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Abstract 

In Linear Discriminant Analysis (LDA), it is assumed that each class has a Gaussian 

distribution. This assumption rarely holds in the real world problems. However, by removing 

this assumption, the problem become intractable and cannot be solved in analytic form. Quite 

recently, a group of evolutionary algorithms is introduced to solve this problem. These 

algorithms used a combination of fisher criterion and fuzzy membership function as their 

fitness function. It is widely acknowledged that computing the fitness function in an 

evolutionary algorithm needs to be very fast. Unfortunately, calculating fisher criterion for 

each chromosome in iterations of an evolutionary algorithm has a high computational cost. 

Furthermore it is known that the fuzzy membership function has an assumption of Gaussian 

distribution, thus using it as a fitness function will have same assumption issue that LDA had 

previously. In this paper, we suggest a new fisher criterion to incorporate in fitness function 

and show that it is theoretically faster than previous introduced criterion. In addition we 

theoretically prove the equality of proposed criterion. Next, in order to eliminate the 

Gaussian assumption, we offer a substitution for fuzzy membership fitness function which 

does not have Gaussian assumption. Moreover, the superior speed introduced fitness function 

theoretically investigated. At last, in order to confirm the effectiveness of proposed fitness 

functions, comprehensive experiments using twelve UCI repository dataset and two real 

world problems in face and object recognition is performed and the results is compared in 

both speed and accuracy. 

 

Keywords: Feature Extraction; Linear Discriminant Analysis; Gaussian Assumption; 

Evolutionary Algorithm; Fitness Function 

 

1. Introduction 

Clustering and classification are two main fields of research in machine learning. Due to 

the so called curse of dimensionally problem, a Dimension Reduction (DR) preprocessing step 

found many application in these fields [1, 2]. Many different DR methods have been proposed 

in the literatures which extract useful features based on the information that might be 

available beside actual data. In the extreme cases, when no extra information is available, the 

goal becomes to find directions in which the variance of data is maximized [3]. A popular 

algorithm to reach such a goal is Principle Component Analysis (PCA) [4]. On the other hand 

if some information about domain (e.g., label of data) be at hand, it can be exploited to find 

directions in which the distance between data points in the same class minimized while data 

in different classes stay far from each other [5]. Fisher formulized this goal from such view 

which is called Linear Discriminant Analysis (LDA) [6]. His well-known cost, tries to find 
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directions to maximize the ratio of between-class variances to the within-class variances, 

thereby maximal separability will be guaranteed [7]. 

The formulation of LDA assumes that data points is scattered with a unimodal or Gaussian 

distribution around their corresponding class mean [3]. In the other word, LDA is equivalent 

to maximum likelihood classification if each class has a Gaussian distribution with common 

covariance matrix [8]. This assumption is frequently violated in real world problems. 

Therefore if class distribution follows a multimodal or share the same mean, LDA will gives 

degenerate result [1]. Thorough the last three decades many different approaches are perused 

to extract a better feature set. Quadratic Discriminant Analysis (QDA) is proposed by Wald 

and Kronmal which relaxes the identical covariance assumption and allows for complex 

discriminant boundaries to be formed [9]. However, in compare to LDA, QDA needs a lot 

more training samples to reach an admissible solution due to the fact that larger number of 

parameters needed to be calculated [10]. 

Quite recently, a group of new approaches is proposed by Mohammadi et al., which use a 

mixture of evolutionary algorithms and fuzzy membership functions to find a more compact 

classes with distant mean vector [11]. Evolutionary algorithms have an innate capability in 

searching space of non-convex problems with many local minimum. Thus, it is a promising 

methodology to use these kinds of algorithms to finding suitable features. A very essential 

part in any evolutionary algorithm is fitness function. This part measures the utility of each 

chromosome to be a solution. In each step of an evolutionary algorithm, many chromosome 

needs to be evaluated by fitness function. Therefore the fitness function should be very 

computation efficient. Unfortunately, the fitness function in Mohammadi’s evolutionary 

algorithm is the actual fisher criterion, which has a high computational cost. Hence, this 

algorithm require a lot of time to reach an appropriate solution. In addition, Mohammadi used 

a fuzzy membership function to overcome Gaussian distribution assumption issue. But the 

fuzzy membership function has the same Gaussian distribution assumption. Consequently the 

assumption issue remained unresolved.  

In this paper we aim to propose new fitness function for these algorithms to solve the 

discussed problems and theoretically show that they can reach the same solution with lower 

computational cost. In addition, to overcome the assumption issue, we propose a substitution 

for fuzzy membership function and experimentally show that it can give a better class 

separability measurement with no Gaussian assumption. This paper is organized as follows: 

In section 2 we will discuss about preliminaries in discriminant analysis and demonstrate the 

Gaussian assumption issue in LDA. In section 3 we discuss Mohammadi’s evolutionary 

algorithms and the expressed problem in more detail. Section 4 is dedicated to our proposed 

algorithm. Experimental result will be demonstrated in section 5 and conclusion is given in 

section 6. 

 

2. Preliminary 

First we define our notation in this paper. Scripted letters such as   and   represent sets. 

Capital letters like   and   are matrixes while bold lower case letters show column vectors 

e.g.,   and  . Lower case letters indicate scalars e.g.   and  . Similar to popular notation we 

use subscripts to index elements in matrixes or vectors. For example    is i-th element of 

vector   and    is the j-th column vector in matrix  . The vector norm ‖ ‖ is the    norm so 

by definition ‖ ‖  √   . Let   {          }       be   given data points in column 

vector with   dimension. Also there are   classes available. So the whole dataset is divided 

into   set where    {          } and depend on their labels   , each data point    
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belong to one of these classes. The aim in LDA problem is to find an optimal projection 

matrix         where   is the desired dimensionality of data after projection.  

In the standard LDA problem label of each data point is given. In the other word, each 

sample    has a corresponding class label   . Then the between-class scatter matrix    and 

within-class scatter matrix    are determined by (1): 

(1) 

   ∑   (    )(    ) 

 

   

 

   ∑ ∑ (     )(     ) 

     

 

   

 

Where    indicate number of samples that belongs to class   . In this formula,    and   

indicate mean vector of class   and global mean vector of whole dataset respectively. These 

two matrixes can be intuitively described as follows. The    matrix will measure how far 

mean vectors corresponding to each class is scattered around input space. The dispersion of 

class means is quantized by sum of the distances between each class mean vector and the 

global mean vector. Likewise the    matrix measures the spreading of data points around its 

class mean vector. Mathematically    is sum of covariance matrixes calculated from data 

points belonging to each class. In some literatures [1, 12, 13], another scatter matrix is 

defined and used which is called Total Scatter matrix. It is defined as below and it is 

mathematically equivalent to covariance of whole dataset. 

         ∑ (    )(    ) 

    

    ( ) 

We will not use this scatter matrix in our proposed LDA algorithm but as argued later, the 

definition of proposed algorithm can be easily generalized as any combination of such scatter 

matrix including   . Using these definitions, the standard LDA cost function proposed by 

Fisher [6] is as follows. 

(3) 

   ( )  
  (     )

  (     )
 

We are interested in   such that given    and    the cost function    ( ) acquires its 

maximum value. In the other word, we are looking for a solution to following optimization 

algorithm. 

(4) 

         
 

   ( ) 

It worth noting that by these expressions it is clear that the LDA will have a suitable result 

if the distribution of each class in input space follows a uni-modal distribution [1]. This 

problem is widely known and studied. An example of such situation is demonstrated in Figure 

1. This example is given by an inspiration from Fukunaga’s book [1]. In Figure 1.a the mean 

vector of two classes along with global mean vector are equal. Therefore by the definitions in 

(1),    with be equal to zero and so the numerator of cost function (3) will be zero. In this 

situation, the cost function will always have the zero value regardless of its denominator. The 

problem in Figure 1.b is that the data point in each class does not follow a Gaussian 
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distribution e.g. the distribution of data points around their corresponding mean vector is not 

uniform. So there is no suitable projection direction to reach a good class separability. 

 

 

 

 
a b 

Figure 1. Demonstration of Situation where LDA will Fail to Extract a Good 
Feature. a. In this Case, Class and Global mean Vector are Equal, thus the 

between Class Scatter Matrix will be Zero. b. The Data Point in each class does 
not follow a Gaussian distribution resulting in failure of LDA 

Unfortunately the optimization problem (4) is typically non-convex. More generally there 

is no close form solution for general trace ratio problem. Therefore, these problems are 

regularly altered into the simpler yet inexact ratio trace problem which is convex and has a 

close form solution [14]. This transformation can be formulated as (5): 

(5) 

         
 

   (
     

     
)        

 
 
|     |

|     |
 

Actually Mohammadi et al., [11] used this cost function in his evolutionary fitness 

function. In the contrary, we use the original fisher criterion (3) as our main cost function and 

rewrite an equivalent but much computation efficient fitness function to incorporate in the 

evolutionary algorithm. The cost function in (5) can be easily solved directly by finding the 

solution to generalized eigenvector problem of the form (6) [1]: 

(6) 

         

The eigenvectors corresponding to largest eigenvalues are the transformation matrix that 

maximize the given cost function in (5). But it should be noted that rank of    is at most 

    [15], where   indicate number of classes. So only     of these vectors has 

discriminating information [2]. Furthermore if    be non-singular, formula (5) can be 

rewritten as standard eigenvector problem by multiplying   
   from left as follows. 

         

  
        

           

  
         

The singularity of    is the most known difficulty in LDA and is widely studied in the 

literatures [8, 16, 17]. As our proposed algorithm does not have singularity problem, we will 

not investigate such difficulties. For comprehensive discussion on these complications please 

refer to [18]. By these definitions, it is clear that the reason to approximation (3) and 

conversion to (4) was only to reach a convex problem and so it becomes possible to solve 

LDA in analytic from. But in evolutionary algorithms the convexity of the cost function is not 
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required. So we are allowed to use the original fisher criterion (3) in fitness function. In 

addition, we show that (3) can be converted to a very computation efficient fitness function. 

This is another reason that motivated us to propose our fitness function. To our knowledge, 

Mohamadi’s methods are the first use of evolutionary algorithms to improve LDA result. 

Thus, in the next section, we will discuss his group of evolutionary algorithms in more detail 

as related work. 

 

3. Related Work 

In this section we provide a detailed description of Mohammadi’s algorithms. These 

groups of algorithms are consist of four evolutionary algorithm including: Genetic based 

Linear Discriminant Analysis (G-LDA), Artificial Immune System LDA (A-LDA), Fuzzy 

based Genetic LDA (FG-LDA), Fuzzy based A-LDA (FA-LDA). We explain each of these 

algorithms in its specific subsection. 

 

3.1. Genetic based Linear Discriminant Analysis (G-LDA) 

In this algorithm, similar to conventional genetic algorithms, collections of chromosome 

are randomly produced and formed an initial population. Each chromosome is a candidate 

solution and is an encoded projection matrix  . The encoding is the process of converting 

matrix   to a vector so that it can be stored in a chromosome. This conversion is 

demonstrated in Figure 2 and is simply done by sequentially adding each row of matrix   to 

the end of its previous row. 

 

 

Figure 2. Demonstration of Converting   to a Suitable Chromosome Proposed 
by Mohammadi 

For the selection operator, G-LDA uses binary tournament selection [19, 20]. In this 

selection method, two chromosomes are randomly selected from current population. Next the 

fitness of each chromosome is evaluated and one with higher fitness will have the permission 

to be on the next population. The cross over operator is One Point Crossover. After selection 

step, each pair of chromosome will have a constant chance (regularly 0.7) of having a 

crossover process. In this process, a random number between 1 and chromosome length is 

generated and considered as crossover point. Then each pair exchanges their values which are 

located on the left side (or equivalently right side) of crossover point and produce two new 

children which are regularly called offspring. This process is demonstrated in Figure 3. 
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Figure 3. Illustration of One point Crossover Operator. Assume that Crossover 
Point is randomly chosen as 2, then the First and Second Values in Vector A 

and B will be swapped 

For mutation operator Mohammadi reported that four different types of mutations are used 

including: Random mutation, Swap mutation, Creep mutation and Scramble mutation. The 

mutation chance factor   is selected equal to 0.2
1
. A brief description of these mutation 

operators is as follows: 

 Random Mutation: One bit of a random chromosome flipped with chance of 

     . 

 Swap mutation: Two random position in chromosome is selected and their value 

swapped with chance of      . 

 Creep mutation: One bit of a random chromosome is changed by a random value 

between                          . The creep value is selected to be 0.2. 

Chance of running such mutation is set to      . 

 Scramble mutation: A random chromosome is selected and its every value 

reconfigured with chance of      . 

 

At last the fitness function defined as (7). 

(7) 

       
|     |

|     |
 

By these definitions a typical genetic algorithms can be constructed. A schematic of such 

algorithm is given as Figure 4 [11]. 

 

 

                                                      
1
 This value does not reported in corresponding paper and is acquired after contacting the 

author. 
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Figure 4. Schematic of G-LDA [11] 

3.2. Artificial Immune System based LDA (A-LDA) 

The artificial immune system is actually an inspiration from human immunity system. The 

biological immunity system in human body is a powerful and complicated system. Its main 

goal is to protect the body from external threats. It is capable of adaptively discriminate body 

cells from foreign or enemy cells in a distributed manner. The core element in immunity 

system is the white blood cells which consist of two type B-Cells and T-Cells. Both of these 

types are produced by bone marrow. In brief (and not exactly true in real immune system), B-

Cells are responsible for detection of enemy cells called Antigens while T-Cells eliminate the 

detected antigens. This process is simulated in Artificial Immune System (AIS) algorithms. 

For more detailed description of real and its replicated artificial immune system please refer 

to Burke et al., [21]. It has wide variety of applications including intrusion detection [22], 

image segmentation [11] and optimization [23]. Mohammadi used AIS to find an appropriate 

transformation matrix where the ratio of between class scatter matrix and within scatter 

matrix maximized. A schematic of his algorithm is given in Figure 5. 

 

 

Figure 5. Schematic of A-LDA [11] 

The Initial Population and Affinity Calculation step in Mohammadi’s AIS algorithm is 

similar to two first steps in previously described genetic algorithm. In selection step, 

chromosome with highest affinity value is forwarded to the next step and others are 

discarded. In the Clone step, the chromosomes are cloned with regards to their affinity value. 

Chromosome with higher affinity value can produce more of itself. At last in Maturate step, 

chromosomes go through a mutation operation similar to previous genetic algorithm.  
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3.3. Fuzzy based Fitness Function for G-LDA and A-LDA 

Fuzzy based Fitness Function (FFF) is proposed by Mohammadi with the intention of 

incorporating ‘‘degrees of truth’’ or ‘‘degrees of membership’’ instead of crisp labels. In the 

other word, each data point    has a degree of membership to every   classes. The degree of 

membership is defined as (8). 

(8) 

    
   

  (   )⁄

∑    
  (   )⁄ 

   

 
 

∑ (
   
   

)  (   )⁄ 
   

                                

Where   is the fuzziness degree with range     ) which is commonly used in many fuzzy 

based algorithms i.e. K-means [24]. If    , the membership value               

corresponding to data point    would be more crisp among classes and If    , the      gain 

more fuzziness. Mathematically using this definition     has range [0, 1] and determine how 

much a data point    belongs to class  . The key idea in using this fitness function instead of 

fisher criterion which is used in (7) is that the membership degree of each data point is related 

to every available class instead of distance from corresponding class only. Hence, increase in 

membership degree of a data point in specific class means decrease in membership of that 

data point in other classes. Because we have the following constrain
2
: 

∑    

 

   

   

After calculation of Fuzzy memberships, a fitness function can be calculated as (9). 

             ∑ ∑    

     

 

   

 

This fuzzy fitness function is substituted with fisher criterion in described G-LDA and A-

LDA algorithms and new fuzzy based evolutionary algorithm called FG-LDA and FA-LDA 

introduced. Except the fitness function, other parts of algorithms are defined similar to 

previous ancestors. In the next section, we propose our modifications with aim of increasing 

accuracy and reducing the computational cost. 

 

4. Proposed Algorithms 

In this section we propose our new groups of evolutionary algorithms to find LDA 

solution. At first we will propose a new representation and discuss the reason why this 

representation can be a better representation. Next we provide our fitness functions for 

genetic based, AIS based and fuzzy based fitness function. Finally a nonlinear fitness function 

is proposed to completely eliminate the unimodal assumption in LDA. 

 

4.1. Chromosome Representation 

As discussed in related work section, to generate a chromosome from projection matrix  , 

Mohammadi used a row by row representation. But the cross over step of evolutionary 

                                                      
2
 Although it was not explicitly reported, but this constrain can be easily deducted by 

definition in (8). This constrain is added to reach more clarity in the algorithm. 
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algorithm using this representation can be problematic. By looking at chromosome 

representation in Figure 2 and cross over method in Figure 3, it can be realized that this 

operation will break a projection direction and substitute its value with random direction. This 

is clearly is not ideal because we are looking for some projection direction that maximize the 

fitness function. Assume that in an iteration of evolutionary algorithm, only one direction    

needs to be found and every other direction       {       }     is already has its 

optimal value      
 . Although this chromosome has a good chance to reach the optimal 

solution, only one cross over operation can completely destroy the optimal directions. This is 

clearly has contradiction with Building Block principle discussed by Goldberg [20] which is 

the key properties in evolutionary algorithms to reach a good solution in finite time [25]. This 

problem can be easily avoided if we use a column by column representation as shown in 

Figure .6. This way, the cross over on two parents will have a more meaningful result as it 

will nearly substitute two directions in the parents to build the new off springs. 

 

 

Figure 6. Process of representing   in a Chromosome 

4.2. Genetic and Artificial Immune Based Fitness Function 

As discussed in the previous section, following Mohammadi’s algorithm the transformed 

fisher criterion (7) is used as fitness function of evolutionary algorithms to reach a better class 

compactness and separability to other classes. Fortunately because we are not solving this 

problem in analytic form, we are allowed to use any non-convex fitness function. Thus, we 

can use the original fisher criterion defined in (10) which is used before and reported a better 

class density and mean separation [14, 26, 27]. 

(10) 

  ( )  
  (     )

  (     )
 

Using (10) has some benefits including: 

 Accuracy: As described in preliminary section, it is the original fisher criterion. 

Thus instead of approximating (3) and conversion to (5) so that it become possible 

to solve it using an analytic method we are able to find the global optimal solution 

of LDA. 
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 Speed: Fastest method to calculate the determinant of a matrix        will 

costs  (  ) [28]. While the trace is only cost  ( ). 

 Null Space Issue: To describe this issue, we need to provide a Theorem. 

 

Theorem 1: Let        be a rank   square matrix where    . Let        where 

    be an arbitrary matrix.  If any column vector    of   lies in Null Space of  . Then we 

have the following equality. 

(11) 

   (    )    

Proof: Let   {          } and   {          } represent the corresponding 

eigenvectors and eigenvalues of matrix  . Without loss of generality assume that       
   . We know that last     of these eigenvalues are equal to zero. Furthermore we have 

the following equality: 

(12) 

           
         {         } 

Wh.ere    represents zero column vector with   elements. Assume that only one column 

of   is equal to one of these eigenvectors: 

(13) 

      

   {         } 

  {       } 

Substituting (12) to (13) we have: 

           

The last multiplication in (11)    can be represented as follows: 

                    

(14) 

                   

It can be easily shown that any arbitrary matrix   that multiplied from left to (14) will 

result a zero vector    it i-th column. Furthermore if     , the matrix of left 

multiplication will have i-th column and row equal to    and   
  respectively. Following 

linear algebra principle [29], any square matrix with a column or row equal to zero will have 

its determinant equal to zero. More generally any rank deficient matrix has determinant equal 

to zero. Thus theorem proved. 

Following this theorem, in the iterations of evolutionary algorithm, if a column of   

become equal to a null space of    then the numerator of fitness function in (7) will be equal 
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to zero regardless of its denominator. In this situation, even in semi perfect situation      
   

   {       }     the cost function will acquire its minimum value irrespective to other 

columns    that are equal to optimal solution. Thus the fitness function would never choose 

this chromosome to be in the next generation.  Similar issue can emerge with   . In a case 

where a column    of   is in null space of   , the cost function will be equal to infinity. 

Therefore regardless of other column       {       }     that can be a bad solution, the 

fitness function will choose this chromosome in each iterations and it even can be chosen as 

the final answer. It should be noted that using (10) would not completely solve null space 

issue. In a very rare case where every column       {       } be in null space of its 

corresponding scatter matrix, the cost function in (10) would suffer from the above problem. 

Fortunately it is an infrequent case and can be disregarded. 

In our proposed group of evolutionary algorithms we will use (10) as the fitness function. 

In addition to theoretic discussion given above, we will show in experimental results section 

that using this fitness function we can reach a better solution for LDA. Following 

Mohammadi’s algorithm we use (10) as affinity measure in our AIS algorithm. Besides, in 

Clonal Selection chromosomes with higher affinity is selected and cloned with respect to their 

corresponding fitness function value. 

 

4.3. Mutation Operator 

Four different mutation methods are proposed in Mohammadi’s algorithm and they are 

used simultaneously. Although it is a good approach to increase the mutation power with aim 

of extending the search area of a chromosome, but this way we will lose the tiny peaks in cost 

function value which may potentially be the optimal solution. This is a known issue in 

evolutionary algorithms as there is always a tradeoff between discoverability of new possible 

solution and extraction of reached optimal solution. We simplify the mutation operator and 

only use a Modified Creep Mutation. In new mutation, the creep value will decreases over 

iterations. This way we can have Simulated Annealing properties in the mutation operator 

[30]. The creep value for iteration   can be calculated as follows: 

                 (
 

  √    

) 

Where        indicate the creep value for iteration   and      is maximum number of 

iteration.     is the exponential function where    ( )    . 

 

4.4. Crossover Operator 

Because the especial representation of chromosome in our proposed methods, instead on 

using a regular cross over operator, we propose a new cross over which we call Local 

Crossover. In this method, for each pair of parent chromosome, a random value   where 

  {       } is selected and the crossover only applied to that specific column of parents. 

This way, the features on each direction only substituted with same direction in other 

chromosomes. We claim that the proposed crossover operator will results in less damage to 

information that each chromosome carries. 

 

4.5. Fuzzy Based Fitness Function 

As discussed in introduction section, while using fuzzy membership function to measure 

class compactness and mean dispersion is useful but the fuzzy membership function has the 

same unimodal assumption issue. To solve this problem, we propose a Supervised Fuzzy C 
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means algorithm. The Fuzzy C-Means (FCM) algorithm is an unsupervised clustering 

algorithm introduced by Bezdek in 1981 with cost function defined as (15) [31]. The power in 

FCM is from the fact that rather than assigning each data point to a specific cluster, they are 

assigned to all clusters with degree of membership. 

(15) 

     ∑∑   
 ‖     ‖

 

   

 

   

 

Where   is the desired number of clusters. It will result a membership function matrix 

       where each column vector         indicates the degree of membership    to 

each cluster   . In our method, instead of clustering whole dataset, we cluster each class 

individually. In the other word, FCM is applied to data points of each class. Result of such 

algorithm for each class   {      } is a class specific membership function matrix  ( ). 

Using FCM we are capable of finding locations with high density distribution and locally 

measure the class compactness and mean separation. The number of desired cluster    where 

  {      } for each class is a user defined value which is selected by degree of 

multimodality and nonlinearity of specific class. By default we set it to   . By these 

expressions, the Multi Class Fuzzy fitness function (MCF) for data point    can be defined as 

(15). 

(16) 

          (  )  

      
 

   
(  )

∑       
 

   
( )  

   

 

Where    is the corresponding label of   . We would like to emphasize that this approach is 

only a fuzzified enhancement of suggested routine by Fukunaga (Chapter 10, Page 452 of his 

book) [1]. Using this method, the unimodal assumption is completely removed and LDA 

works in multimodal distribution like Figure 1.a or nonlinear situations similar to Figure 1.b. 

In proposed fitness function we followed Mohammadi’s idea. But in situations where lower 

computational cost is needed, instead of FCM, a class specific Single Linkage clustering 

algorithm can be used. This way, instead of number of cluster for each class, a maximum 

variance threshold can be used to find clusters in each specific class. Then the closeness of 

each data point    with label    to its mean cluster   
(  ) related to other clusters can be used as 

fitness function. This will reduce the computational cost in a point close to Mohammadi’s 

fitness function. 

 

5. Experimental Result 

In this section, we aim to experimentally compare the result of proposed group of 

algorithms with its parallel Mohammadi’s algorithm. To reach a more integrity, we also 

applied standard LDA to show the effectiveness of evolutionary algorithms. 

 

5.1. Setup 

We aimed to provide an experiment environment similar to Mohammadi’s experiments as 

much as possible. Thus, we compared the result with several measurements including: 

Normalized Mutual Information (MI), Dunn, SD, isolation and Davies–Bouldin (DB) 

indexes. At last the accuracy improvement for clustering and classification is reported. The 
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result of using these measures will be given in their corresponding subsection. In this 

experiments, we used an Intel Quad-Core 2.5 GHZ computer with 4GB RAM on windows 7 

64bit. Also Matlab 2012a is used as simulation software. These algorithms are applied to ten 

datasets from UCI repository
3
. In order to show the applicability in real world problems two 

datasets from face recognition and object recognition is also used in these comparisons. 

COIL-20 include gray image of 20 objects which is taken from 75 different angles. These 

samples is reduced to size 32 32. ORL dataset contains gray images of 40 persons. Each 

person has 10 shots, each with different expressions and facial details. As the source image 

has dimensionality of 112 92, the input data has 10304 dimension. Properties of these 

datasets along with desired discriminant set   are given in Table.1. For classifier we used the 

standard K Nearest Neighbor (KNN) classifier with    . To reach more reliable results, we 

repeat each experiment 25 times and then the mean and variance of experiment is reported. In 

addition, we used following abbreviations for different method: 

 Normal: indicates the result obtained from applying KNN to original dataset 

without any transformation. 

 LDA: The standard linear discriminant analysis algorithm with (5) as its cost 

function. 

 G-LDA, A-LDA, FG-LDA, FA-LDA: which indicates the mohammadi’s 

algorithms including: Genetic based LDA, Artificial Immune based LDA, Fuzzy 

G-LDA and Fuzzy A-LDA algorithm respectively. 

 G-TL, A-TL, FG-TL, FA-TL: Our groups of proposed method including: 

Genetic based Trace ratio LDA, Artificial Immune based Trace ratio LDA, Fuzzy 

G-TL and Fuzzy A-TL respectively. 

 

Table 1. Properties of data sets used for experiments. As previously defined,   

is number of datapoints,   is data dimension,   indicates number of class,   is 
the desired number of extracted features 

         
Soybeans 47 35 4 4 

Iris 150 4 3 2 

Wine 178 13 3 3 

Sonar 208 60 2 2 

Ionosphere 351 34 2 2 

Dermatology 366 33 6 4 

WDBC 569 30 2 2 

Vehicle 864 18 4 4 

Vowel 990 10 11 6 

Waveform 5000 21 3 3 

COIL 1440 256 20 15 

ORL 400 10304 40 40 

 

  

                                                      
3
 Available at http://www.ics.uci.edu/mlearn/MLRepository.html. 
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5.2. Normalized Mutual Information Measure 

For the first measurement the NMI criterion is used. The un-normalized criterion measures 

the amount of statistical information shared by each predicted label   ̂ corresponding to 

ground truth label   . From probability point of view, Let   be a discreet random variable with 

  {          } alphabet. The Probability Density Function (PDF) of   can be defined as 

 ( )     {       }. The measure of uncertainty or entropy of   can be defined as 

follows: 

 ( )   ∑  ( )   ( ( ))

   

 

The join entropy for two random variables   and   with alphabet   {          } can 

be calculated as follows: 

 (   )  ∑ ∑  (   )   ( (   ))

      

 

In the above formulation  (   ) indicates the join probability density of   and  . The 

amount of information that is shared between two variable   and   is called mutual 

information and is represented as  (   ). This means that when two variables is closely 

related,  (   ) has higher values and if they are independent from each other,  (   ) is 

small. Mathematically  (   ) can be defined as follows: 

 (   )   ( )   ( )   (   ) 

This measure has a zero lower bound and is called mutual information. The normalized 

version has a more proper upper bound of 1 which can be defined as follows: 

   (   )  
 (   )

√ ( ) ( )
 

 

5.3. Result 

Result of applying the introduced algorithms to UCI and real world datasets measured by 

NMI is reported in Figure 2. 

 

 

 

 
a b 
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k l 

 

Figure 2. Comparison of running our algorithm compared with LDA and AIS-
LDA algorithms. a) Soybeans, b) Iris, c) Wine, d) Sonar, e) Ionosphere, f) 
Dermatology, g) WDBC, h) Vehicle, i) Vowel, j) Waveform, k) COIL, l) ORL 

By these experiments, it can be seen that our proposed method can effectively extract 

features, which finally provide a better accuracy in KNN classifier. It worth noting that AIS-

LDA reached a better set of features in two data sets. These datasets are including ORL and 

Iris. 

 

6. Conclusion 

In this paper we proposed a new artificial immune system based linear discriminant 

analysis algorithm. This algorithm use trace ratio cost function as AIS fitness function and 

find the optimal projection matrix where the between class distance maximized while the 

within class distances minimized. The proposed algorithm is not only have higher accuracy, 

but it has lower computational cost. Thus it is superior in the speed. The proposed algorithm 

is then experimentally compared to other recently proposed AIS based LDA. The 

experimental results show the effectiveness of proposed algorithm. 
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