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Abstract

In this paper, a hybrid numerical method combining Chebyshev wavelets and a finite dif-

ference approach is developed to obtain solutions of singular fractional Lane-Emden type

equations. The properties of the Chebyshev wavelets and finite difference approaches are

used to convert the problem under consideration into a system of algebraic equations which

can be conveniently solved by suitable algorithms. A comparison of results obtained using

the present strategy and those reported using other techniques seems to indicate the preci-

sion and computational effectiveness of the proposed hybrid method.

Keywords: Chebyshev wavelets, finite difference method, Fractional Lane-Emden,
Singular problems, Initial and boundary value problems.

1. Introduction

Certain phenomena in physics and engineering sciences can best be mathematically mod-

elled using differential equations. The Lane-Emden equation is an ordinary differential equa-

tion which arises in mathematical physics. In astrophysics, the Lane-Emden equation is a

dimensionless form of Poisson’s equation for the gravitational potential of simple models of

a star (Momoniat, 2006). Due to the singularity behavior at the origin, it is numerically

challenging to solve the Lane-Emden problem, as well as other various linear and nonlinear

singular initial value problems in quantum mechanics and astrophysics. This paper deals
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with the numerical solution for the singular fractional Lane-Emden equation using Cheby-

shev wavelet finite difference method.

A given function can be represented in terms of a set of basis functions localized both

in location and scale using wavelets. Advantages of wavelet analysis include the capacity

of carrying out local analysis to uncover signal features such as trend, breaking points, and

discontinuities which other analysis methods might fail to detect (Misiti et al., 2000). The

multiresolution analysis of wavelet transform makes it a powerful tool to represent correctly

a variety of functions and operators. Wavelet analysis results in sparse matrices which in

turn enables fast computation. Such advantageous aspects of wavelet analysis make it a

powerful analytical technique to deal with differential equations in which the solution might

become distorted due to singularities or sharp transitions.

There has been much research on wavelet based method for the integer order Lane-

Emden equations in recent years. Solving Lane-Emden equations using Chebyshev wavelet

operational matrix was proposed in (Pandey et al., 2012). Kaur et al. (2013) obtained

the solutions for the generalized Lane-Emden equations using Haar wavelet approximation.

More recently, Youssri et al. (2015) used ultraspherical wavelets for solving such equations.

Kazemi Nasab et al. (2015) proposed Chebyshev wavelet finite difference method for solving

singular nonlinear Lane-Emden equations arising in astrophysics. Laguerre wavelets was

employed in (Zhou and Xu, 2016).

Approximate solution methods for fractional differential equations developed over the

last decade include homotopy analysis method (Abdulaziz et al., 2008), variational itera-

tion method (Wu and Lee, (2010); Odibat and Momani, 2006), finite difference method for

fractional partial differential equations (Zhang, 2009), Adomian decomposition method (Daf-

tardar and Jafari, 2007; Momani and Odibat, 2007), fractional differential transform method

(Odibat et al., 2008), generalized block pulse operational matrix method (Li and Sun, 2011).
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El-Ajou et al. (2010) employed homotopy analysis method to find symbolic approximate

solutions for linear and nonlinear differential equations of fractional order. In particular

for fractional Lane-Emden equations, the least square method was used in (Mechee and

Senu, 2012). Dávila et al. (2014) classified solutions of finite Morse index of the fractional

Lane-Emden equation. Two hybrid methods were proposed to solve two-dimensional linear

time-fractional partial differential equations in (Jacobs and Harley, 2014). More recently,

Modified differential transform was proposed in (Marasi et al., 2015) to obtain numerical

solutions of the nonlinear and singular Lane-Emden equations of fractional order. Akgül

et al. (2015) suggested the reproducing kernel method to study the fractional order Lane-

Emden differential equations. The operational matrices of fractional order integration for the

Chebyshev wavelet, Legendre wavelet, and Haar wavelet were introduced in (Li, 2010; Jafari

et al., 2011; Li and Zhau, 2010; Yuanlu, 2010) to solve the differential equations of fractional

order. Bhrawy et al. (2016) introduced a space-time Legendre spectral tau method for the

two-sided space-time Caputo fractional diffusion-wave equation.

Kazemi Nasab et al. (2013) proposed Chebyshev wavelet finite difference method for

solving fractional differential equations. It is a hybrid method based on Chebyshev wavelet

analysis and a finite difference method which converts a given problem to a system of al-

gebraic equations. Ibrahim (2012) studied the general dual formal of fractional order as

follows:

Dβ
(

Dα +
a

x

)

u(x) + g(x) = h(x), (1.1)

The objective of this study is to investigate the effectiveness of Chebyshev wavelet finite

difference method when it is applied to a new generalized dual form of the equation (1.1).

In this paper we consider the singular fractional Lane-Emden equations formulated as

Dαu(x) +
L

xα−β
Dβu(x) + g(x, u(x)) = h(x), (1.2)

subject to the following types of initial or boundary conditions:
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I : u(a) = A1, u′(a) = B1,

II : u(a) = A2, u(b) = B2,

III : u′(a) = A3, u(b) = B3,

IV : u(a) = A4, u′(b) = B4,

V : a1u(a) + a2u
′(a) = A5, b1u(b) + b2u

′(b) = B5, (1.3)

where 0 < x ≤ 1, L ≥ 0, 1 < α ≤ 2, 0 < β ≤ 1, Ai and Bi are constants, g(x, u(x)) is a

continuous real valued function and h(x) is in C[0, 1]. We employ Chebyshev wavelet finite

difference (CWFD) method for solving different types of fractional Lane-Emden equations.

2. Preliminaries

2.1. Fractional calculus

Fractional calculus is the theory of derivatives and integrals of any arbitrary real or

complex order that its high significance in a variety of disciplines, including mathemati-

cal, physical and engineering sciences is undeniable. It is indeed a generalized conception of

integer-order differentiation and n-fold integration. The main benefit of fractional derivatives

in comparison with integer-order one is that they provide us with a superb tool to describe

general properties of various materials and process specifically dynamical processes in a frac-

tal medium while standard integer-order cases are fail to do so. The benefits of fractional

derivatives is evident in representing physical systems more accurately, in demonstrating

mechanical and electrical properties of real materials, and also in the depiction of properties

of gasses, fluids and rocks, and in numerous different fields (Hilfer, 2000; Lewandowski and

Chorazyczewski, 2010; Mainardi, 2012). These equations incorporate the effects of memory

and can account for subdiffusion (due to crowded systems) and superdiffusion (due to active

transport processes). Thus, taking into account the memory effects are better described
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within the fractional derivatives, the fractional Lane-Emden equations extract hidden as-

pects for the complex phenomena they describe in various field of applied mathematics,

mathematical physics, and astrophysics. An advantage of the fractional case is that it con-

verges to the integer case. Therefore, it has the same benefits (Ibrahim, 2012; Akgül et

al., 2015). There have been many books and articles in the area of fractional calculus and

its application in astrophysics (Miller and Ross, 1993; Samko et al., 1993; Podlubny, 1999;

Saxena et al., 2004; Kilbas et al., 2006; Stanislavsky, 2009; Diethelm, 2010; Chaurasia and

pandey, 2010; El-Nabulsi, 2011; El-Nabulsi, 2012; Sharma et al., 2015; El-Nabulsi, 2016a;

El-Nabulsi, 2016b).

The calculus of variations is a branch of mathematical analysis dealing with extrema of

functionals that is of remarkable significance in a variety of disciplines, including science,

engineering, and mathematics ( Bliss, 1963; Weinstock, 1974). The problems relating to find

minimum of a functional such as, Lagrangian, strain, potential, and total energy, actually

occur in engineering and science that give the laws governing the systems behavior (Agrawal,

2002). It has been indicated in many textbooks and monographs that all fundamental equa-

tions of modern physics can be obtained from corresponding Lagrangians (Lanczos, 1986;

Doughty, 1990; Burgess, 2002; Basdevant,2007). Some basic equations of mathematical

physics such as Bessel, Legendre, Laguerre, Hermite, Chebyshev, Jacobi, hypergeometric and

confluent hypergeometric equations, and the Lane-Emden equation admit the Lagrangian

description. Musielak (2008) suggested some methods to obtain standard and non-standard

Lagrangians and identify classes of equations of motion that admit a Lagrangian description

equation. Fractional calculus of variations dates back to year 1996 when Riewe successfully

described dissipative systems from potentials represented by fractional derivatives (Riewe,

1996; 1997). The advantage of fractional calculus of variations in comparison with the stan-

dard one is its ability to describe dissipative classical and quantum dynamical systems where

the standard calculus of variations cannot illustrate them well (El-Nabulsi, 2013). The frac-

tional action-like variational approach is a subclass of the fractional calculus of variations was
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introduced in (El-Nabulsi, 2005a, 2005b, 2008). El-Nabulsi, (2013) generalized the fractional

action-like variational approach for the case of non-standard power-law Lagrangians which

can be used to derive the generalized Lane-Emden-type equations. The fractional Chan-

drasekhar or LaneEmden non-linear differential equation was also obtained in (El-Nabulsi,

2011). The interested reader may refer to a number of references to get more information on

fractional calculus of variations (Hartley and Lorenzo, 1998; Agarwal, 2006; Baleanu et al.,

2009; El-Nabulsi, 2011b; Malinowska and Torres, 2012; Odzijewicz et al. 2012; Odzijewicz

et al. 2013; Almeida et al. 2015; El-Nabulsi, 2016c).

There are several definitions of fractional integral and derivatives including Riemann-

Liouville, Caputo, Weyl, Hadamard, Marchaud, Riesz, Grunwald-Letnikov, and Erdelyi-

Kober (Miller and Ross, 1993; Samko et al., 1993; Hilfer, 2000). The most frequently used

definition of fractional derivatives is of Riemann-Liouvile and Caputo. None of these def-

initions has satisfied the whole prerequisite required. There is no need a function to be

continuous at the origin and differentiable to have Riemann-Liouville fractional derivative.

nevertheless, the derivative of a constant is not zero. It also has certain weaknesses to model

real-world phenomena with fractional differential equations. Moreover, if an arbitrary func-

tion such as exponential and Mittag-Leffler functions, is zero at the origin, its fractional

derivation has a singularity at the origin. Furthermore, the Riemann-Liouville method can-

not incorporate the nonzero initial condition at lower limit. Theses disadvantages reduce the

field of application of the Riemann-Liouville fractional derivative. The Caputo derivative is

very useful when dealing with real-world problem because, it allows the utilization of initial

and boundary conditions involving integer order derivatives, which have clear physical in-

terpretations. in addition, the derivative of a constant is zero. In contrast to the Riemann

Liouville fractional derivative, it is not necessary to define the fractional order initial condi-

tions (Podlubny, 1999) when using Caputo’s definition. however, with the Caputo fractional

derivative, the function needs to be differentiable which diminishes the field of utilization of

it (Atangana and Secer, 2013). In this study, we use the Caputo fractional derivative Dα.
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Definition 1

A real function u(x), x > 0, is said to be in the space Cµ, µ ∈ R if there exists a real number

p > µ such that u(x) = xpu1(x), where u1(x) ∈ C[0,∞), and it is said to be in the space Cn
µ

iff un(x) ∈ Cµ, n ∈ N.

Definition 2

The Riemann-Liouville fractional integration of order α ≥ 0 of a function u ∈ Cµ, µ ≥ −1 is

defined as (Podlubny, 1999)











(Iαu)(x) = 1/Γ(α)
∫ x

0
(x − τ)α−1u(τ)dτ,

(I0u)(x) = u(x),

(2.1)

Definition 3

The fractional derivative of u(x), in the Caputo sense is defined as (Podlubny, 1999)

(Dαu)(x) = (In−αu(n))(x) = 1/Γ(n − α)

∫ x

0

(x − τ)n−α−1u(n)(τ)dτ, (2.2)

for n − 1 < α ≤ n, n ∈ N, x > 0, u ∈ Cn
−1.

2.2. Properties of Chebyshev wavelets

Wavelets are a collection of functions created from dilation and translation of a single

function ψ ∈ L2(R) called the mother wavelet. If we continuously vary the dilation parameter

r and the translation parameter s, we then obtain the following family of continuous wavelets

(Daubechies, 1993):

ψr,s(x) = |r|−1

2 ψ

(

x − s

r

)

, r, s ∈ R, r �= 0. (2.3)

For some very special choices of ψ ∈ L2(R) and r = 2−a, s = 2−ab, the family of functions

{2a/2ψ(2ax − b) : a, b ∈ Z} constitutes an orthonormal basis for the Hilbert space L2(R).

Chebyshev wavelets in turn are defined as:

ψn,m(t) =











2
k

2 pmTm(2kx − 2n + 1), n−1
2k−1 ≤ x < n

2k−1 ,

0, otherwise

(2.4)
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where

pm =











1√
π
, m = 0 ,

√

2
π
, m ≥ 1

(2.5)

m = 0, 1, ...,M is degree of Chebyshev polynomials of the first kind, n = 1, ..., 2k−1; k any

positive integer, and x denotes the time. The Chebyshev wavelets ψn,m(x) construct an

orthonormal basis for L2
wn

[0, 1] with respect to the weight function wn(x) = w(2kx−2n+1)

in which w(x) = 1√
1−x2

(Babolian and Fattahzadeh, 2007).

In view of orthonormality of the Chebyshev wavelets, a function u ∈ L2
wn

[0, 1) may be

expanded as

u(x) =
∞

∑

n=1

∞
∑

m=0

cn,mψn,m(x), (2.6)

where cn,m = (u(x), ψn,m(x))wn
, in which (., .) denotes the inner product in L2

wn
[0, 1) . If

the series in (2.6) is truncated, we then obtain

u(x) ≈
2k−1

∑

n=1

M
∑

m=0

cn,mψn,m(x) = CT Ψ(x), (2.7)

where C and Ψ(x) are 2k(M + 1) × 1 matrices given by

C = [c1,0, ..., c1,M , c2,0, ..., c2,M , ..., c2k−1,1, ..., c2k−1,M ]T ,

Ψ(x) = [ψ1,0, ..., ψ1,M , ψ2,0, ..., ψ2,M , ..., ψ2k−1,1, ..., ψ2k−1,M ]T . (2.8)

3. Chebyshev wavelet finite difference method

Clenshaw (1960) suggested employing Chebyshev polynomials as a basis to approximate

a function u as

(PMu)(x) ≈
M

∑′′

m=0

umTm(x), (3.1)

um =
2

M

M
∑′′

k=0

u(xk)Tm(xk) =
2

M

M
∑′′

k=0

u(xk) cos

(

mkπ

M

)

,

where the summation symbol with double primes denotes a sum with both the first and last

terms halved. Furthermore, the well known Chebyshev-Gauss-Lobatto interpolated points
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xm are defined as

xm = cos
(mπ

M

)

, m = 0, 1, 2, ...,M. (3.2)

Elbarbary and El-Kady (2003) obtained the derivatives of the function u at the points

xm,m = 0, 1, ...,M as

u(n)(xm) ≈
M

∑

j=0

d
(n)
m,ju(xj), n = 1, 2 (3.3)

where

d
(1)
m,j =

4γj

M

M
∑

k=1

k−1
∑

l=0
(k+l) odd

kγk

cl

Tk(xj)Tl(xm),

=
4γj

M

M
∑

k=1

k−1
∑

l=0
(k+l) odd

kγk

cl

cos

(

kjπ

M

)

cos

(

lmπ

M

)

, (3.4)

d
(2)
m,j =

2γj

M

M
∑

k=2

k−2
∑

l=0
(k+l) even

k(k2 − l2)γk

cl

Tk(xj)Tl(xm),

=
2γj

M

M
∑

k=2

k−2
∑

l=0
(k+l) even

k(k2 − l2)γk

cl

cos

(

kjπ

M

)

cos

(

lmπ

M

)

, (3.5)

with γ0 = γM = 1
2
, γj = 1 for j = 1, 2, ...M − 1.

Let us define xnm, n = 1, 2, ..., 2k−1,m = 0, 1, ...,M, as the corresponding Chebyshev-Gauss-

Lobatto collocation points at the nth subinterval
[

n−1
2k−1 ,

n
2k−1

)

such that,

xnm =
1

2k
(xm + 2n − 1). (3.6)

A function u can be approximated in terms of Chebyshev wavelet basis functions as follows

(PMu)(x) ≈
2k−1

∑

n=1

M
∑′′

m=0

cnmψnm(x), (3.7)

where cnm, n = 1, 2, ..., 2k−1,m = 0, 1, ...,M, are the expansion coefficients of the function

u(x) at the subinterval
[

n−1
2k−1 ,

n
2k−1

)

and ψn,m(x), n = 1, 2, ..., 2k−1,m = 0, 1, ...,M, are defined

in Eq. (2.4). On account of Eq. (3.1), the coefficients cnm are obtained as

cnm =
1

2k/2pm

.
2

M

M
∑′′

p=0

u(xnp) cos
(mpπ

M

)

=
1

2kp2
m

.
2

M

M
∑′′

p=0

u(xnp)ψnm(xnp). (3.8)
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From Eqs. (3.3)-(3.5), the derivatives of the function u at the points xnm, n = 1, 2, ..., 2k−1,m =

0, 1, ...,M, can be obtained as

u(r)(xnm) =
M

∑

j=0

d
(r)
n,m,ju(xnj), r = 1, 2 (3.9)

where

d
(1)
n,m,j =

4γj

M

M
∑

k=1

k−1
∑

l=0
(k+l) odd

kγk

clpkpl

ψnk(xnj)ψnl(xnm),

=
4γj

M

M
∑

k=1

k−1
∑

l=0
(k+l) odd

2kkγk

cl

cos

(

kjπ

M

)

cos

(

lmπ

M

)

, (3.10)

d
(2)
n,m,j =

2γj

M

M
∑

k=2

k−2
∑

l=0
(k+l) even

2kk(k2 − l2)γk

clpkpl

ψnk(xnj)ψnl(xnm),

=
2γj

M

M
∑

k=2

k−2
∑

l=0,
(k+l) even

4kk(k2 − l2)γk

cl

cos

(

kjπ

M

)

cos

(

lmπ

M

)

.

4. Characterization of the proposed method

In this section, the CWFD method is used to solve the fractional Lane-Emden equations

introduced in Eqs. (1.2)-(1.3). To do so, the interval [0, 1] is divided into 2k−1 subintervals

In = [ n−1
2k−1 ,

n
2k−1 ], n = 1, 2, ..., 2k−1. It is also assumed shifted Chebyshev-Gauss-Lobatto

points be the collocation points on the nth subinterval In which are defined as

xns =
1

2k
(xs + 2n − 1), s = 1, 2, ...,M − l. (4.1)

u(x) is approximated using Eq. (3.7) and then collocate Eq. (1.2) at the collocation points

xns, n = 1, 2, ..., 2k−1, s = 1, ...,M − l to obtain

Dαu(xns) +
L

xα−β
ns

Dβu(xns) + g(x, u(xns)) = h(xns). (4.2)

Moreover, we rewrite Dαu(xns), D
βu(xns) in the Caputo sense by virtue of Eq. (2.2) as
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Dαu(xns) =
1

Γ(n − α)

∫ xns

0

(xns − τ)n−α−1u(n)(τ)dτ n = [α] + 1,

=
1

Γ(n − α)

∫ n−1

2k−1

0

(xns − τ)n−α−1u(n)(τ)dτ

+
1

Γ(n − α)

∫ xns

n−1

2k−1

(xns − τ)n−α−1u(n)(τ)dτ. (4.3)

In view of the Clenshaw-Curtis quadarature formula (Davis and Rabinowitz, 1984), the first

integral can be calculated as

1

Γ(n − α)

∫ n−1

2k−1

0

(xns − τ)n−α−1u(n)(τ)dτ =

1

Γ(n − α)

n−1
∑

r1=1

∫
r1

2k−1

r1−1

2k−1

(xns − τ)n−α−1u(n)(τ)dτ =

1

Γ(n − α)
.
1

2k

n−1
∑

r1=1

M
∑

r2=0

wr2
(xns − xr1r2

)n−α−1u(n)(xr1r2
), (4.4)

where

wr =
2

Nγr

[1 −
[M/2]
∑

k=1

2

γ2k(4k2 − 1)
cos

2krπ

M
], r = 1, 2, ...,M − 1, (4.5)

in which γ0 = γM = 2 and γr = 1, for r = 1, 2, ...,M − 1. The second singular integral in Eq.

(4.3) is evaluated with the help of integration by parts and Eq. (4.1) as following:

1

Γ(n − α)

∫ xns

n−1

2k−1

(xns − τ)n−α−1u(n)(τ)dτ =

(xns − n−1
2k−1 )

n−α

(n − α)Γ(n − α)
u(n)(

n − 1

2k−1
) +

(2k−1xns − n + 1)

2k(n − α)Γ(n − α)
M

∑

s1=0

(xns − (xns − n − 1

2k−1
)(2k−1xns1

− n + 1) − n − 1

2k−1
)n−α

u(n+1)((xns − n − 1

2k−1
)(2k−1xns1

− n + 1) +
n − 1

2k−1
). (4.6)

Substitute Eqs. (4.4) and (4.6) into Eq. (4.1) to obtain 2k−1(M −1) equations. Furthermore,
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replacing conditions in Eq. (1.3) with Eqs. (3.7) and/or (3.9) results in obtaining 2 more

equations. Moreover, continuity condition on the approximate solution and its first derivative

at the interface between subintervals should be imposed to have other (2k − 2) equations.

u(r)(xn+1,M) = u(r)(xn,0), r = 0, 1 n = 1, 2, ..., 2k−1 − 1. (4.7)

From the above procedures carried out, we will have a system for a total of 2k−1(M + 1) al-

gebraic equations, which can be solved for the u(xns). As a consequence, we get the solution

u(x) of Eqs. (1.2)-(1.3) using Eqs. (3.7)-(3.8).

The convergence of the method has been shown in (Kazemi et. al, 2015).

5. Illustrative examples

In this section, fractional Lane-Emden problems of different types are solved to verify

the applicability and accuracy of the proposed method in solving singular fractional Lane-

Emden problems.

Example 5.1 As a first example for illustration, consider the following nonlinear Lane-

Emden type equation:

y′′(x) +
2

x
y′(x) + sinh(y(x)) = 0, x ≥ 0 (5.1)

subject to the boundary conditions

y(0) = 1, y′(0) = 0.

Wazwaz (2001) employed Adomian decomposition method to obtain a series solution as

follows

y(x) ∼= 1 − (e2−1)x2

12e
+ 1

480
(e4−1)x4

e2 − 1
30240

(2e6+3e2−3e4−2)x6

e3 + 1
26127360

(61e8−104e6+104e2−61)x8

e4 .

We apply the introduced method with M = 10, k = 5 for solving Eq. (5.1). In Table 1, we

compare the y(x) values obtained by the present method and those reported in (Wazwaz,
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2001; Parand, 2010). The results are in well agreement with those obtained by Adomian

decomposition method and more accurate than those acquired by the introduced method in

(Parand, 2010).

Table 1: Comparison of y(x) values in Example 5.1, for the present method, method in (Parand, 2010) and

series solution given in (Wazwaz, 2001).

t Present Error Hermit function Adomian decomposition

method collocation method method

0.0 1.0000000000 0.00×100 0.00×100 1.0000000000

0.1 0.9980428414 4.48×10−11 7.10×10−5 0.9980428414

0.2 0.9921894348 1.22×10−11 8.64×10−5 0.9921894348

0.5 0.9519611092 7.37×10−8 7.65×10−5 0.9519611019

1.0 0.8182429285 8.74×10−6 5.31×10−5 0.8182516669

1.5 0.6254387635 4.53×10−4 4.03×10−4 0.6258916077

2.0 0.4066228875 7.05×10−3 7.02×10−3 0.4136691039

Example 5.2 Consider the following nonlinear fractional spherical isothermal Lane-Emden

type equation:

Dαu(x) +
2

xα−β
Dβu(x) = e−u(x), 0 < x ≤ 1, (5.2)

subject to the boundary conditions

u(0) = 1, u′(0) = 0. (5.3)

We used the technique introduced in (Abdel-Salam and Nouth, 2015) to obtain the exact

solution of this problem when α = 3
2

and β = 3
4

as

u(x) ∼= 0.2368456765x
3

2 − 0.02568610429x3 + 0.005004915254x
9

2

−0.001292847099x6 + 0.0004026307151x
15

2 − · · · .
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We employ the CWFD method with different values of M and k for solving this problem.

In Table 2, we compare the absolut errors of u(x) at different points. Fig. 1 shows the

absolut errors in solutions obtained by the introduced method in this paper with M = 18

and k = 2, 3

Table 2: Comparison of absolute errors in Example 5.2 for α = 3

2
and β = 3

4
.

x M = 7, k = 2 M = 10, k = 2 Exact solution

0.1 1.3×10−4 4.3×10−5 0.007464188801946358826

0.2 1.3×10−4 3.3×10−5 0.020982133267328805960

0.3 9.8×10−5 3.9×10−6 0.038245501398878235380

0.4 6.4×10−5 3.4×10−5 0.058349988262337799440

0.5 2.8×10−5 3.3×10−5 0.080730040537947506919

0.6 6.3×10−4 1.6×10−4 0.104978568300143096020

0.7 1.0×10−3 2.1×10−4 0.130782221081233564320

0.8 1.4×10−3 1.5×10−4 0.157891884073451679110

0.9 1.9×10−3 8.2×10−6 0.186108051348831675130

Figure 1: The graph of absolute errors between approximate and exact solutions with M = 18 and k = 2

(Right) M = 18 and k = 3 for Example 5.2.
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Example 5.3 Consider the following nonlinear fractional Lane-Emden type equation:

Dαu(x) +
2

xα−β
Dβu(x) + sinh(u(x)) = 0, 0 < x ≤ 1, (5.4)

subject to the boundary conditions

u(0) = 1, u′(0) = 0. (5.5)

Wawaz (2001) employed Adomian decomposition method to obtain a series solution of (5.4)-

(5.5) when α = 2 and β = 1 as follows

u(x) ∼= 1−(e2 − 1)x2

12e
+

(e4 − 1)x4

480e2
−(2e6 + 3e2 − 3e4 − 2)x6

30240e3
+

(61e8 − 104e6 + 104e2 − 61)x8

26127360e4
.

We apply the method introduced in Section 4 with M = 12 and k = 2 and solve this problem

with different values of α and β. It can be seen from Fig. 2 that as α and β approach 2

and 1, respectivels, the solution of the fractional differential equation approaches that of the

integer-order differential equation.

Figure 2: Comparison of u(x) for M = 12, k = 2 and different values of α and β for Example 5.3

Example 5.4 Consider the following linear singular boundary value problem:

Dαu(x) +
1

xα−β
Dβu(x) +

1

1 − x
u(x) = 4 cos x − 5x sin x +

x3

1 − x
cos x, 0 < x < 1, (5.6)
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subject to the boundary conditions

u(0) = 0, u(1) = cos(1). (5.7)

The exact solution of this example is given in (Zhou and Xu, 2016) as u(x) = x2 cos(x) when

α = 2 and β = 1. We set M = 12 and k = 2 for this problem. In Table 3, we report the

obtained values of u(x) for different values of α and β. It can be seen from Table 3, the closer

the values of α and β are respectively to 2 and 1, the more accurate are the results. For

further investigation, we plot the graph of u(x) for different values of α and β with M = 8

and k = 3 in Fig. 3

Table 3: Obtained absolute errors for M = 12, k = 2 and different values of α and β for Example 5.4

x α = 1.9, β = 0.9 α = 1.92, β = 0.92 α = 1.94, β = 0.94 α = 1.96, β = 0.96 α = 1.98, β = 0.98

0.1 3.1×10−3 2.1×10−3 1.2×10−3 5.1×10−4 2.0×10−5

0.3 1.8×10−2 1.4×10−2 9.8×10−3 6.1×10−3 2.8×10−3

0.5 3.2×10−2 2.5×10−2 1.8×10−2 1.2×10−2 5.6×10−3

0.7 3.5×10−2 2.7×10−2 2.0×10−2 1.3×10−2 6.4×10−3

0.9 1.8×10−2 1.4×10−2 1.0×10−2 6.7×10−3 3.4×10−3

Figure 3: The graph of u(x) for different values of α and β with M = 8, k = 3 for Example 5.4.
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Example 5.5 Consider the following nonlinear fractional Lane-Emden type equation:

Dαu(x) +
6

xα−β
Dβu(x) + 14u(x) + 4u(x) ln(u(x)) = 0, 0 < x < 1, (5.8)

subject to the boundary conditions

u(0) = 1, u(1) = e−1. (5.9)

If α = 2 and β = 1, the exact solution of this problem is u(x) = e−x2

(Zhou and Xu, 2016).

In Fig. 4, the graph of u(x) for different values of α and β is plotted. Furthermore, Fig.

5 shows the absolute error between the approximate and exact solution when α = 2 and

β = 1.

Figure 4: The graph of u(x) for different values of α and β with M = 10, k = 3 for Example 5.5.
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Figure 5: Absolute error as α = 2 and β = 1 with M = 10, k = 3 for Example 5.5.

Example 5.6 Consider the following nonlinear fractional boundary value problem:

Dαu(x) +
1

xα−β
Dβu(x) + eu(x) = 0, 0 < x < 1, (5.10)

subject to the boundary conditions

u′(0) = 0, u(1) = 0. (5.11)

The exact solution of this problem as α = 2 and β = 1 is given as (Zhou and Xu, 2016)

u(x) = 2 ln

(

4 − 2
√

2

(3 − 2
√

2)x2 + 1

)

. In Fig. 6, we plot the graph of u(x) for different values of α and β with M = 7, k = 3.
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Figure 6: The graph of u(x) for different values of α and β with M = 10, k = 3 for Example 5.6.

Example 5.7 Consider the following linear fractional Lane-Emden type equation:

Dαu(x) +
2

xα−β
Dβu(x) =

0.76129u(x)

u(x) + 0.03119
, 0 < x < 1, (5.12)

subject to the boundary conditions

u′(0) = 0, 5u(1) + u′(1) = 5. (5.13)

There is no exact solution for this problem even for integer case. We solve this problem using

CWFD with M = 10, k = 2. In Table 4, the values of u(x) for different fractional values of α

and β at different points are tabulated. We make a comparison between the results obtained

by the CWFD method, The Laguerre wavelet (LW) method in (Zhou and Xu, 2016), and

a numerical method based on the operational matrix of orthonormal Bernoulli polynomial

(BP) in (Mohsenyzadeh et al., 2015) for integer values of α and β in Table 5. It can be

seen from Tables 4 and 5, as α and β are increasing closer to integer values, the results are

increasing closer to the ones of integer values. Table 5 shows that our results are very close to

the results reported in other two papers and indicates the applicability and accurateness of

the proposed method. It can be clearly observed from Tables 4 and 5, as α and β approach 2

and 1, the solution of fractional differential equation approaches to that of the integer-order

differential equation.
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Table 4: Approximate solutions for different values of α and β with M = 10, k = 2 for Example 5.7

x α = 1.5, β = 0.5 α = 1.6, β = 0.6 α = 1.7, β = 0.7 α = 1.8, β = 0.8 α = 1.9, β = 0.9

0.1 0.765457385293227 0.777849130711797 0.790555364088865 0.803503300386760 0.816514521141764

0.2 0.776130801423652 0.786585663532280 0.797659339431068 0.809242556063937 0.821123173757560

0.3 0.789838168401597 0.798441923158554 0.807825369576831 0.817890936326706 0.828429359689670

0.4 0.806115080193247 0.812991206693056 0.820716305422740 0.829224626275748 0.838326176512752

0.5 0.824626305619186 0.829933285174916 0.836100384725762 0.843090763744000 0.850740215946676

0.6 0.845309532918059 0.849128944523233 0.853839766598646 0.859385533350940 0.865614149890049

0.7 0.867713969757805 0.870328122893672 0.873779197287922 0.878013361169784 0.882901208768500

0.8 0.891762974684848 0.893431592884813 0.895829358309583 0.898910454952620 0.902571377092311

0.9 0.917364124571176 0.918348799523956 0.919913436181026 0.922022206810561 0.924598283236026

Table 5: COmparison of approximate solutions α = 2, β = 1 for Example 5.7

x CWFD LW BP

0.1 0.82970609243381 0.82970609243388 0.82970609243390

0.2 0.83337473359101 0.83337473359108 0.83337473359110

0.3 0.83948991395371 0.83948991395376 0.83948991395381

0.4 0.84805278499607 0.84805278499610 0.84805278499617

0.5 0.85906492716924 0.85906492716925 0.85906492716933

0.6 0.87252831995829 0.87252831995828 0.87252831995828

0.7 0.88844530562320 0.88844530562317 0.88844530562329

0.8 0.90681854806681 0.90681854806678 0.90681854806690

0.9 0.92765098836558 0.92765098836555 0.92765098836568

Example 5.8 Consider the following nonlinear singular fractional two-point BVP:

Dαu(x)+
1

xα−β
Dβu(x)+

u2(x)

x(1 − x)
= 4 arctanx+

1 + 3x2

x(1 + x2)
+

(1 + x2)2 arctan2(x)

x(1 − x)
, 0 < x < 1,

(5.14)

subject to the boundary conditions

u(0) + u′(0) = 1, u(1) + u′(1) = 4.14159265358979. (5.15)

The exact solution of this problem if α = 2 and β = 1 is given as u(x) = (1 + x2) arctan(x)

in (Zhou and Xu, 2016). The graphs of u(x) for different values of α and β are plotted in

Fig. 7.
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Figure 7: The graph of u(x) for different values of α and β for Example 5.8.

6. Conclusion

The singular fractional Lane-Emden type equations as a generalized form of the stan-

dard ones subject to the different conditions have been considered. The Chebyshev wavelets

finite difference method has been successfully applied to obtain numerical solutions of frac-

tional Lane-Emden type equations with linear and nonlinear terms arising in mathematical

physics and astrophysics. It can be clearly seen from figures and tables, as α and β approach

the integer values, the solution of fractional differential equation approaches to that of the

integer-order differential equation. From obtained results, it can be observed that the pro-

posed method is effective and accurate for solving such type of singular fractional equations.

It has also been shown that the accuracy can be enhanced either by expanding the number

of subintervals or by expanding the quantity of collocation points in subintervals.
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