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Abstract 
 

 Optimisation with simulation is a happy marriage of two Operations Research 
methods. In the last decade, the research in this field has accelerated and many researchers 
have been interested in Simulation Optimization (SO). New techniques have been developed 
as a result of this interest. Almost all commercial simulation software contains an 
optimization module. Generally, these modules exploit meta-heuristic methods; however, 
they do not allow the analyst to choose the method. The performance of meta-heuristic 
methods may depend on the problem type and therefore the choice of method is crucial. In 
this paper, we aim to fill this gap and presented an open-source java-based simulation-
optimization code library. The library includes three heuristic methods; genetic algorithm, 
tabu search, simulated annealing, as well as three enumeration based methods; partial and 
complete enumeration, and a new neighbourhood-based heuristic method. At the simulation 
side, Simkit, an event-based and open-source simulation library, is used. At the application 
side, we defined a fictional optimisation problem and used it to compare performances of 
the algorithms. Our results demonstrated the potential benefits of having multi meta-
heuristics available in SO. 

 

BENZETİMLE EN İYİLEME İÇİN ÇOKLU META-SEZG İSELLER 
 

Özetçe 
 

Benzetim ile eniyileme iki yöneylem araştırması yönteminin mutlu bir evliliğidir. 
Son on yılda bu alandaki araştırmalar ivme kazanmış ve birçok araştırmacı Benzetimle 
Eniyileme (BE) alanına ilgi göstermiştir. Bu ilginin sonucu olarak yeni yöntemler de 
geliştirilmi ştir. Hemen hemen bütün ticari benzetim yazılımları bir çeşit BE modülü 
içermektedir. Genel olarak bu modüller meta-sezgisel yöntemleri kullanmaktadır ancak 
analizcinin yöntem seçimine izin vermemektedir. Meta sezgisel yöntemlerin problem tipine 
bağlı olarak performansları değişebilir ve bu nedenle de yöntem seçimi önemlidir. Bu 
makalede bu açığı doldurmayı hedefliyoruz ve açık kaynak kodlu Java tabanlı bir BE kod 
kütüphanesi sunuyoruz. Kütüphane üç meta sezgisel; Genetik algoritma, yasaklı arama, 
simulated annealing, ve üç sıralı aramalı algoritma; parçalı ve tam sıralı aramalı, ve yeni 
bir komşuluk tabanlı sezgisel yöntemi içermektedir. Benzetim tarafında ise açık kaynak 
kodlu ve olay tabanlı bir kütüphane olan Simkit kullanılmıştır. Uygulama olarak hayali bir 
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eniyileme problemi tanımlanmış ve algoritmalar karşılaştırılmıştır. Çalışmanın sonuçları 
BE’de çoklu meta sezgisellere sahip olmanın potansiyel faydalarını göstermiştir.  

 

Keywords: Simulation Optimization, heuristics, genetic algorithm, tabu search. 
Anahtar Kelimeler: Benzetim, Eniyileme, Sezgisel yöntemler, yasaklı arama, genetic 
algoritma. 
 

1. INTRODUCTION 
 
In most of today’s simulation software in the market, optimization 

modules are included in one way or another. Some includes third party 
optimization bundles, and some includes embedded algorithms to optimize 
the parameter values of a simulation model. Particularly, when a solution to 
a problem is analytically not tractable, simulation can be used as a tool to 
model the problem in hand. In Simulation Optimization (SO), there is a 
simulation model which is repeatedly run to explore how the outputs change 
by different input values. As in traditional optimization problems, there is an 
objective function and constraints, and the aim is to find the best input 
values which maximizes (or minimizes) the objective function value by 
satisfying the constraints.  

 
There are six commonly used methods in SO (Fu et al (2005)). The 

first one is “ranking and selection” method. In this method, a list of 
available solutions and their Objective Function Value (OFV)s are created 
and the best is chosen (the minimum or the maximum). This method is 
useful when there is a fix set of alternative solutions. It is important to note 
that “an available solution” means a set of input values of the simulation 
model, and an OFV means an output value of the simulation model. 

 
Second method is the Response Surface Methodology (RSM). Its 

origins are in statistical design of experiments and eventually its task is to 
seek for the relationship between the inputs (factors) and outputs (response) 
of the model. After examining the relationship, a meta-model is built and 
then deterministic optimization methods are applied to find an optimum 
solution. The third method is gradient based procedure which eventually 
mimics the methodology in RSM. This method looks for the movements in 
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gradient directions where the changes are significant in the output. It 
requires differential equations calculations since the gradients are the 
changes in the slope in response curves. However this method is known to 
be better performed when the inputs are continuous variables. The fourth 
method is random search and works as in the gradient search. Although the 
search is random, the method proceeds systematically and iteratively where 
a neighborhood structure is involved. This method can be applied in model 
with both discrete and continuous input variables. The neighborhood is 
significant since a candidate solution may not be feasible. The fifth method 
in SO is Sample Path Optimization. The method is based on deterministic 
optimization methods (e.g. linear programming) on estimates of n 
simulation replications. And finally, the sixth method is the use of Meta-
heuristics. Meta-heuristics are search strategies in solution space in order 
not to trap to local optimums. It is perhaps the most popular SO method in 
today’s SO community.    

 
In this paper, we explore feasibility of use of multiple meta-

heuristics in SO. The motivation of our research comes from the literature 
review presented in the following section. Our review revealed that most 
simulation software in the market use meta-heuristic search methods for SO, 
however, in these software, interestingly, only one or two meta-heuristics 
are embedded and the user is not free to choose the search method. The 
choice of method is left to the software. These two issues observed in 
simulation software are the driving forces of our work. What benefits can be 
gained by having multiple heuristics available to the user and the freedom of 
selecting one of these methods is explored.  

 
This work is intended as a proof of concept in SO. The concept is to 

let users to choose a method from multiple meta-heuristics available. To 
demonstrate the concept in reality, a software library (HePSi (Heuristics 
Package for Simulations)) which is developed by the authors is presented. 
We used the library in an imaginary test problem that we inspired from a 
well-known optimization problem, Travelling Salesman Problem (TSP) 
applied in maritime transportation. 
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2. BACKGROUND LITERATURE 
 

The literature in this area does not date back to 1990s, since the two 
merging topics grown on their own for many years. Later in 80s, simulation 
and optimization have been seen together. A good starting point is the 
literature reviews such as Law and McComas (2000), Sabuncuoglu and 
Tekin (2004), and Fu et al (2005). Additionally, there has been progress in 
SO methodology, for example, Hong and Nelson (2006, 2007) introduce a 
new methodology for optimization via simulation. Their method is based on 
stochastic search formed by integer decision variables and guarantees to 
converge locally to an optimum. In the application side, SO is applied in 
many domains such as inventory systems (Alferaei and Diabat, 2009), 
project management (April et al 2004), and supply chains (Zhao and Sen, 
2006). Willis and Jones (2008) use heuristics for multi objective SO. Their 
framework combines a simulation model with a non-exhaustive heuristic 
search algorithm with an embedded multi-objective optimization technique. 

 
Heuristic search methods are popular due to their advantages over 

the other SO methods. Firstly, the simple black-box approach fits in 
heuristic methods; that is meta-heuristics optimizer generates a candidate 
solution and this candidate solution is supplied to a simulation model to 
obtain an OFV. The simulation model produces an output, based on the 
inputs generated by the meta-heuristics optimizer and the optimizer then 
generates a new input set and so on. This cycle goes on until a good solution 
is obtained. The generated solution must be a feasible solution. Secondly, 
the iterative nature of this approach is relatively simple to implement since 
the model and the optimizer work independently. Once a model is built, 
iteratively experimentation is conducted with it. Meta-heuristics methods 
such as Simulated Annealing (Willis and Jones 2008, Alferaei and Diabat 
2009), Tabu Search (Dengiz and Alabas 2000), Genetic Algorithm (Homai-
far et al 1994) and Neural Networks are among the popular methods.  

 
There are views on the practice of SO, for example Fu (2002) 

indicates that the research on SO is disconnected in academia and in 
practice since there are, he argues, differences between both parties’ 
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expectations. The academia searches the ways of “better convergence” to 
optimum, and the industry looks for the ways of practicalities of these 
methods. He also argues that commercial simulation optimization software 
has been successful because, firstly, there is market for them and they are 
sold with simulation modeling software. Secondly, these products handle 
complex problems and produce “good” results in a timely manner. This 
actually echoes Law (2007)’s views where a list of optimization modules in 
commercial simulation software is supplied (p. 660, Table 12.19). The list 
includes most commonly used simulation products and the optimization 
software supplied with them, e.g. AutoStat, OptQuest, OPTIMIZ, 
SimRunner, and WITNESS Optimizer, and the algorithms and search 
strategies embedded in these software, e.g. evolution strategies, scatter 
search, tabu search, neural networks, genetic algorithms, simulated 
annealing etc. This survey reveals that in commercial software, heuristic 
search methods are most popular. Another point it reveals is that one or two 
(or exceptionally in OptQuest; Tabu Search, Neural Networks, and Scatter 
Search are combined into a single search heuristic) meth-ods are 
implemented in these software. Additionally, the software automatically 
chooses the method and the users are not allowed to select a method 

 
3. CONCEPTUAL REPRESENTATION OF HEPSI 

 
HePSi (Heuristics Package for Simulations) is a meta-heuristics code 

library written in Java for SO. The package consists of Genetic, Simulated 
Annealing and Tabu Search meta-heuristics, partial and complete 
enumeration algorithms, and a new and improved heuristic of 
neighborhood-based partial enumeration algorithm (Figure 1).  

 
Since the scope of HePSi is not to create full generic software, there 

are limitations: 
 

• HePSi is designed for discrete-event simulations (DES) built 
in Simkit (Buss, 2010), a Java based DES software library.  

• It works independent from the simulation model. A model 
only interacts with the package through input variables. 
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• Discrete decision variables are allowed; that is a solution in 
the optimization problem can only have integer values, and 
bounds of these variables can only be integers (e.g. the cities 
visited in a TSP route, the number of machines in a job shop, 
the number of nurses in a staff roster).  

 
Although these limitations exist, HePSi is intended to be a generic 

package. It can fit in any optimization problem that can be solved using the 
meta-heuristic algorithms mentioned above with minor modifications in the 
package. It is specifically designed to run independently with a simulation 
model. An executable class links the two, HePSi and the simulation model, 
and act as a communicator between them. Parameters of the meta-heuristics 
algorithms and the inputs of simulation model are entered in the execution 
class. In the following sections, specifics of the modules in HePSi are 
presented. 

 
Partial Enumeration (PE) 
 

This is the simplest and primitive part of HePSi. This class is 
especially needed when the solution space is extremely large and scanning 
the whole solution space requires too much time. Note that reducing the 
number of variables also reduce the size of the solution space (Law, 2007) 
which significantly improves the performance. The search is conducted 
randomly in PE. It starts from a random solution and travels randomly in the 
solution space while checking the feasibility of the solution. It never 
guarantees any optimal solution, but gives an indication of the space. It 
helps the user to evaluate how decision variables affect the objective 
function value. There is one parameter of this algorithm; the proportion of 
the search space, e.g 10% of all possible and feasible solutions, that is to be 
evaluated. Obviously, this module does not guarantee an optimum, but is 
useful if the search space is large. PE can be used in factorial design 
experimentation. 
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Figure 1. Conceptual Representation of HePSi. 

 
 
Neighborhood-Based Partial Enumeration (NBPE) 
 
 This method is similar to PE. The search is done randomly but more 
systematically. First a number of points in the search space is entered and 
the algorithm proceeds with local searches in these points. 
 
Complete Enumeration (CE) 
 
 The efficiency of this module depends on the size of the solution 
space, since in this module the whole solution space is scanned. CE 
guarantees the optimum solution. However, searching the whole solution 
space requires too much run time, and is in fact impossible when the size of 
the problem is large. Even the problem size is reasonable, this module can 
be beaten by the other algorithms. However since it guarantees the optimum 
solution, it can be used for benchmarking (e.g. simulated annealing finds a 
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near optimum solution in x seconds, and CE finds the optimum in x + or - y 
seconds). 
 
Genetic Algorithm (GA) 
 
 GA is very popular as an optimization technique due to its 
generality. Its concepts are influenced from evolution theory. It searches the 
solution space iteratively and best solutions are evolved and others are 
discarded.  
 
 In HePSi’s GA module, GA parameters are chosen by the user 
before the simulation model runs. These parameters are population size, 
crossover and mutation rates, the policy to select the crossover point, and 
the policy to select the mutation point. The GA operations may need some 
adaptations to the problem domain. HePSi’s GA module is designed to 
allow these adaptations. Consider a TSP where a complete tour is a solution. 
This means that a city is not to be revisited. In GA’s crossover terms, two 
solutions may have the same sequence of cities in which the crossover 
operation may result in solutions with revisited cities. The mutation 
operation has also similar attributes, e.g. a city to mutate violates the rule of 
unvisited city. In the GA module, this kind of problem specific constraints 
can be coded. 
 
Simulated Annealing (SA) 
 
 This heuristic algorithm is based on physical activity of annealing of 
metals. The algorithm in-spires the atomic structure of solid objects such as 
metals. Metals get their forms perfectly while they are cooling or loosing 
temperature. This process continues until the metal crystallizes completely. 
This algorithm also works iteratively. There are two notions in SA; the 
neighborhood of solutions, and the temperature. SA algorithm depends on 
one of the random neighbors of current solution in an iteration.  
 
 As in the GA module, the parameters of SA algorithm (the 
probability of accepting a “bad” solution) is entered before the simulation 
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run. There are problem domain specifics in SA, such as the definition of the 
neighborhood. These specifics can be amended in the code to fit SA to the 
problem. 
 
Tabu Search (TS) 
 
 This method explores solution space beyond local optimality. Local 
search is based on exploring neighborhood of any given candidate solution. 
The best solution in a neighborhood is chosen even if it causes deterioration, 
worse than the current candidate solution. This strategy enables to avoid 
trapping in local optima. The algorithm memorizes old candidate solutions 
and does not al-low progress in old candidate solutions’ direction for a 
while. That means algorithm imposes a tabu. When a neighbor of a 
candidate solution is chosen as a current solution, the change is considered 
as tabu. While a defined iteration size, this change is not considered as 
swap, except this change enables being the best solution ever. Tabu list is 
composed of recently chosen candidate solutions. It prohibits choosing 
better solutions as current solution to avoid local optima.  
 
 TS algorithm is implemented in HePSi where its parameters are 
entered in the execution module. As in the other algorithms, the user can 
adopt domain specific features in the source code. 
 
 4. A TEST CASE FOR HEPSI 
 
Problem definition  
 

We used a well-known optimization problem to test HepSi. There is 
an imaginary company which desires to define the best route for its one 
container ship to maximize its profit. This test problem is a combination of 
“Travelling Salesman Problem (TSP)” and the knapsack problem. We 
assume that there are several ports that are to be visited once in a tour. An 
example tour map can be seen in Figure 2.  
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The company declares direct transportation charges of one unit 
cargo. The direct transportation charge matrix is diagonally symmetric and 
is a user input. These tables show the charge of transportation of one unit 
cargo directly from one port to another. However in the ship’s route a port 
can be visited after visiting some other ports and therefore the charge may 
vary depending on the ports visited previously. The rationale is that when 
the ship takes a cargo directly to any port, delivery occurs in shorter time 
however when the ship takes a cargo indirectly, the cargo owner must wait 
longer for its cargo. Therefore cargo fees depend on the distance and the 
number of ports visited. Ship owner company tries not to lose any customer 
and therefore decreases transportation fees for the late delivery when the 
ship goes indirectly to any port. We call this “corrected charge” of 
transportation 

 

 
Fig. 2.  A sample tour map. 

  
The demand for transportation is stochastic which makes this 

problem appealing for a DES model. The number of containers that is to be 
transferred to a port is determined from a stationary distribution. The ship 
cannot know the quantity of next port’s cargo in advance. For example, 
when the ship is in port 4 and the route is [0,3,10,5,4,6,7,9,8,2,0], the ship is 
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incapable of knowing the cargos from port 6 to anywhere or from port 7 to 
anywhere etc. We assume that the demand (number of containers) that 
needs to be transferred to another port is normally distributed. 

 
Three basic scenarios are determined. In the first scenario, there are 

9 ports, in the second scenario the port number is increased to 12, and in the 
last scenario, port size is extended to 15. In these scenarios, initial port is 
always port 0. Additionally, each scenario is also categorized into two main 
sub scenarios by altering the carriage capacity of the ship.  The distances are 
given in a matrix and measured in nautical miles. The details of each 
scenario and assumption of the problems are given below. 

 
The model 

 
The model is implemented in Simkit (Buss, 2010). Simkit is a Java 

based DES library which implements event-based modelling. Before writing 
code in Simkit, the modeller builds an Event Graph (EG) of the system to be 
modelled. Event graphing is a very efficient method for representing events 
and their interactions in a system. An EG has two elements; nodes (events) 
and edges (event transitions).  

 
The EG of the system described in the previous section is simple and 

includes two events; an arrival event and a departure event. When the ship 
arrives to a port, it gets the cargo and related statistics are updated. An 
arrival event also schedules a departure event to the travel time between 
ports. The two events are executed iteratively until all ports are visited. Note 
that the route is determined before the simulation run by the optimizer.  

 
Problem Specifics in HePSi 

 
As discussed earlier, HePSi is intended for generic use but some 

customizations are necessary. For example in the problem defined above, a 
feasible solution is represented by an array of integers which indicates port 
numbers. In this array, though, every integer must exist only once since 
every port is to be visited once.  
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Adaptations in heuristic algorithms are also required. In GA module, 

every time a crossover and mutation operation is executed, the new solution 
(mutated or crossovered) must be checked for its feasibility. For example, 
mutation by one port is not possible for feasibility and therefore 
displacement mutation is appropriate (Michalewicz (1992)). In SA module, 
definition of neighbourhood is important since this algorithm progresses 
towards neighbours. A neighbour of a port in our problem is chosen as the 
highest direct charge per distance port. If the first neighbour is already in the 
solution set (the route) then second neighbour is included and so on.  

 
Experimentation 

 
We defined three main scenarios, each having two sub-scenarios, as 

presented in Table 1. In main scenarios, we altered the number of ports that 
the container ship visits. Sub-scenarios include the capacity of the ship. 
Container quantities are measured in TEU (Twenty-foot Equivalent Unit) 
which is a standard measure in maritime transportation. Partial Enumeration 
(PE), Neighborhood-Based Heuristic (NBPE), Genetic Algorithm (GA), 
Tabu Search (TS) and Simulated Annealing (SA) methods of HePSi are 
applied to all scenarios. We conducted our experiments on a computer with 
2 Gb RAM and 2.2 GHz Intel Core 2 Duo Processor. 

 
Table 1.  Configuration of scenarios 

 
Scenario 
No 
(Main-
Sub) 

Number of 
ports  
(incl.Port 0) 

Cargo ship 
capacity 
(TEU) 

1-1 9 400 
1-2 9 4000 
2-1 12 400 
2-2 12 4000 
3-1 15 400 
3-2 15 4000 
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Scenario 1 
 
There 9 ports in this scenario and therefore the distance matrix and 

direct charge matrix are 9 by 9. The demand, number of containers which 
require transportation at ports, are distributed normally. The mean values of 
number of cargos are user inputs and given as a matrix. Coefficient of 
variation (cv) is 20 percent of mean value for each port. For instance, the 
mean value of the cargo from port1 to port4 is 60. Thus, cv is 20% of mean 
value of 60 TEU which is 12 TEU. 

 
We evaluated that 60 replications are enough for estimating outputs 

of scenario-1. In this scenario, approximately 50% of 40,320 solutions are 
explored. 

 
Scenario 2 
 

This scenario includes 12 ports which increased the number of 
feasible solutions to 39,916,800. As expected, the curse of dimensionality in 
optimization problems affected the run time and the area to scan. In this 
scenario, approximately 0.2% of whole solution space is explored and 70 
replications are needed.  

 
Scenario 3 

 
This scenario includes 15 ports which caused the number of 

solutions to increase to 87,178,291,200. Only 1/750,000 of whole solution 
space is explored to find the optima. We evaluated that 85 replications are 
enough for this scenario. 

 
Results of the experiments are shown in Table 2. Note that this table 

gives the best result of each experiment. For example for Scenario 1-1, the 
best solution, that is the maximum Objective Function Value (OFV) of 
$151,910, is found when Tabu Search (TS) algorithm is applied. However, 
this table also shows that it took 5.8 minutes to achieve this solution and by 
scanning 22% of the solution space. Since feasible solutions are generated 
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based on a mechanism in that algorithm, it does not guarantee that the 
solution is not generated before. A history is kept to check that solutions are 
not fed to simulation model more than once. 
 
 5. DISCUSSION AND CONCLUSIONS 

 
Simulation optimization (SO) is an active research area both in 

academia and in simulation software industry. Almost all commercial 
simulation software has SO modules, and almost all of them use meta-
heuristic techniques for searching the optima. However, very few use 
multiple heuristics and none, to the best of our knowledge, of these software 
tools allow users to choose a method. Our work aims at contributing to the 
discussion in this area and to evaluate the potential of having multiple meta-
heuristics. To achieve this objective, we developed a computer code library, 
Heuristic Package for Simulations (HePSi), which implements well-known 
meta-heuristic algorithms. HePSi is implemented in Java and can be used 
attached to Simkit, a discrete event simulation (DES) library. The heuristics 
and meta-heuristic methods included in HePSi are genetic algorithm, tabu 
search, simulated annealing, neighborhood-based partial enumeration 
heuristic, partial and complete enumeration.  

 
To test our approach, we created an imaginary maritime 

transportation problem where a shipping company wants to determine his 
best profitable ship route. The demand for transportation in this problem is 
stochastic. First, a simulation model of this imaginary system is built using 
Simkit and an optimum route is sought using HePSi. As the objective of the 
code library is to allow comparison, each heuristic method is applied to the 
problem. This extensive experimentation yielded 6 tables, a brief of them is 
given in Table 2. A table of this kind can help analyst to compare outputs of 
different optimization methods and therefore give a great flexibility which is 
not presented by other commercial SO software in the market.  

 
The use of HePSi is independent from the modeling software. The 

modeler builds a model and later HePSi is used to optimize the problem. At 
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the model side, to demonstrate this approach, Simkit is used. Our preference 
is due to its power in constructing event-based flexible simulation models.  

 
In addition to meta-heuristics implemented in HePSi, we propose a 

new heuristic, Neighbor-hood-Based Partial Enumaration (NBPE). The 
analyst has some control on the randomness of the search on the solution 
space by NBPE. This limited control distinguishes the algorithm partial 
enumeration. To speed up the search for optimum, we propose history 
structure for Genetic Algorithm, Tabu Search and Simulated Annealing. 
This structure lessens the run time considerably especially when the same 
solutions are generated. When a non-existing solution is produced, it is 
pushed into the history with the objective function value. If the same 
solution is reproduced, the simulation model is not run; the objective 
function value is taken from the history. Therefore the computation cost of 
the algorithms decreases considerably.   

 
Experimentation for the test problem showed that parameter values 

of the algorithms are determinant factors of the solutions. For example by 
increasing the mutation rate in GA, or by increasing the temperature 
coefficient value in SA, we can get better results in shorter time. Seeing this 
kind of interactions in the experiments is a clear benefit of HePSi. 

 
The parameter values in meta-heuristics affect the efficiency of the 

algorithms significantly. In this study, parameter tuning is done manually. 
That is after trying different values the best known parameter values are 
chosen. Therefore choosing the right values for the algorithms is a limitation 
of the study.  

 
More applications are needed to justify the generality of the code 

library. In this context, more problems are intended to be solved using 
HePSi. This will increase the robustness as well as the generality. 
Additionally, the future study may include a distributed version of HePSi 
where a problem can be divided into sub-problems, or the methods in HePSi 
can be distributed to different processors. This results in obtaining and 
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comparing the results of the different algorithms in shorter time and 
therefore more time can be dedicated to experimentation. 
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