1+a\left(\frac{\delta_0(\mathbf{X})}{\mathbf{w}(\mathbf{Z})}-1\right)-e^{a\left(\frac{\delta_0(\mathbf{X})}{\mathbf{w}(\mathbf{Z})}-1\right)}} \middle| \mathbf{Z} = \mathbf{z} \right]$$

$$(4.1)$$

In the presence of a location parameter as a nuisance parameter, the MRE estimator of τ is of the form

$$\delta^*(\mathbf{X}) = \delta_0(\mathbf{Y}) / w^*(\mathbf{Z})$$

where $\delta_0(\mathbf{Y})$ is any finite risk scale-invariant estimator of τ , based on $\mathbf{Y}=(Y_1,...,Y_{n-1})$, with $Y_i=X_i-X_n; i=1,...,n-1$, $\mathbf{Z}=(Z_1,...,Z_{n-1}), Z_i=\frac{Y_i}{Y_{n-1}}; i=1,...,n-2$, and $Z_{n-1}=\frac{Y_{n-1}}{\left|\begin{array}{c}Y_{n-1}\\Y_{n-1}\end{array}\right|}$ and $w^*(\mathbf{Z})$ is any function of \mathbf{Z} maximizing

$$E_{\tau=1} \left[e^{1+a\left(\frac{\delta_0(\mathbf{Y})}{\mathbf{w}(\mathbf{Z})}-1\right) - e^{a\left(\frac{\delta_0(\mathbf{Y})}{\mathbf{w}(\mathbf{Z})}-1\right)}} \middle| \mathbf{Z} = \mathbf{z} \right]$$

$$(4.2)$$

In many cases, when $\tau=1$, we can find an equivariant estimator $\delta_0(\mathbf{X})$ or $\delta_0(\mathbf{Y})$ which has the gamma distribution with known parameters ν, η and is independent of \mathbf{Z} .

It follows that $\delta^* = \frac{\delta_0}{w^*}$ is the MRE estimator of τ where w^* is a number which maximizes

$$g(w) = \int_0^\infty e^{1+a(\frac{x}{w}-1) - e^{a(\frac{x}{w}-1)}} \frac{\eta^{\nu} x^{\nu-1}}{\Gamma(\nu)} e^{-\eta x} dx = \frac{\eta^{\nu}}{\Gamma(\nu)} e^{1-a} \int_0^\infty x^{\nu-1} e^{\frac{x(\frac{a}{w}-\eta) - e^{a(\frac{x}{w}-1)}}{w}} dx$$
(4.3)

and hence w^* must satisfy the following equation

$$\int_0^\infty x^{\nu-1} e^{\frac{(2a^- - \eta)x - e^{\frac{ax^-}{x^- - a}}}{w}} dx = e^a \int_0^\infty x^{\nu} e^{\frac{(a^- - \eta)x - e^{\frac{ax^-}{w} - a}}{w}} dx$$
(4.4)

Theorem 4.1: If $\delta_0(\mathbf{X})$ is a finite risk scale-invariant estimator of τ , which has the gamma distribution with known parameters ν, η , when $\tau = 1$. Then the MRE (minimum risk equivariant) estimator of τ under the loss function (1.2) is $\delta^*(\mathbf{X}) = \frac{\delta_0(\mathbf{X})}{w^*}$, where w^* must satisfy the equation (4.4).

Example 4.1: (Exponential) Let $X_1, ..., X_n$ be a random sample from $E(0, \lambda)$ with density $\frac{1}{\lambda} e^{-\frac{x}{\lambda}}$; x > 0, and consider the estimation of λ under the loss (1.2). $\delta_0(\mathbf{X}) = \sum_{i=1}^n X_i$ is an equivariant estimator which has $\mathrm{Ga}(\mathrm{n},1)$ -distribution when $\lambda=1$ and it follows from the Basu's theorem that δ_0 is independent of \mathbf{Z} , hence the MRE estimator of λ under the loss (1.2) is $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^n X_i}{\omega^*}$, where ω^* must satisfy the following equation

$$\int_0^\infty x^{n-1} e^{\frac{(2a^{-1})x - e^{\frac{ax^{-a}}{w}}}{}} dx = e^a \int_0^\infty x^n e^{\frac{(a^{-1})x - e^{\frac{ax^{-a}}{w}}}{}} dx$$
(4.5)

Example 4.1: (Continued) Suppose that X_1, \dots, X_n is a random sample of $E(\theta, \lambda)$ with density $\frac{1}{\lambda}e^{-(x-\theta)/\lambda}$; $x > \theta$, and consider the estimation of λ when θ is unknown. We know that $\left(X_{(1)}, \sum_{i=1}^n (X_i - X_{(1)})\right)$ is a complete sufficient statistics for (θ, λ) . It follows that $\delta_0(\mathbf{Y}) = 2\sum_{i=1}^n (X_i - X_{(1)})$ has $\operatorname{Ga}(\mathbf{n} - 1, \frac{1}{2})$ -distribution, when $\lambda = 1$, and from the Basu's theorem $\delta_0(\mathbf{Y})$ is independent of \mathbf{Z} and hence $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^n (X_i - X_{(1)})}{\omega^*}$ is the MRE estimator of λ under the loss (1.2), where ω^* must satisfy the following equation

$$\int_0^\infty x^{n-2} e^{(\frac{2a}{w} - \frac{1}{2})x - e^{\frac{ax}{w} - a}} dx = e^a \int_0^\infty x^{n-1} e^{(\frac{a}{w} - \frac{1}{2})x - e^{\frac{ax}{w} - a}} dx$$
(4.6)

Example 4.2: (Normal variance) Let X_1, \dots, X_n be a random sample of $N(0, \sigma^2)$ and consider the estimation of σ^2 . $\delta_0(\mathbf{X}) = \sum_{i=1}^n X_i^2$ is a finite risk scale-invariant estimator of σ^2 and is independent of

 \mathbf{Z} , and when $\sigma^2 = 1$, $\delta_0(\mathbf{X})$ has $\operatorname{Ga}(\frac{n}{2}, \frac{1}{2})$ -distribution and hence $\delta^*(\mathbf{X}) = \frac{\sum_{i=1}^{2} X_i^2}{\omega^*}$ is the MRE estimator of σ^2 , where ω^* must satisfy the following equation

$$\int_0^\infty x^{\frac{n}{2} - 1} e^{\frac{(\frac{2a}{w} - \frac{1}{2})x - e^{\frac{ax}{w} - a}}{w}} dx = e^a \int_0^\infty x^{\frac{n}{2}} e^{\frac{(\frac{a}{w} - \frac{1}{2}) - e^{\frac{ax}{w} - a}}{w}} dx$$
(4.7)

Example 4.2: (Continued) Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$, with a nuisance parameter μ . In estimating σ^2 using the loss (1.2), it follows that $\delta_0(\mathbf{X}) = \sum_{i=1}^n (X_i - \overline{X})^2$ is independent of \mathbf{Z} , and when $\sigma^2 = 1$, the distribution of $\delta_0(\mathbf{Y})$ is $\operatorname{Ga}(\frac{n-1}{2}, \frac{1}{2})$. Therefore,

 $\boldsymbol{\delta}^*(\mathbf{X}) = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}{\boldsymbol{\omega}^*}$ is the MRE estimator of $\boldsymbol{\sigma}^2$, where $\boldsymbol{\omega}^*$ must satisfy the following equation

$$\int_0^\infty x^{\frac{n-3}{2}} e^{(\frac{2a}{*} - \frac{1}{2})x - e^{\frac{ax}{*} - a}} dx = e^a \int_0^\infty x^{\frac{n-1}{2}} e^{(\frac{a}{*} - \frac{1}{2})x - e^{\frac{ax}{*} - a}} dx$$
(4.8)

Example 4.3: (Inverse Gaussian with zero drift) Let X_1, \dots, X_n be a random sample of $\mathrm{IG}(\infty, \lambda)$ with density

$$f(x \mid \lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{\frac{1}{2}} e^{-\frac{\lambda}{2x}} \qquad \text{if } x > 0$$

and consider the estimation of λ . $\delta_0(\mathbf{X}) = \sum_{i=1}^n X_i^{-1}$ has $\operatorname{Ga}(\frac{n}{2}, \frac{1}{2})$ -distribution and is independent of

 $\mathbf{Z} \text{ and hence } \boldsymbol{\delta}^*(\mathbf{X}) = \frac{\sum_{i=1}^n X_i^{-1}}{\boldsymbol{\omega}^*} \text{ is the MRE estimator of } \boldsymbol{\lambda}, \text{ where } \boldsymbol{\omega}^* \text{ must satisfy the equation (4.7)}.$

5 Bayes Estimation of Scale Parameters

In the section, we consider the Bayesian estimation of the scale parameter τ in a subclass of one-parameter exponential families in which the complete sufficient statistic $\delta_0(\mathbf{X})$ has $G(\nu, \frac{\eta}{2})$ -distribution, where $\nu > 0$, $\eta > 0$ are known.

Assume that the conjugate family of prior distributions for $\beta = \frac{1}{\tau}$ is the family of Gamma distribution $Ga(\alpha, \xi)$. Now, the posterior distribution of β is $Ga(\nu + \alpha, \xi + \eta \delta_0(x))$ and the Bayes estimate of τ is a function $\delta(x)$ which maximizes the function

$$E\left[e^{1+a(\beta\delta-1)-e^{a(\beta\delta-1)}}\,\Big|\mathbf{X}\right] = \frac{(\eta\delta_0(\mathbf{X})+\xi)^{\nu+\alpha}}{\Gamma(\nu+\alpha)}e^{1-a}\int_0^\infty \boldsymbol{\beta}^{\nu+\alpha-1}e^{(a\,\delta-\xi-\eta_0(\mathbf{X}))\boldsymbol{\beta}-e^{a(\beta\delta-1)}}\,\,\mathrm{d}\,\boldsymbol{\beta}$$

Hence, the maximized δ must satisfy the following integral equation,

$$\int_0^\infty \boldsymbol{\beta}^{\nu+\alpha} e^{(2\,\mathrm{a}\,\delta-\xi-\eta\,\,\delta_0(\mathbf{x}))\,\boldsymbol{\beta}-e^{a(\boldsymbol{\beta}\,\delta-1)}}\,\,\mathrm{d}\,\boldsymbol{\beta} = e^a \int_0^\infty \boldsymbol{\beta}^{\nu+\alpha} e^{(\mathrm{a}\,\delta-\xi-\eta\,\,\delta_0(\mathbf{x}))\,\boldsymbol{\beta}-e^{a(\boldsymbol{\beta}\,\delta-1)}}\,\,\mathrm{d}\,\boldsymbol{\beta} \qquad (5.1)$$

So all estimators satisfying (5.1) are also Bayes estimators.

Example 5.1: (Fisher Nile's problem) The classical example of an ancillary statistic is known as the problem of Nile, originally formulated by Fisher [1]. Assume that X and Y are two positive valued random variables with the joint density function

$$f(x,y;\tau) = e^{-(\tau x + \frac{1}{\tau}y)}$$
 ; $x > 0, y > 0, \tau > 0$

and that (X_i, Y_i) , i = 1,...,n is a random sample of n paired observation on (X, Y). Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, T = \sqrt{\frac{\overline{Y}}{\overline{X}}}, u = \sqrt{\overline{X}} \overline{Y}.$$
 T is the MLE of τ and the pair (T, U) is a jointly sufficient, but

not complete statistics for τ and U is ancillary. Consider a nonrandomized rule $\delta(T,U)$ based on the sufficient statistic (\bar{X}, \bar{Y}) which is equivariant under the transformation

$$\begin{pmatrix} z \\ \omega \end{pmatrix} = \begin{pmatrix} c & 0 \\ 0 & \frac{1}{c} \end{pmatrix} \left(\overline{X} \overline{Y} \right) \; \; ; \; \; c > 0$$

For $\delta(T,U)$ to be scale equivariant, we must have

$$c\delta(T,U) = \delta(cT,U) \quad ; \quad \forall c > 0$$
 (5.2)

Following Lehman [3] a necessary and sufficient condition for an estimator δ to be scale equivariant is that it is of the form $\delta = \delta_0 Z$, where δ_0 satisfies (5.2), hence $\delta_0 = T$, $Z = \phi(U)$. We see that all the scale equivariant estimators $\delta(T,U)$ must have the form

$$\delta(T, U) = T\phi(U) \tag{5.3}$$

using the loss function (1.2) and the fact that the joint distribution of $\left(\frac{T}{\tau}, \mathbf{U}\right)$ is independent of τ , and we can evaluate the risk at $\tau = 1$. Hence

$$R(\tau, T\phi(U)) = E_{_{\! \! U}}[E(1 - e^{^{1 + a \; (T\phi(U) - 1) - \, e^{\, a \; (T\phi(U) - 1)}}} \;) \mid U]$$

It follows that $R(\tau, T(\phi(U)))$ is minimized by minimizing the inner expectation. Hence, the minimum risk scale equivariant estimator is $\hat{\tau}_{MRE} = T\phi^*(U)$, where $\phi^*(U)$ must satisfy the following integral equation

$$\int_{0}^{\infty} e^{(2 \operatorname{a} \phi^{*}(\operatorname{u}) - \operatorname{u})t - \frac{u}{t} - e^{a(\operatorname{t} \phi^{*}(u) - 1)}} dt = e^{a} \int_{0}^{\infty} e^{(\operatorname{a} \phi^{*}(\operatorname{u}) - \operatorname{u})t - \frac{u}{t} - e^{a(\operatorname{t} \phi^{*}(u) - 1)}} dt$$
(5.4)

where we use the fact that the joint density function of (T, U) is g(t,u), when t = 1, and [2]

$$g(t, \frac{u}{\tau}) = \begin{cases} \frac{2e^{-n\frac{u(\frac{t}{\tau} + \frac{\tau}{\tau})}{\tau}}u^{2n-1}} & \text{if } t > 0, u > 0 \\ \frac{2e^{-n\frac{u(\frac{t}{\tau} + \frac{\tau}{\tau})}{\tau}}u^{2n-1}} & \text{otherwise.} \end{cases}$$

For deriving the Bayes estimator of τ , let us consider the Inverted Gamma distribution as a prior distribution

$$\pi_{\alpha,\lambda}(\tau) = \frac{\lambda^{\alpha} e^{-\lambda/\tau}}{\tau^{\alpha+1} \Gamma(\alpha)} \quad ; \quad \tau > 0 \ , \ \lambda > 0.$$

Therefore the unique Bayes estimator δ_B which is admissible under the loss (1.2) must satisfy the following integral equation

$$\int_0^\infty \tau^{-\alpha} e^{(2 \operatorname{a} \delta_B - \frac{u}{t})\tau - (\lambda + ut)\frac{1}{\tau} - e^{a(\tau \delta_B - 1)}} d\tau = e^a \int_0^\infty \tau^{-\alpha} e^{(\operatorname{a} \delta_B - \frac{u}{t})\tau - (\lambda + ut)\frac{1}{\tau} - e^{a(\tau \delta_B - 1)}} d\tau \tag{5.5}$$

Note that $\hat{\tau}_{\mathit{MRE}} = \hat{\tau}_{\mathit{B}}$, whenever $\alpha \to 0$, $\lambda \to 0$. This means that when the loss function is scale invariant loss (1.2), then $\hat{\tau}_{\mathit{MRE}}$ is a generalized Byes rule against the scale invariant improper prior $\pi(\tau) = \frac{1}{\tau}$; $\tau > 0$ and is therefore minimax.

References

- 1. Fisher, R. A. (1959): Statistical Method and Scientific Inference. London, Oliver and Boyd.
- 2. Joshi, s. and Nabar, S. (1987): Estimation of the Parameter in the Problem of the Nile. Commun. Statist. Theory Meth. 16, 3149-3156.
- 3. Lehman, E.L. and Casella, G. (1998): Theory of Point Estimation. Springer-Varlag New York, Inc.
- 4. Leon, R. V. and Wu, C.F.G. (1992): A Theory of Performance Measure in Parameter Design. Statist. Sinica, 2(2), 335-357.
- 5. Tribus, M. and Szonya, G. (1989): An Alternate View of the Taguchi Approach. Quality progress, May, 46-52.
- Varian, H. R. (1975): A Bayesian Approach to Real Assessment. In: Studies in Bayesian Econometric and Statistics in Honor of Leonard J. Savage, eds. S.E. Fienberg and A. Zellner. North Holland, Amesterdam, 195-208
- Zellner, A. (1986): Bayesian Estimation and Prediction Using Asymmetric Loss Function. J. Amer Statist. Assoc., 81,446-451.