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enter the cytoplasm directly to bind to the Glucocorticoid 
Receptor (GR). The GR was cloned in 1985, and is a member of 
the nuclear super family [5]. The nuclear receptor family which is 
responsible for sensing the presence of hormones, then mediating 
physiological and pathological processes [6]. Normally, the GR is 
maintained in the cytoplasm in an inactive state by heat shock 
proteins (hsp). When a hormone is bound, the GR dissociates 
from hsp90 and the receptor undergoes a conformational change 
and becomes active. After this, receptor is trans-located to the 
nucleus and the central DNA-binding domain binds to of the 
DNA. GR is composed of three major parts, one of them consists 
of the central DNA-binding domain is composed of two highly 
conserved zinc finger regions critical for dimerization, target site 
binding, transcriptional activation, and repression [7,8]. New 
data indicate that translocation of the GR from the cytoplasm to 
the nucleus occurs without hormone binding [9]. This can result 
in one of two basic changes on the gene expression in the nucleus. 
The Glucocorticoid Response Elements (GRE) in the promoter 
domain of the GR target gene can bind to the dimer such that 
gene transcription is called trans-activation. These sequences 
are located in the 5’ promoter domain in the target gene. 
Interaction of the GRE domains and certain co-activators with 
the DNA double helix and GR-glucocorticoid dimers result in gene 
transcription (trans-activation) induction [10]. Alternatively, 
the receptor can also suppress the gene, which is called trans-
repression. It has been shown that interaction between other 
activation factors, including activator protein-1 (AP-1) and the 
GR, blocks the activities of the GR independently of the binding 
points on DNA. Binding to ligand activating receptors for a GRE 
can prevent binding of other activation factors to their promoter 
elements, or the GRE can directly bind to activated GR, AP-1 or 
other transcription factors including the nuclear factor (NF-
KB) to protect them from active gene expression. As a matter 
of fact, since most of the cytokine gene promoters are not GRE, 
this second mechanism plays a role in the regulation of cytokine 
expression. Although many details have not been fully elucidated, 
more specific drugs for targeting inflammation are being 
developed based on these new advancements [11]. Interaction of 
the GR homodimer and GRE can increase transcription. However, 
it is not clearly known how this process is affected by the 
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transduction pathways in the therapeutic use of dexamethasone 
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Introduction 
Intraocular inflammation and related complications are 

important causes of vision loss in posterior segment disease. 
Inflammatory processes cause the breakdown of the blood-
retinal barrier in the case of retinal vein occlusion, uveitis, 
diabetic retinopathy, Irvine-Gass Syndrome, vascular leakage, 
and macular edema resulting in vision loss [1]. Inflammation 
plays a key role for neovascularization that threatens vision in 
posterior segment disease [2].

Glucocorticoids (glucocorticoid or corticosteroids) are used 
in the treatment of various inflammatory and immune diseases. 
Glucocorticoids have an important role in the treatment of 
intraocular diseases with an inflammatory origin. Thanks to their 
potent anti-inflammatory effects, their ability to decrease vascular 
permeability, inhibiting fibrin deposits and leukocyte motility, 
suppressing the migration of inflammatory cells, stabilizing 
endothelial tight junctions, inhibiting the synthesis of Vascular 
Endothelial Growth Factor (VEGF), Prostaglandins (PGs) and 
other cytokines and steroid-responsive gene transcription [3]. 
Intravitreal usage of a 0.7 mg dexamethasone implant (Ozurdex® 
Allergan, Ireland), which is a corticosteroid with proven efficacy, 
obtained FDA approval in 2009 for the treatment of retinal vein 
occlusion, diabetic macular edema and non-infectious uveitis [4]. 
In this article, we aimed to explain the mechanisms of the signal 
transduction pathways related to the efficacy of dexamethasone 
implants.

Glucocorticoid Receptor (Gr)
Glucocorticoids are secreted from the adrenal gland and 
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glucocorticoid dosage or cell type. The mechanism of the adverse 
effects of glucocorticoid has not been identified yet [12].

Coding of the GR is located on the long arm of the 5th 
chromosome (domain 5q31-32). The genomic structure includes 
9 exons with 3 separate gene promoters [13]. Although it cannot 
be explained why different cell types use different promoters, the 
reason may be attributed to GR regulation specific to the cell type.

The GR is a member of the super family included in 
mineralocorticoid, thyroid hormone, sex hormone, retinoic 
acid, and vitamin D receptors. GR is built as a modular protein, 
uniting the following functional building blocks: a N-terminal 
transactivation domain (NTD), a hinge region, a pair of zinc-
finger motifs in the conserved DNA-binding domain (DBD) and 
a C-terminal ligand-binding domain (LBD) [14]. The N-terminal 
contains a domain with independent Activation Function (AF) 
1. This AF domain accompanies the transcriptional activity, 
and binds transcriptional factors and co-activator proteins. 
The C-terminal contains the AF-2 domain, which is capable of 
interacting with other co-activators related to hormone binding 
and gene transcription [10,13].

GRs have two different isoforms; of these, the GRα consists 
of 777 amino acids and the GRβ consists of 742 amino acids [15]. 
Both forms are found together in almost all human tissues. GRα 
is the predominant isoform and can bind to only one hormone, 
and is capable of inducing or inhibiting only one gene. GRβ allows 
for the formation of alternative GRs in pre-RNA transcripts and 
differs from the GRα isoform with only one amino acid in the 
C-terminal. This difference in GRβ probably does not ensure 
protection from hormone binding. This function is the subject 
matter of scientific debate about the actual importance of the 
β isoform in the clinical response to glucocorticoids, since the 
up-regulation of the β isoform results in a strong inhibition of 
the active isoform through a competitive mechanism, therefore 
reducing the glucocorticoid effectiveness. However, there are 
inconsistent data on this matter [16].

Oligomeric complex proteins of inactive GR in the cytoplasm 
include hsp90 (approximately 90kDa) including two subunits 
bound to the C-terminal of GRs, immunophilin p59, and the small 
p23 phosphoprotein. Interaction between GRs and hsp90 is 
required for the duties related to nuclear translocation to ensure 
migration of the activated GR to the nucleus, and for maintaining 
the configuration of the C-terminal hormone binding domain 
[17].

The anti-inflammatory activity of glucocorticoids causes, 
mainly, the repression of pro-inflammatory genes, i.e., those 
genes that strengthen the inflammatory response, including 
apoptosis induced by cytokines and leukocytes. Furthermore, 
glucocorticoids induce the expression of tight junction genes. 
Three families of transmembrane proteins, the claudin family, 
the JAM family and the MARVEL domain containing proteins 
tricellulin and occludin are responsible for cell-to-cell attachment 
in the establishment of the TJ barrier  [18-20]. One of the results 
of this experimental study that is the increased expression of the 
TJ genes occludin and claudin-5 is the result of the transactivation 

by the GR, the physical outcome could be considered anti-
inflammatory, through a decrease in solute flux and edema in the 
tissues surrounding the vasculature [21].

The edema-reducing effects of glucocorticoids were 
investigated on epithelial cells. It was found that dexamethasone 
increased Trans-Endothelial Electrical Resistance (TEER) in 
breast epithelial cells, and decreased the passage of mannitol 
through epithelial cells. Dexamethasone also reduces edema in 
pulmonary epithelial cells directly through cellular permeability. 
Based on these data, it was suggested that dexamethasone could 
be effective for treating retinal edema in the eye.

There are 10 to 100 genes for which glucocorticoids are 
thought to influence the genetic regulation. There are data 
indicating that the glucocorticoid-GR complex is effective on 
gene regulation through the induction of anti-inflammatory 
protein synthesis and, more importantly, through the mediation 
of a trans-repression mechanism. These mechanisms include 
pro-inflammatory transcriptional factors such as NF-Kb or AP-1, 
and direct inhibition of destabilization enzymes such as Mitogen-
Activated Protein Kinases (MAPKs), gene expression, and the 
cellular proliferation throughout the inflammatory process. 
In mammalian cells, there are three well-characterised MAPK 
families: the Extracellular Signal-Regulated Kinases (ERKs), c 
Jun N-terminal Kinases (JNKs) and p38s [22]. MAPK pathways 
are organized as parallel kinase cascades, in which activation is 
mediated by sequential phosphorylation events. The JNK and p38 
pathways are strongly activated by pro-inflammatory stimuli and 
regulate many aspects of inflammation and immunity, including 
the expression of pro-inflammatory genes and the activation or 
differentiation of T cells [23-25]. In addition, activation of histone 
acetyl transferase and histone deactylase enzymes responsible 
for chromatin configuration can also contribute [13,26]. In this 
experimental study that is activated GR may directly bind to CBP 
or other coactivators to inhibit their histone acetyltransferase 
activity thus preventing the subsequent histone acetylation and 
chromatin remodelling. More importantly, particularly at low 
concentrations that are likely to be relevant therapeutically in 
asthma treatment, activated GR recruits corepressor proteins, 
such as histone deacetylase 2, to the activated inflammatory gene 
transcriptional complex, resulting in deacetylation of histones 
and, thus, a decrease in inflammatory gene transcription [27].

Regulating effects of some glucocorticoids occur within 
minutes, for which genomic effect is insufficient to explain 
and requires the contribution of nongenomic effect. Three 
nongenomic mechanisms with different speeds have been 
defined for glucocorticoids [28-30]. Non-genomic effects may 
prepare the cell for subsequent glucocorticoid-induced genomic 
changes, bridge the gap between the early need of change and 
the delay in the expression of genomic effects and may induce 
specific changes that in some instances are opposite to those 
induced by genomic mechanisms.

Non-genomic effects mediated by cytosolic GR

In the experimental study investigating this matter, it was 
observed that epidermal growth factor stimulating cytosolic 
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phospholipase-2 enzyme was rapidly inhibited by dexamethasone 
[31]. It is thought that this effect resulted from the occupied/
bound cytosolic GR; however, the observed effect is sensitive to 
RU486 (glucocorticoid receptor antagonist [17β3-hydroxy-llβ-
(4-dimethylamino phenyl) 17α-(l-propynyl) estra-4,9-dien-3-
one]) [32] even without any change on gene transcription, but 
insensitive to actinomycin (transcription-independent). It can 
be said that chaperon or co-chaperone multiprotein complexes 
mediate this effect. In addition, this can result in the non-
transcriptional activation of cytosolic GRs that glucocorticoids 
bind to by phosphatidylinositol 3-kinase, protein kinase, and 
endothelial nitric oxide synthase.

Non-specific nongenomic effects

Physicochemical changes cause interactions between biologic 
membranes, and this possibly contributes to the therapeutic effect 
[28]. Glucocorticoids can change the physicochemical properties 
of biological membranes, especially plasma and mitochondrial 
membranes. Glucocorticoids are thought to intercalate into 
these membranes and change the function of membrane-
associated proteins, thereby affecting lipid peroxidation and 
membrane permeability [28,29]. In immune cells, the interaction 
of glucocorticoids with plasma membranes results in rapidly 
reduced calcium and sodium cycling across the membranes, 
which, in turn, is thought to contribute to immunosuppression 
and the reduction of inflammation. Glucocorticoids also diminish 
ATP production by inhibiting oxidative phosphorylation and by 
increasing mitochondrial proton leak. ATP is essential to immune 
cells for cytokine synthesis, migration, phagocytosis, and antigen 
processing and presentation [33]. Impairment of ATP production 
might, therefore, also contribute to the pronounced anti-
inflammatory and immunosuppressive effects produced by high 
glucocorticoid dosages.

Specific non-genomic effect

Glucocorticoids cause specific nongenomic effects that 
are mediated by Membrane-Bound Glucocorticoid Receptors 
(mGCR). Binding sites in membranes have been characterized 
that displaying  binding features compatible with an involvement 
in rapid steroid signaling. Evidence of nongenomic steroid effects 
and distinct receptors involved is available for glucocorticoids, 
mineralocorticoids, gonadal hormones, vitamin D, and thyroid 
hormones [28,29,34]. For glucocorticoids, however, mGCR 
have so far been detected only in amphibian brain [35], and on 
leukemic/ lymphoma cells [36-38],  human peripheral blood 
mononuclear cells [34]. Transport and up-regulation of the 
membrane GR are activated after immunostimulation. It was 
seen that it showed positive correlation with the disease activity 
in rheumatoid arthritis [34]. Recent studies have revealed the 
existence of mGCRs in human T cells, and provided insight into the 
functional role of these receptors.Dexamethasone was found to 
inhibit T-cell receptor signaling through its effects on the mGCR–
multiprotein complex. Dexamethasone targeting of mGCRs 
results in inhibition of the enzymatic activities of lymphocyte-
specific protein tyrosine kinase and Fyn, components of the 
mGCR–multiprotein complex that have key roles in initiating 
T-cell receptor signaling and, therefore, subsequent cytokine 

synthesis, cellular migration or proliferation [39,40]. Function(s) 
of membrane associated GRs are not clear; observations indicate 
that their role in the pathogenesis of the disease can be, in fact, 
negative.

Anti-Inflammatory Effects of Dexamethasone  
Ophthalmic tissues have membrane phospholipids are 

widely recognized that phospholipids play multiple roles in cell 
processes. Their primary function is to define the permeability 
barrier of cells and organelles by forming a phospholipid bilayer. 
This bilayer serves as the matrix and support for a vast array 
of proteins involved in important functions of the cell such as 
energy transduction, signal transduction, solute transport, DNA 
replication, protein targeting and trafficking, cell-cell recognition, 
secretion, etc. Secondary messengers derived from membrane 
phospholipids play an important role in the regulation of normal 
cellular functions and in the defense/inflammation response. 
Secondary messages mainly regulate the cellular functions 
through signal transduction by a) remodeling of receptors and 
ion channels on the cell; b) extracellular matrix remodeling; c) via 
cytoplasmic signals, e.g., modulation of protein kinase cascade; 
and d) gene expression. PG and platelet activating factor (PAF) 
are effective for the initiation, maintenance and enhancement 
of inflammation and immune responses. In this experimental 
study, PGs, the products of cyclooxygenase pathway, are pro-
angiogenic factors that are implicated in vascular permeability 
and angiogenesis [41].

Arachidonic acid metabolism in the Eye

Arachidonic acid (AA) precursors are the precursors of a 
wide group of potent bioactive lipid mediators. The free AA 
pool is normally found in all ophthalmic tissues in insignificant 
amounts and kept under strict control. Basal AA metabolism 
and turnover are found under physiologic conditions. Exposure 
to high glucose concentration induces the production of 
inflammatory mediators via the cyclooxygenase pathway in rat 
retinal endothelial cells [42], human retinal pericytes, and human 
retinal microvascular endothelial cells [43]. This cellular signal 
changes result from the catabolism of the excessive AA and other 
fatty acids from membrane phospholipids through the activation 
of phospholipases within the inflammation and immune response 
process. From this, PGs, prostacyclins and thromboxanes form 
via the cyclooxygenase pathway and leukotrienes, lipoxins and 
Hydroxyeicosatetraenoic acid (HETEs)  form via the lipoxygenase  
pathway [44]. Products of arachidonic acid metabolism via 
cyclooxygenase (PGs, prostacyclin, and thromboxane), known to 
play a major role in the intraocular inflammation process [45], 
are capable of inducing VEGF expression. The entire studies 
specific to the eye have shown that the cyclooxygenase pathway 
is more active in the eye [46].

Two cyclooxygenase enzymes have been defined, which are 
encoded from two different genes: the structural enzyme, COX-1, 
and the inducible COX-2 enzyme. COX-2 is also called the mitogen 
inducible enzyme; the reason for this is that its expression 
stimulates the synthesis of cytokines and mitogens including 
bFGF [47], TNFα [48], IL-1B [49] and pp60 [50]. It is currently 
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believed that COX-1 enzyme is structural and produces PG 
under physiologic conditions, and COX-2 is up-regulated under 
pathophysiologic conditions [51]. In retinal diseases, ischemia 
is a common precursor to neovascularization. It was shown that 
early pro-inflammatory genes are predominantly expressed 
in ischemic retina. One of these genes expressed at high levels 
during the early stages of the disease is cyclooxygenase-2, whose 
expression is induced by cytokines, mitogens, and endotoxins 
[52]. COX-2 also stimulates inflammation through initial gene 
production [52]. COX-2 is expressed in a developmental fashion, 
and an ischemic retina is the stimulator for this [53]. Roles for 
COX-2 have been established in tumors [54,55] and in corneal 
neovascularization [56]. While inhibition of COX-2 decreased pre-
retinal neovascularization significantly; inhibition of COX-1 was 
found to be ineffective [57,58]. It is known that glucocorticoids 
inhibit the induction of COX-2 in most systems [59].

This human study is that PGs stabilize the PgE2 hypoxia 
inducible factor (HIF) [60] and in the animal studies it is shown, 
to stimulate the secretion of basic regulators of angiogenesis 
including VEGF by neural cells, including ganglion, Müller, and 
retinal pigment epithelium cells and therefore ensure endothelial 
cell proliferation [61]. It was observed that inhibition of COX-2 
resulted in the decrease of retinal effects of PGE3, which is a COX 
product [62].

The lipooxygenase pathway has a number of different 
functions. Lipoxins are the very potent superoxide mediators 
of the 15-lipoxygenase pathway that ensure neutrophil 
degranulation, and are synthesized via this pathway. The 
5-lipoxygenase pathway turns the very potent chemotaxis factor 
5-HPETE to 5-HETE. 5-HPETE also has the function of acting as a 
substrate for Leukotrienes (LT), and it is known that LTs increase 
permeability in small vessels [44].

Glucocorticoids are the most extensively studied drug 
groups among anti-inflammatory drugs. Glucocorticoids 
bind to intracellular receptors and affect inflammation by 
inhibiting the synthesis of immunoregulator proteins, including 
cytokines. Glucocorticoids play an important role in preventing 
inflammation by suppressing cytokines (IL-6, -8, -1β, TNF, sIL-
2R, IL-12), lymphotoxins, chemokines (MCP-1, chemokine 
receptor-2,-5) and soluble ICAM-1. The response is generally 
directly connected to the bound steroid receptor number and, 
therefore, it is dose-dependent [63].

Glucocorticoids have been found to be related to numerous 
inhibitor pathways. Although a small number of genes can be 
regulated directly, many more genes are regulated indirectly 
bythe GCR via suppression of gene expression, a process known 
as transrepression. Glucocorticoids suppress the activity of the 
cytokine gene (as with IL-1, IL-2, IL-3, IL-8), reducing cytokine 
secretion (IL-1), destabilizing the cytokine mRNA via AU (Adenine 
Uracil) sequences of 3’-untranslated domains (IL-1, TNF, GM-
CSF) and inactivating or binding to cytokines (IL-1) through the 
induction of false receptors [64].

In an animal study investigating the relationship between the 
weakening of the blood-retinal barrier related to diabetes and 

leukocyte accumulation, it was found that leakage was two-fold 
greater in the diabetic group, as compared to the control group. 
In the intravitreal dexamethasone injection group, however, 
the leakage was reduced by 47.5%, as compared to the diabetic 
group. The increase in the levels of cytokine receptor (IL-2Rα, 
IL-4Rα, IL-6Rα, IFN-ɣR, GM-CSFRα, CSF-1R, TNF-R) induced by 
glucocorticoids was accompanied by the increase in receptor 
mRNA [65,66]. Molecular mechanismsby which glucocorticoids 
inhibit cytokines are reported to be at the level of transcription, 
translation, mRNA stability and secretion [66].

It is believed that the inhibitor effect of glucocorticoids on NF-
kB is a key step for the anti-inflammatory and immunosuppressive 
actions. A few mechanisms have been suggested for inhibition. 
One of these, the direct protein-protein interaction between 
NF-kB and GRs, is important for the mutual transcriptional 
antagonism between NF-kB and GRs or the cross-repression of 
the cAMP response element binding protein (CREBP) [67] and 
the catalytic protein kinase A subunit [68]. Glucocorticoids inhibit 
transcriptional up-regulation of T cell-derived cytokines, such as 
IL1-2, IL-4, IL-10, and g-interferon (1–3), and proinflammatory 
cytokines, such as IL-1, granulocyte-macrophage colony-
stimulating factor, and tumor necrosis factor-α [69,70].  Another 
target of glucocorticoids in T cells is Fas ligand (FasL), a membrane 
protein that triggers apoptosis of mature T cells by engaging Fas 
[71,72]. AP-1 mediates the IL-2 gene expression through the NF-
kB synergism activated by T-cells. GR suppression reduces the 
synergism and Glucocorticoid-Induced Leucine Zipper (GILZ) 
gene transcription induced by glucocorticoids can be required 
[73]. This experimental study, Glucocorticoids suppress the IFN-ɣ 
gene through the mediation of GR together with AP-1, CREBP and 
activated transcription factor complexes [74].

In an animal study on diabetic retinopathy, it was seen that 
the proportion of leukocytes reduced by 48% within 48 hours 
following the dexamethasone administration [65]. It is understood 
from these data that glucocorticoids or dexamethasone provides 
the anti-inflammatory effects via several pathways.

Anti-Vascular Endothelial Growth Factor (Vegf) 
(Anti-Angiogenesis) Effect of Dexamethasone 

Angiogenesis is a dynamic process resulting in new vessel 
formation by the endothelial cells [75,76]. Angiogenesis plays 
the principal role in the development of human tissues and 
wound healing [75,76]. Although abnormal angiogenesis 
results in neovascularization, it also plays an important role 
in many systemic diseases and tumor pathogenesis [77]. 
Neovascularization involves proliferative retinopathies and age-
related macular degeneration. According to recent developments, 
targeted therapy, vascular endothelial growth factor (VEGF) is a 
trademark [78]. Development of this treatment modality started 
in 1948 when Michelson reported that VEGF, which was named 
factor X initially and secreted from the ischemic retina, was 
required for the development and growth of new vessels. Judah 
Folkman stated that tumor angiogenesis was required for tumor 
growth and that inhibition of angiogenesis would be a very good 
treatment strategy in 1971 [79]. VEGF was defined as the main 
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regulator for physiologic and pathologic processes in the eye 
years later [78].

Several forms of VEGF have been defined: VEGF-A, VEGF-B, 
VEGF-C, VEGF-D, VEGF-E and Placental Growth Factor (PIGF) 
derive from the same gene family [80]. VEGF-A family appears to 
be more relevant for vascular proliferation and, therefore, it has 
attracted more attention. Naming of the four main isoforms in 
this family (VEGF 121, 165, 189, 206) was made according to the 
number of amino acids following the dividing signal [81]. VEGF is 
also known as the vascular permeability factor and its receptor 
is located on the vascular endothelial cell surface. There are 
three types of VEGF tyrosine kinase receptors on the endothelial 
cell surface: VEGF receptor-1, 2, and 3. Once bound to the VEGF 
receptor, a series of signal changes related to permeability, 
endothelial cell migration and angiogenesis start. VEGF-A binds 
VEGFR-1 and VEGFR-2, while VEGF-B and PIGF binds only 
VEGFR-1. When bound to the VEGF receptor, activated VEGF 
receptors stimulate the mammalian target of the rapamycin (the 
AKT/mTOR) signal pathway via phosphatidylinositol-3-kinase 
(PI3K) and ensure mTOR complex formation and additional 
phosphorylation [82,83].

VEGF is found in ganglion cells, Müller cells and pigment 
epithelial cells in the eye. Hypoxic conditions increase VEGF 
production [84]. Both VEGF receptor 1 and VEGF receptor 2 are 
located primarily in vascular endothelial cells [85]. VEGF 165 is 
the most abundant isoform among different isoforms. In animal 
models, VEGF 164 (equivalent to 165 in humans) selectively 
stimulates inflammation and cellular immunity in a pathological 
neovascularization process [86]. While VEGF 110 increases 
vascular permeability and stimulates endothelial cell growth, its 
effects were not found to be as potent as the effects of VEGF 165 
[87].

Folkman et al. [88] reported for the first time in 1983 
that formation of new blood vessels in heparinized rabbit 
corneas was suppressed by cortisone. Following this, heparin 
bound corticosteroids, glucocorticoids, cortisone metabolites, 
squalamine and estrogen metabolites were known as angiostatic 
steroids.

Evidence that endogen glucocorticoids contribute to the 
regulation of new vessel formation is accumulating [89]. While 
the glucocorticoid concentrations in the target tissues regards 
receptor regulation (11β-hydroxyteroid dehydrogenase 
isoforms) are related to both physiologic and pathophysiologic 
angiogenesis [90], excess of glucocorticoids can impede wound 
healing [91]. Although glucocorticoids are capable of inhibiting 
the tube formation in endothelial cell cultures directly [92], 
it has not been clarified yet that glucocorticoids can inhibit 
remodeling, proliferation and/or migration of endothelial cells 
and positioned in the centre of which angiogenesis is unknown 
[93]. Together, effects resembling the inhibition of proliferation 
and migration on vascular smooth muscle cells were observed 
on endothelial cells. It has been suggested in previous studies 
that glucocorticoids inhibit angiogenesis and production of VEGF 
and PGs. It was observed in a study that glucocorticoids blocked 

the tubule-like structure of the vessel, PGF2α, induced VEGF, 
and basal VEGF. VEGF and prostanoids stimulate angiogenesis 
with different secondary messenger pathways (cyclic adenosine 
monophosphate and phospholipase Cɣ-Ras-Raf, respectively). 
It has been suggested that glucocorticoids are in effect at the 
end of the angiogenesis pathway. It is therefore seen that the 
‘downstream’ effect is on cellular morphology, migration and 
proliferation. In this experimental study, it was also observed that 
dexamethasone directly inhibited the tubal-like formation formed 
with the mediation of the GR [90]. Dexamethasone-mediated 
changes on the cellular skeleton involving microfilament or 
microtubule structures were prevented through suppression 
of key angiogenic responses [94]. It has been observed 
that glucocorticoids exert their effects by changing cellular 
morphology and intercellular connections [95].

Glucocorticoids directly inhibit VEGF-A expression in vivo 
and in vitro. It has been found that prednisone at a 100 ng/ml 
concentration induces retinal pigment epithelial proliferation 
and inhibits VEGF-A. Furthermore, it has been observed in 
animal models that IVTA (intravitreal triamcinolone acetonide) 
significantly suppresses the choroidal neovascularization, optic 
disk neovascularization and pre-retinal neo-vascularization.

In another animal study, ICAM-1 and VEGF mRNA 
expressions were up-regulated in the diabetic group, and 
significantly suppressed 48 hours following the dexamethasone 
administration [65]. ICAM-1 and VEGF protein levels were 
76.74pg/mg in the untreated DM group, which was higher than 
the control group. When the ICAM-1 protein level was compared 
with the diabetic group, it was seen that this was significantly 
lowered by dexamethasone [65]. In another experimental 
study, dexamethasone affected the vascular permeability 
caused by brain tumors in relation with the GR mechanism by 
decreasing the response to permeability factors of tumoral 
origin, and by reducing the vascular permeability factor release 
from tumoral cells [96]. In yet another study, dexamethasone 
increased angiopoetin-1 and increased VEGF in human brain 
astrocytes and pericytes. In the same study, RU486 reduced the 
angiopoetin-1 and VEGF regulation induced by dexamethasone. 
Again in the same study, no changes were seen on angiopoetin-1 
and VEGF mRNA stability, suggesting that dexamethasone 
regulated angiopoetin-1 and VEGF through transcription [97]. 
Glucocorticoids show most of their effects in the cell through 
activation of GRs by binding specific ligands, glucocorticoid 
hormones and dexamethasone [98]. In this experimental study, 
RU486, which are a GR antagonist, completely inhibited Ang-
1 and VEGF regulation induced by dexamethasone through GR 
[97]. What is known is that the activated GR shows its effects 
through gene transcription [98,99]. However, effects of GR 
appeared without transcriptional modulation [100]. In this 
experimental study, transcriptional regulation of Ang-1 and 
VEGF by dexamethasone occurred via Ang-1 up-regulation and 
VEGF down-regulation, because dexamethasone did not affect 
Ang-1 and VEGF mRNA stabilities [97]. In has been shown in 
several studies that glucocorticoid induced down-regulation 
of VEGF in many diverse cell types including keratocytes 
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[101], microvascular endothelial cells in hypoxic brain [102], 
chondrocytes [103] and Müller cells [104]. In this study, it has 
been shown that dexamethasone down-regulates Ang-1, which is 
a potent stabilizer of the blood-brain barrier, and VEGF, which is 
a potent permeability increaser, down-regulates in similar ways. 
[97].

Effects of Dexamethasone on Tight Junction 
Proteins 

The blood-retina barrier consists of retinal vessels and 
retinal pigment epithelial cells and has the function of controlling 
the water and solute flow, and keeping the inflammatory cells 
and antibodies from entering [105]. The barrier of the retinal 
vessels is formed by the endothelial cells and includes numerous 
tight junctions that form a selective barrier against water and 
solute flow between the vessel and adjacent cells. Interruption of 
this barrier directly results in macular edema and loss of vision 
occurs as a result.

Two types of transmembrane proteins, namely, the occludin 
and claudin family are directly responsible for the formation of 
tight junction barriers between cells [106]. Occludin is mostly 
expressed in epithelial and endothelial cells (not in the neural 
retina) and correlated with the properties of this barrier [107]. 
Since occludin is a membrane protein, it is equivalent to the 
tight junction in the intramembranous structure. Therefore, the 
closer it is to the cellular surface, the better correlated it is with 
barrier function in the tight junction [108]. At least 23 isoforms 
of claudins have been defined. They are responsible for the 
movements of small molecules and ions, which are characteristic 
of these tight junction complexes. Numerous claudins form tight 
junction complexes with different characteristics in different 
tissues [109,110].

 These are isolated from tight junction complexes and play 
specific roles in the architecture and arrangement of the junction. 
Proteins of the wide zonula occludens (ZO-1, 2 and 3) ensure 
communication with the junction complex within the cell and 
communication between the components of the cellular skeleton 
[111,112]. More tight-junction complexes are being defined in 
studies. In conclusion, tight junction proteins play a key role in 
the regulation of the blood-retina barrier.

Multiple effects of glucocorticoids on endothelial junction 
complexes have been observed, and most of these have been 
evaluated in vitro. Glucocorticoids protect the retina-blood 
barrier by strengthening the junction complexes, decreasing 
Para-cellular permeability and increasing the monolayer 
TEER [113]. TEER reflects the para-cellular permeability and 
confluence in cell layers in vivo and in vitro; therefore, it provides 
a measure of the integrity of the tight junction complexes [113]. 
Hydrocortisone decreases the transport of water and solutes in 
bovine retinal endothelial mono-layer cells, and increases the 
expression of ZO-1 and occludin tight junction proteins in the 
cell margins [114]. In human endothelial cells, dexamethasone 
suppresses the down-regulation of claudin-5 mainly induced by 
thapsigargin, TEER reduction, and leakage with FITC dextrane 
addition [115]. In another study on the effects of dexamethasone 

on the blood-brain barrier, it was seen that it decreased para-
cellular permeability. Permeability difference according to pore 
theory is consistent with the reduction in pore number between 
the endothelial cells in the brain. This effect is accompanied by the 
filamentous actin and cortactin concentration at the periphery 
of the cell. Tight junction protein ZO-1 develops simultaneously 
and ZO-1 and occludin expression increase to accompany this. In 
contrast, no changes were observed on the adherence proteins 
β-catenin and p100/p120 [116].

In a well-designed study, it was observed that rat mono-
layer retina vascular endothelial cells were positively stained 
with immunofluoresecens dye for vW factor. It was observed 
that the TEER value in the dexamethasone treatment group was 
higher than that of the control group. It was observed that tight 
junction proteins in the dexamethasone group were closer to the 
margins in retina vascular endothelial cells, as compared to the 
control group. It was also observed that claudin-1 mRNA level in 
the dexamethasone groups was higher than that of the control 
group. It is stated in the conclusion section of this study that 
dexamethasone strengthens the tight junctions in the vascular 
endothelial cells of the retina and, therefore, it is one of the 
treatment mechanisms for macular edema by glucocorticoids 
[117].

 Glucocorticoids inhibit the tight junction phosphorylation 
proteins induced by VEGF-A. Glucocorticoids also develop the 
properties of the Blood-Retinal Barrier (BRB) [114]. It has been 
observed that occludin phosphorylation was reduced after 4 hours 
following the initiation of glucocorticoid treatment, and occludin 
expression was increased simultaneously in the bovine retinal 
endothelial cell layer [114]. In another study, hydrocortisone 
was seen to improve the barrier function significantly, together 
with the immune-reactive ZO-1. Occludin increases in the in 
vitro vascular endothelial barrier models, and it was observed 
that occludin mRNA increased. It was also shown that it was 
hydrocortisone that caused occludin dephosphorylation [114].

One of the ways that glucocorticoids protect the properties of 
tight junctions is through the Ras-dependent pathway. Ras family 
proteins consist of small GTPase proteins and these play a role in 
the cell-to-cell interactions [118].

Neuro-Protective Effect of Dexamethasone
Glucocorticoids are used in clinical studies, and in studies 

with animal models with therapeutic purposes in central nervous 
system injuries. Reduction in damage with pre-treatment of 
glucocorticoids in ischemic cerebral neural injury has been shown 
in clinical studies and in animal models [119]. Glucocorticoids 
also have protective (anti-apoptotic) effects on the neural retina. 
It was seen on rabbit models that IVTA injection protected 
the retinal photoreceptors from apoptosis after sub retinal 
hemorrhage [120]. A similar result was seen in the reduction by 
glucocorticoids of photoreceptor apoptosis induced with light in 
rabbits, most likely through activator protein-1 suppression with 
the GR activation [121].

One of the key properties of diabetic retinopathy is that there 
is neuronal dysfunction in the retina. It has been shown that the 
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intrinsic mitochondrial caspase-bound apoptotic pathway is 
included in the neuronal degeneration induced by hyperglycemia 
[121]. In the early rat diabetic models, phosphorylated mitogen-
activated protein kinase p38 (p38MAPK), the key regulator of 
apoptosis, CASPASE-3, releases polimerase-1 from its substrate 
and neuronal apoptosis in the retina results. Glucocorticoids 
ensure the GR activation together with the inhibition of p38MAPK 
phosphorylation [122,123].

Another neuroprotective property of glucocorticoids is 
the increase of glutamine synthetase (GS) expression, and the 
important role played by this enzyme through formation of 
ammonia from glutamine in Müller cells of the neuronal retina, 
and in nitrogen metabolism through glutamate metabolism 
[124]. Though glutamate, which is an amino acid, is the main 
excitatory transmitter in retina, glutumate is neurotoxic and 
causes neuronal death [125] and ischemic neuronal injury in 
rat brain [126]. Significant cortical neuron destruction was 
observed with exposure to 100μM glutumate for only 5 minutes 
in this in vitro study [118]. It was seen that the toxic effect was 
on the internal retina layer [118]. Based on this, it was concluded 
that glutamate metabolism is important for neurons, and it was 
shown both in vivo and in vitro that glucocorticoids increased the 
GS activity [127]. Furthermore, in an in vitro study, we had shown 
that dexamethasone could have toxic effects, even in low dosages 
similar to those used in the clinical setting [128].

Dexamethasone Resistance 
The reason for the lack of adequate response to 

dexamethasone in some clinical applications of intravitreal 
dexamethasone implant could be due to drug resistance, 
which has been investigated in other tissues. Recovery of Th-
17 lymphocytes and accompanying cytokines in the inflamed 
airways of patients with severe asthma in a study suggested that 
these play an important role in severe asthma pathogenesis [129]. 
Although not well-defined, it was seen that the role of these were 
important for promoting steroid resistance [130,131]. Steroid 
resistance in asthmatic patients has been explained by means of 
several mechanisms [123,132]. The first of these is that of high 
levels of GR-β – the dominant negative regulator of the active 
GR-α – causing the formation of inactive heterodimers, resulting 
in a reduced steroid response [133-136]. The general idea is that 
GR-β has a negative role in the regulation of GR-α. The reason 
for this has been indicated as the much lower results obtained 
in studies as regards the expressions of GR-β protein and mRNA 
[130,133,137]. However, other studies have indicated that GR-β 
was in equal or higher concentrations, as compared to GR-α in 
various tissues and organs [138,139]. In yet another study, GR-β 
protein levels increased under the stimulation of IL-17, and 
were found to be lower in abundance than GR-α protein [129]. 
Although there are other studies claiming that it has different 
effects on gene expression to those of GR-α, it appears that 
further studies are needed to understand the steroid resistance 
of GR-β [137,140].

The best describes the mechanism of glucocorticoid 
resistance, which is included in the GR failure in gene 
transcription regulation. GR genes include multiple variants: 

GRα (the most abundant isoform), GRβ, GR-A, GR-P and GRɣ. 
GRβ lacks a functional ligand domain [141]; however, it gains the 
dominant negative heterodimer form together with GRα. This 
heterodimer protects the binding domains and co-activators 
or repressors from GR target gene repression in a competitive 
way [142]. In a study, the reason for high GRβ expression was 
stated as the genetic polymorphism of exon9β resulting in the 
stabilization of GRβ transcript [143,144]. Again, although this is 
not sufficient to explain the acquired glucocorticoid resistance, in 
fact, the up-regulation of GR β caused by combined inflammatory 
cytokines (TNFα and INFɣ) causes the glucocorticoid resistance 
[145]. What is more important than the total expression of GRα/
GR β, it was seen that up-regulation of GRβ upon decrease in the 
GRα expression had a similar effect [129].

Conclusion
In this study, we have tried to review the mechanisms of 

dexamethasone action through different signal pathways. The 
dexamethasone has evidence for efficacy in multiple clinical 
situations, including macular edema associated with Retinal 
Vein Occlusion (RVO), macular edema associated with uveitis or 
Irvine-Gass syndrome, diabetic macular edema in vitrectomized 
eyes, persistent macular edema, noninfectious vitritis, and as 
adjunctive therapy for age-related macular degeneration. Safety 
concerns include cataract formation and intraocular pressure 
elevation that is most often temporary and amenable to medical 
management. However, some of these therapeutic effects and 
side effects require further research.
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