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Abstract 
Clustering and segmentation algorithms that depend on Gaussian kernel func-

tion as a way for constructing affinity matrix, these algorithms like spectral cluster-
ing algorithms suffer from the poor estimation of parzen window σ. The final re-
sults depend on this parameter and differ on each time we change it.In this paper 
we present a new algorithm for estimation σ using optimization techniques, we con-
struct a vector 𝜎𝜎�𝑖𝑖���⃗  , each 𝜎𝜎�𝑖𝑖  corresponding to ithrow in  a dissimilarity matrix which 
is used to construct an affinity matrix using Gaussian kernel function. Our algo-
rithm shows that choosing 𝜎𝜎�𝑖𝑖  as the formula 𝜎𝜎�𝑖𝑖2 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2−𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

2 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2
 is the opti-

mum estimation, and we introduce more than one approach to calculate global 
value for σ from this vector. The affinity matrix which is produced using our algo-
rithm is very informative and contains addition information like the number of clus-
ters. 
 

Keywords:Data clustering, Adaptive sigma, Mining algorithms, Spectral 
clustering, kernel trick, Gaussiankernel, Eigen vectors 
 
1. Introduction 

Data clustering techniques are an important aspect used in many fields such as 
data mining [1], pattern recognition and pattern classification [2], data compression 
[3], machine learning [4], image analysis [5], and bioinformatics [6]. The purpose 
of clustering is to group data points into clusters in which the similar data points are 
grouped in the same cluster while dissimilar data points are in different clusters. 
The high quality of clustering is to obtain high intra-cluster similarity and low inter-
cluster similarity. 

The clustering problems can be categorized into two main types: fuzzy clustering 
and hard clustering. In fuzzy clustering, data points can belong to more than one 
cluster with probabilities [7] which indicate the strength of relationships between 
the data points and a particular cluster. One of the most widely used fuzzy cluster-
ing algorithms is fuzzy c-mean algorithm [8]. In hard clustering, data points are 
divided into distinct clusters, where each data point can belong to one and only one 
cluster. The hard clustering is subdivided into hierarchal and partitional algorithms. 
Hierarchal algorithms create nested relation-ships of clusters which can be 
represented as a tree structure called dendrogram [9]. These algorithms can be di-
vided into agglomerative and divisive hierarchal algorithms. The agglomerative 
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hierarchal clustering starts with each data point in a single cluster. Then it repeats 
merging the similar pairs of clusters until all of the data points are in one cluster, 
such as complete linkage clustering [10] and single linkage clustering [11]. The 
divisive hierarchal algorithm reverses the operations of agglomerative clustering, it 
starts with all data points in one cluster and repeats splitting large clusters into 
smaller ones until each data point belong to a single cluster such as DIANA cluster-
ing algorithm [12].Partitional clustering algorithm divides the data set into a set of 
disjoint clusters such as Kmeans [13], PAM [12] and CLARA [12]. 

While clustering and segmentation algorithms are unsupervised learning 
processes, users are usually required to set some parameters for these algorithms. 
These parameters vary from one algorithm to another, but mostcluster-
ing/segmentation algorithms require a parameter that either directly or indirectly 
specifies the number of clusters/segments  [16]. This parameter is typically either k, 
the number of clusters/segments to return, or some other parameter that indirectly 
controls the number of clusters to return, such as an error threshold. Setting these 
parameters requires either detailed pre-existing knowledge of the data, or time-
consuming trial and error. if the data set is very large or is multidimensional, human 
verification could  become difficult. To find a reasonable number of clusters, many 
existing methods must be run repeatedly with different parameters, and are imprac-
tical for real-world data sets that are often quite large. Automatically detects the 
number of clusters in the data set, and selects the most representative dense proto-
types to be initial prototypes even if the clusters are in different shapes with differ-
ent densities [16]. 

We desire an algorithm that  efficiently determine reasonable number of clus-
ters/segments to return from any spectral clustering  algorithm. In order to identify 
the correct number of cluster, we introduce our algorithm for optimal value of sig-
ma. 

Clustering Algorithms: Clustering is anunsupervised machine learning process 
that creates clusters such that data points inside a cluster are close to each other, and 
also far apart from data points in other clusters. There are four main categories of 
clustering algorithms: partitioning, density-based, grid-based, and hierarchical. Par-
titioning algorithms, such as K-means and PAM [14], iteratively refine a set of k 
clusters and do not scale well for larger data sets. Density-based algorithms, e.g., 
DBSCAN [3] and DENCLUE [9], are able to efficiently produce clusters of arbi-
trary shape, and are also able to handle outliers. If the density of a region is above a 
specified threshold, those points are assigned to a cluster; otherwise they are consi-
dered to be noise. Grid-based algorithms, such as WaveCluster [17], reduce the 
clustering space into a grid of cells, enabling efficient clustering of very large data-
sets. Hierarchical algorithms can be either agglomerative or divisive. The agglo-
merative (bottom-up) approach repeatedly merges two clusters, while the divisive 
(top-down) approach repeatedly splits a cluster into two. CURE [6] and Chameleon 
[10] are examples of two hierarchical clustering algorithms. Hierarchical algo-
rithms differ chiefly in the criteria that they use to determine similarity between 
clusters. 

Spectral Clustering: Depends on cutting the graph  by mapping the data into a 
high dimensional feature space, where each coordinate corresponds to one feature 
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of the data items, effectively transforming the data into a set of points in a Eucli-
dean space(Eigen space). In that space, a variety of methods can be used to find 
relations in the data. Since the mapping can be quite general (not necessarily linear, 
for example), the relations found in this way are accordingly very general. This 
mapping approach is called the kernel trick [33]. 

The spectral clustering depends on GaussianKernel Function to give the edges 
between nodes(X(i),X(j)) their weight (Wi,j) the equation is: 
 
 
 
 

In spectral clustering, one constructs an affinity or kernel matrix A from the data 
points and performs a spectral decomposition of A, possibly after normalization. 
Then the dominant eigenvalues and the corresponding eigenvectors are used for 
clustering the original data. Spectral clustering may be applied in particular in cases 
where simple algorithms such as K-means fail. 

Our main contributions are: (1) we introduce a novel method for determining the 
optimal value of sigma by using weak affinity matrix ;(2) there are many  existing 
techniques for comparison : the cross-validation, penalized likelihood estimation, 
permutation tests, resembling, and finding the knee of an error curve. we compare 
our method with error  index.  

The rest of this paper is organized as follows: Section 2 introduces some of the 
related works. Our proposed algorithm is explained in details in Section 3. Section 
4 provides the simulation results and Section 5 gives the conclusions and future 
works. 
 
2. Related Works 

Determining the Number of Clusters/Segments: Five common approaches to es-
timating the dimension of a model are: cross-validation, penalized likelihood esti-
mation, permutation tests, resembling, and finding the knee of an error curve. 
Cross-validation techniques create models that attempt to fit the data as accurately 
as possible. Monte Carlo cross validation [18, 17] has been successfully used to 
prevent over-fitting (too many clusters/segments). Penalized likelihood estimation 
also attempts to find a model that fits the data as accurately as possible, but also 
minimizes the complexity of the model. Permutation tests [22] attempt to prevent 
the creation of a PLA that over-fits the data by comparing the relative change in 
approximation error to the relative change of a random time series. If the errors are 
changing at a similar rate, then more segments would fit noise and not the underly-
ing structure of the time series. Resembling [15] and Consensus Clustering [13] 
attempt to find the correct number of clusters by clustering many samples of the 
data set, and determining the number of clusters where clustering’s of the various 
samples are the most “stable.” Locating the “knee” of an error curve, in order to 
determine an appropriate number of clusters or segments, is well known, but it is 
not a particularly well-studied method. There are methods that statistically evaluate 
each point in the error curve, and use the point that either minimizes or maximizes 
some function as the number of clusters/segments to return. Such methods include 
the Gap statistic [21] and prediction strength [20]. 
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Weak Affinity Matrix: The affinity matrix A is usually interpreted as the adjacency 
matrix of a graph. Thus spectral clustering algorithms are decomposed into two 
distinct stages: (a) build a good affinity graph and (b) and a good clustering of the 
graph. Determining the kernel parameter σ is a pivotal issue and greatly influences 
on the final clustering result. In some cases the right  σ is obvious. However, gener-
ally it is non-trivial to find a good σ value. A possible method is trying different 
values for σ and choosing the one which optimizes some quality measure. The main 
issue is the construction of a good affinity matrix which is as block diagonal as 
possible. In that case spectral decomposition is merely the most convenient way to 
discover this block structure. In order to amplify the block structure of an affinity 
matrix, new method is called as  conductivity method which used a weak affinity 
matrix where the affinities of many points might be close to zero. So there is weak 
affinity matrix for min sigma and strong affinity matrix for max sigma. By amplify-
ing weak affinities in matrix A. Instead of considering two points similar if they are 
connected by a high-weight edge in the graph, we assign them a high affinity if the 
overall graph conductivity between them is high. The definition for conductivity as 
for electrical networks, i.e., the conductivity of two points depends on all paths be-
tween them.  

The connectivity method depends on finding sigma for every point and finding 
constant τ as shown in the following equation: 
 

 

The τ is referred as the fixed neighborhood size. Choosing τ  is easier than 
choosing σ since τ is scale invariant. in contrast to σ the clustering result is not very 
sensitive to the value of τ. In order to obtain weak affinities, τ is set to a small val-
ue, such that only immediately neighboring points obtain a significant affinity. The 
best choosing of τ = 1+2D, where D is the dimension of the data  there should be 
two neighbors for each dimension, plus one because the point is neighbor of itself 
[34]. 
 
3. Proposed Algorithm 

In this paper we present an effective way to estimate σ parameter in Gaussian 

kernel function which has the form (𝑖𝑖, 𝑗𝑗) = 𝑒𝑒
−𝑑𝑑(𝑖𝑖 ,𝑗𝑗)2

2𝜎𝜎2  . This function is essential for 
constructing  a good informative affinity matrix in spectral algorithms, therefore the 
choice of this parameter is very important and change results dramatically. 

Most of spectral algorithms substitute σ by roughly values like 0.5, 1 and 2, but 
these values are not probable for many datasets, and affect accuracy for spectral 
clustering algorithms, our algorithm is estimation for σ depending on the dataset 
itself. 

The first stage for any spectral clustering algorithm is to construct similarity ma-
trix which is called affinity matrix using Gaussian kernel function. The main moti-
vation of clustering is to group similar objects in one cluster, and separate objects 
with less similarity in different clusters. The most important measurement of dissi-



International Journal of Artificial Intelligence and Applications for Smart Devices  
Vol. 2, No. 1 (2014) 

 
 

45  Copyright ⓒ 2014 SERSC 

milarity between objects is squared Euclidean distance, and the Gaussian kernel 
function can considered as a way to convert dissimilarity matrix to similarity one. 

Similarity or affinity matrix is  a symmetric matrix with NXN dimension where 
N is the number of samples, and the elements in this matrix have values between 0 
and 1. 

The ith row in an affinity matrix represents the similarity between sample xiand 
remainder samples from xi+1toxn, because the affinity matrix is symmetric with a 
diagonal which has value 1. So that we need to construct affinity matrix from ele-
ments on the right of the diagonal in distance matrix using Gaussian kernel func-
tion. We assume that for each ithrow of affinity matrix there is σi which is called 
parzen window. In other hand we need to generate two ranges of σito construct a 
weak affinity matrix and a strong affinity matrix(1), supposing σi1for the  weak af-
finity matrix  and σi2for the strong affinity one. 

To construct weak affinity matrix we need inasmuch as a small σi1 as we can, but 
not too small that affects relations between neighborhood objects. To achieve that, 
σi1must be small and gives strong affinity to closest points. To be mentioned, less 
distance means more affinity and vice versa. 

To have an estimation of σi1, we use an optimization technique, to get weak af-

finity we need to minimize 𝐾𝐾(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒
−𝑑𝑑(𝑖𝑖 ,𝑗𝑗)2

2𝜎𝜎2 , and as a result of the negative(minus 
sign) power of   the exponential, we need to maximize the term 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

2𝜎𝜎2  as we can. 
For this we must choose the dominator to be the farthest distance between xiand 
remainderxj𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗 = 𝑖𝑖 + 1 𝑡𝑡𝑡𝑡𝑚𝑚 , so the term can be re-written as  max (𝑑𝑑(𝑖𝑖,𝑗𝑗 )2)

2𝜎𝜎𝑖𝑖1
2 . In 

this case, the dominator is constant now, we can write Gaussian kernel as a function 

of σi1𝑘𝑘(𝑖𝑖,𝜎𝜎𝑖𝑖1) = 𝑒𝑒𝑚𝑚𝑒𝑒
−𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 (𝑖𝑖,𝑗𝑗 )2

2𝜎𝜎𝑖𝑖1
2  . Now we have to minimize 𝑘𝑘(𝑖𝑖,𝜎𝜎𝑖𝑖1). To do that, we 

can use the simplest way of optimization techniques by taking the first derivative of 
the function respect to σi1 

𝑑𝑑𝑘𝑘 (𝑖𝑖,𝜎𝜎𝑖𝑖1)
𝑑𝑑𝜎𝜎𝑖𝑖1

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 (𝑖𝑖,𝑗𝑗 )2

𝜎𝜎𝑖𝑖1
3 𝑒𝑒

−𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

2𝜎𝜎𝑖𝑖1
2 ………….(1) 

In the same way we can construct strong affinity matrix by maximizing  

𝐾𝐾(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒
−𝑑𝑑(𝑖𝑖,𝑗𝑗)2

2𝜎𝜎2 , and to do that, we can simply minimize the term 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

2𝜎𝜎2 . So we 
choose the dominator to be the closest distance between xiand remainder  
xj𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗 = 𝑖𝑖 + 1 𝑡𝑡𝑡𝑡𝑡𝑡 .The term becomes 𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

2𝜎𝜎𝑖𝑖2
2 . 

As the previous one the dominator is constant for the object xiwe can write Gaus-

sian kernel as a function of σi1𝑘𝑘(𝑖𝑖,𝜎𝜎𝑖𝑖2) = 𝑒𝑒𝑚𝑚𝑒𝑒
−𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑 (𝑖𝑖,𝑗𝑗)2

2𝜎𝜎𝑖𝑖2
2  ,and by the derivation we 

get formula 

𝑑𝑑𝑘𝑘 (𝑖𝑖,𝜎𝜎𝑖𝑖2)
𝑑𝑑𝜎𝜎𝑖𝑖2

= 𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑 (𝑖𝑖 ,𝑗𝑗 )2

𝜎𝜎𝑖𝑖2
3 𝑒𝑒

−𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖 ,𝑗𝑗)2

2𝜎𝜎𝑖𝑖2
2  …….(2) 

In the fact we need one value of parzen window σ for each row iin the affinity 
matrix. To achieve that, we replace each σi1and σi2by one variable 𝜎𝜎�, and to esti-
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mate optimum value for 𝜎𝜎� we put eq1 and eq2 equal to zero (optimization tech-
nique ). Now we have eq1=eq2=0, but not to be forgotten that we have one equa-
tion for one unknown𝜎𝜎� as we can see in the following formula: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 (𝑖𝑖,𝑗𝑗 )2

𝜎𝜎�𝑖𝑖
3 𝑒𝑒

−𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖 ,𝑗𝑗)2

2𝜎𝜎�𝑖𝑖
2 = 𝑚𝑚𝑖𝑖𝑚𝑚𝑑𝑑 (𝑖𝑖,𝑗𝑗 )2

𝜎𝜎�𝑖𝑖
3 𝑒𝑒

−𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

2𝜎𝜎�𝑖𝑖
2  ………(3) 

By sampling eq3 we get    𝑒𝑒
max 𝑑𝑑(𝑖𝑖,𝑗𝑗)2−min 𝑑𝑑(𝑖𝑖,𝑗𝑗)2

2𝜎𝜎�𝑖𝑖
2 =𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖 ,𝑗𝑗)2

𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗)2  by taking natural loga-
rithm to both sides  𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2−𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖 ,𝑗𝑗 )2

2𝜎𝜎�𝑖𝑖
2 = ln𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2   so we get 

𝜎𝜎�𝑖𝑖2 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2−𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖 ,𝑗𝑗 )2

2 ln𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2

𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2
 …………………………………(4) 

Note that the last two rows in dissimilarity matrix(N-1 and N), N-1 has one vari-
able after diagonal, and N row has no variable, so we need to calculate 
𝜎𝜎�𝑖𝑖2i=1,2,3…….,N−2 , after constructing vector 𝜎𝜎�𝑖𝑖2 we need to calculate one value 
for σ2 we can put it simply equals to 𝑚𝑚𝑎𝑎𝑎𝑎(𝜎𝜎�𝑖𝑖2). Suppose that we have 12 samples 
x1,x2,………….x12with 2 dimension as shown below in Table1 with distribution as 
shown in Figure 1. 

Table 1 
 

 

 

 

 

 

 

Figure 1. The Distribution of Samples 

 

 

 

 
 

We calculate dissimilarity matrix between 
samples as below in Table 2.Then we calculate vector for σii=1 to 10 with our algo-
rithm using equation (4) then using one σ=avg(𝜎𝜎�𝑖𝑖)�������⃗  , after that we get the following 
affinity matrix (Table 3). If you look to Table 3 which represents affinity, x1it has 

Sample Attribute1 Attribute2 

X1 3 8 

X2 10 11 

X3 18 10 

X4 17 8 

X5 11 10 

X6 5 6 

X7 11 12 

X8 3 6 

X9 19 9 

X10 12 11 

X11 18 9 

X12 5 8 
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strong affinity with samples: x6, x8and x12so these samples in one cluster, in other 
hand sample x2has strong affinity with samples : x5, x7and x10, so we put these sam-
ples in a new cluster. 

Sample x3has strong affinity with samples: x4, x9and x11, these samples form a 
third cluster and clustering completes. In this example our algorithm construct very 
optimized affinity matrix and even lead us to do simple clustering with merge sam-
ples with strong affinity and obtain true 3 clusters without any prior information 
about number of clusters as shown below in Table 3. 

So our algorithm is capable to construct a very informative affinity matrix and 
later can be used by any algorithm like spectral clustering to group very large data-
sets. In our optimized method for Gaussian kernel function the constructed affinity 
matrix has more than the affinity between samples and it has also an information 
about the number of clusters as we have shown in the example 1. Spectral cluster-
ing try to construct a block diagonal affinity matrix, but the accuracy of determina-
tion number of clusters which uses block diagonal(1) or Eigen gap needs a very 
informative initial affinity matrix that our optimized algorithm capable of do. 

We have shown an approach to calculate  σ as an average of 𝜎𝜎�𝑖𝑖  vector. If we have 
prior information about desired number of clusters k, we can sort 𝜎𝜎�𝑖𝑖  vector and par-
tition it to k parts and estimate average for all parts to get k values of σ in addition 
to minimum and maximum values of the same vector to do different clustering with 
these different values of σ, and each time we use an error measurement like Sum of 
Squared Error or others and choose the clustering result with minimum error. 
 
4. Simulation and Results 

We evaluated our proposed algorithm on several artificial and real data sets. 
 
4.1.Artificial Data Sets 

We used two artificial data sets such as 6c2d(500 samples) and 2moon(300 sam-
ples) in our tests to show the performance of our algorithm using proposed 𝜎𝜎. 
a) We generated artificial data set with six clusters and 2 dimension for display, 

the data set distributed according to non-isotropic Gaussians with different va-
riances as shown in figure  2. In Cluster  1 :70, Cluster 2 :60, Cluster 3 :80, 
Cluster 4 :90, Cluster 5 :100, Cluster 6 :100 samples. The distribution of sam-
ples is showed in Figure 2. 

 

 

 

 

 
 

Figure 2. Artificial Data with Six Clusters 
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As shown in Figure 3 we have six clusters. These clusters are obtained by using 
our optimized sigma to find good affinity matrix. It is clear from affinity matrix 
wehavesixclusters, these clusters are shown in the block diagonal matrix in white 
square color as shown in Figure 4. 
 

 

 

 

 

 

 
Figure 3. Clustering Dataset with Six Clusters 

 

 

 

 

 

 

Figure 4.Affinity Matrix with Six Clusters 

b) We generated two moons in 2 dimensions with Gaussian noise of variance 
0.01 Number of points in Class 1: 155; Class 2: 145. The distribution of 
samples is shown Figure 5.  

 

 

 

 

 

 

Figure 5.Artificial Data with 2 Clusters 
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As shown in Figure 6 we have two clusters. These clusters are obtained by using 
our optimized sigma to find good affinity matrix. It is clear from affinity matrix 
wehave two clusters, these clusters are shown in the block diagonal matrix in white 
square color as shown in Figure 7. 
 

 

 

 

 

 

Figure 6. Clustering Dataset with Two Clusters 

 

 

 

 

 
 

Figure7. Affinity Matrix with Two Clusters 

c) We have very complexartificial data set with 2 dimensions and 395 samples as 
shown in Figure  8 with noise added. This data set is organized from  two parts 
with six clusters. After we found the σ for the first time we used 2nd smallest 
Eigen vector[37,38] and we divide the complex data set into twoparts as shown 
in Figure 9. 

 

 

 

 

 

 

 

Figure 8. Artificial Data with Six Clusters 
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Figure 9. Clustering Dataset with 2 Parts 

After thatwe found the new 2σ  for two parts  and we used k largest Eigen vector 
of a normalized affinity matrix[39] by using this technique the first part of the 
complex dataset was  as shown in Figure 10, and the second part as shown in 
Figure 11.We see at the low part there is slightly error because we didn’t processing 
the noise.  
 

 

 

 

 

 

 

Figure 10.Clustering Dataset with First Part 

So if we used sigma values from 0.5 to 100 we could't get accurate results,but by 
using our proposedσ we have accurate results as shown in clustering results. 

 

 

 

 

 

 

Figure 11. Clustering Dataset with Second Part 
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4.2. Real Data Sets 

a) We used the iris data set from the UCI 
(http://archive.ics.uci.edu/ml/datasets/Iris) which contains three clusters, 
150 data points with 4 dimensions, number of points cluster 1 :50 samples, 
cluster 2 :50 samples and cluster 3 :50 samples. AS shown in Figure 12we 
have  affinity matrix with three clusters which shown in block diagonal ma-
trix in white square color. These clusters are obtained by using our  pro-
posed sigma to find good affinity matrix. 

 

 

 

 

 

 

 

Figure 12. AffinityMatrix with Three Clusters 
 

b) We used the Wine data set from the UCI 
(http://archive.ics.uci.edu/ml/datasets/wine) which contains three clusters, 
178 data points with 13 dimensions. class 1 :59,class 2: 71, class 3 :48 
samples. AS shown in Figure 13 we have affinity matrix with three clusters 
which shown in block diagonal matrix in white square color. These clusters 
are obtained by using our  proposed sigma to find good affinity matrix 

 

Figure 13. Affinity Matrix with Three Clusters 
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c) We test 210 samples with 7 images and 19 attributes. This dataset can be 
found at  the following web site: 

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Image+Segmentation%2
9 Description of Datasets. AS shown in Figure 14 we have affinity matrix 
with seven clusters which shown in block diagonal matrix in white square 
color. These clusters are obtained by using our proposed sigma to find good 
affinity matrix. 
 
 

 

 

 

 
 

Figure 14. Affinity Matrix with Seven Clusters 

4.3. Error Index  

We want to show our strong proposed sigma by measuring the performance us-
ing error index. So we will  calculate the number of error from the total number of 
samples in percentage. In an artificial data set 6c2d with 500 samples we get an 
error index as 0 % by using our proposed sigma, when the sigma is substituted by 
(0.5,1,2) we get (0,0,0.4)% error index.In an artificial data set 2moon(300 sam-
ples)we have an error index as 2.66% by using our proposed sigma, when the sigma 
is substituted by (0.5,1,2) we get (16,23,33)% error index.In an artificial data set 
6c2d(395) samples)we have an error index as 3.26% by using our proposed sigma 
when the sigma is substituted by (0.5,1,2) we get (99,99,99)% error index.In real 
data set iris (150 samples) we have an error index as 5.3 % by using our proposed 
sigma, when the sigma is substituted by (0.5,1,2) we get (45,32,32)% error index.In 
real data set wine (178 samples) we have an error index as 5.6 % by using our pro-
posed sigma when the sigma is substituted by (0.5,1,2) we get (93,87,38)% error 
index.and in 7 images error index is 5.8% with our optimized algorithm but with 
traditional values of σ (0.5,1,2) we get (95,81,73)% error index. The results for ar-
tificial and real data set are  shown in Table 4. Where c means # clusters, D means 
# dimension and S means # samples. 

 

 

 

 

 
 

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Image+Segmentation%29
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Image+Segmentation%29
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Table 4.Error Index 
 

 

 
 

 

 

 

 
 

 

 

 
 
 
 
 
 
 

5. Conclusions and Future Works 
In this paper we presented a new algorithm for estimating σ using optimization 

techniques, we constructed a vector 𝜎𝜎�𝑖𝑖���⃗  , each 𝜎𝜎�𝑖𝑖  corresponds to ithrow in  a dissimi-
larity matrix which is used to construct an affinity matrix using Gaussian kernel 
function. Our algorithm showed that choosing 𝜎𝜎�𝑖𝑖  as the formula 𝜎𝜎�𝑖𝑖2 =
𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2−𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖 ,𝑗𝑗 )2

2 ln𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗)2

𝑚𝑚𝑖𝑖𝑚𝑚 𝑑𝑑(𝑖𝑖,𝑗𝑗 )2
gives good accuracy in clustering result, and we introduced 

more than one approach to calculate global value for σ from this vector. The affini-
ty matrix which is produced using our algorithm is very informative and contains 
addition information like the number of clusters.We hope on future we can develop 
our algorithm to do complete clustering without depending on other algorithms. 
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 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

X1 0 58 229 196 68 8 80 4 257 90 226 4 

X2 58 0 65 58 2 50 2 74 85 4 68 34 

X3 229 65 0 5 49 185 53 241 2 37 1 173 

X4 196 58 5 0 40 148 52 200 5 34 2 144 

X5 68 2 49 40 0 52 4 80 65 2 50 40 

X6 8 50 185 148 52 0 72 4 205 74 178 4 

X7 80 2 53 52 4 72 0 100 73 2 58 52 

X8 4 74 241 200 80 4 100 0 265 106 234 8 

X9 257 85 2 5 65 205 73 265 0 53 1 197 

X10 90 4 37 34 2 74 2 106 53 0 40 58 

X11 226 68 1 2 50 178 58 234 1 40 0 170 

X12 4 34 173 144 40 4 52 8 197 58 170 0 
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Table 3 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 

X1 1 0.25618 0.00462 0.01003 0.20256 0.82874 0.15282 0.91035 0.00239 0.12084 0.00495 0.91035 

X2 0.25618 1 0.21735 0.25618 0.95412 0.30911 0.95412 0.17594 0.13589 0.9105 0.20256 0.45007 

X3 0.00462 0.21735 1 0.88922 0.31646 0.01298 0.28809 0.00348 0.95412 0.4196 0.97679 0.01721 

X4 0.01003 0.25618 0.88922 1 0.39093 0.03095 0.29493 0.00913 0.88922 0.4507 0.95412 0.03400 

X5 0.20256 0.95412 0.31646 0.39093 1 0.29493 0.91035 0.15282 0.21735 0.9541 0.30911 0.39093 

X6 0.8287 0.30911 0.01298 0.03095 0.29493 1 0.18440 0.91035 0.00811 0.1759 0.01530 0.91035 

X7 0.15282 0.95412 0.28809 0.29493 0.91035 0.18440 1 0.09555 0.18012 0.9541 0.25618 0.29493 

X8 0.91035 0.17594 0.00348 0.00913 0.15282 0.91035 0.09555 1 0.00198 0.0829 0.00410 0.82874 

X9 0.00239 0.13589 0.95412 0.88922 0.21735 0.00811 0.18012 0.00198 1 0.2880 0.97679 0.00979 

X10 0.12084 0.91035 0.41946 0.45007 0.95412 0.17594 0.95412 0.08299 0.28809 1 0.39093 0.25618 

X11 0.004959 0.202568 0.976793 0.954124 0.309119 0.015306 0.25618 0.004109 0.976793 0.3909 1 0.018468 

X12 0.910353 0.450076 0.017212 0.034007 0.390931 0.910353 0.294938 0.828743 0.009797 0.2561 0.018468 1 
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