
International Journal of Advanced Science and Technology

Volume 5, April, 2009

15

Kohonen-guided Parallel Bidirectional Voronoi-assisted Heuristic
Search

Anestis A. Toptsis, Rahul A. Chaturvedi, and Avaz Feroze

Dept. of Computer Science and Engineering,
York University, Toronto, Ontario, Canada

{anestis, rahulac, avaz}@yorku.ca

Abstract

Multi-process bidirectional heuristic search algorithms (such as PBA*) that utilize island
nodes have been shown to have the potential for exponential speedup over their plain
counterparts that do not utilize island nodes. PBA* (Parallel Bidirectional A*) is a primary
algorithm in this area and, to the best of our knowledge, unique in its usage of island nodes
for reducing the size of the traversed search space and in its usage of multidimensional
heuristics for reducing interprocess communication cost. Both, island nodes use and
reference nodes use within the context of multidimensional heuristics have been reported to
provide excellent performance, compared to plain heuristic search counterparts. However,
both of these two features have also resisted refinements for over two decades. Specifically,
the two main issues are: how to identify well-placed (in the state space) island nodes, and
how to generate well-placed reference nodes. The work presented in this paper is an initial
step toward this end. We present two methods, one employing Voronoi diagrams for the
purpose of identifying well-placed island nodes, and one employing Kohonen Networks for
the purpose of identifying well-placed reference nodes. We implement and compare our
methods against a plain version of PBA*. Our finding indicate that the cost of incorporating
the proposed improvements into PBA* is negligible; and when PBA* is equipped with the
island identification method, or with the reference node identification method, it outperforms
its random island nodes counterpart and its random reference nodes counterpart,
respectively, for the vast majority of test cases.

1. Introduction and Background

Heuristic search is one of the foundational areas of artificial intelligence (AI). Recently, it
has many applications in several diverse and practical areas such as Software Engineering and
the Web (e.g., [1, 2, and 3]). Heuristic search is essentially a graph traversal with the
characteristic that the number of nodes in the graph is huge and thus the graph nodes are
generated on the fly (as opposed to being already known), as we traverse the graph. This sort
of traversal is called heuristic search, because we always search for some “goal” node G, in
the graph, and we always use heuristics (guesses and estimates that indicate the best way to
proceed in the course of the graph traversal). Heuristic search algorithms can be classified
into two types, unidirectional and bidirectional. In the unidirectional category (e.g., [4]) there
is only one-direction type of process, emanating from the source node S and seeking the goal
node G. The bidirectional category (e.g., [5, 6, 7, and 8]) incorporates two types of processes
– one forward type search process, from S to G, and one reverse type search process, from G
to S. Each of the processes can be executed using a typical unidirectional algorithm such as
A* [4]. In some bidirectional search algorithms, special kind of nodes, called X-nodes (or
islands), are used to aid the search. The concept of introducing X-nodes to speed up the

International Journal of Advanced Science and Technology

Volume 5, April, 2009

16

search was introduced in [9] and there have since been developed several algorithms that
utilize X-nodes. Notable examples are PBA*, WS_PBA*, and SSC_PBA*, described in [7,
8].

Bidirectional multiprocessor heuristic search has been introduced by Nelson [13], first for
2 processors as a parallelization of Pohl's algorithm [5], and it was later generalized for N
processors, N > 2 [11, 12]. The N-processor algorithm, PBA*, uses intermediate nodes of the
search space, called islands or X-nodes. The terms islands and X-nodes are equivalent for the
purposes of this paper. Historically, the term island nodes first appeared in [9] to denote
intermediate nodes in the search space, with the property that an optimal path passes through
at least one of them. The term X-nodes was introduced in [11] to denote intermediate nodes in
the search space but not requiring that an optimal path passes through at least one of them.
Also, since the algorithm described in [11] requires two search processes (one forward and
one reverse) to emanate from each node, the term X-node was coined as a reminder of the
bidirectionalism in the search (see figure 1) in order to divide the search space into smaller
subspaces.

Figure 1. X-node.

In this paper, the terms islands and X-nodes are used interchangeably, and mean
intermediate nodes of the search space, some of which may participate in a path (not
necessarily optimal) connecting the source and goal nodes. Note, some of these intermediate
nodes may not participate in a solution (actually this is especially true in [9] where only one
of the island nodes participates in the solution). As illustrated in Figure 2, in addition to the
parallel searches conducted

Figure 2. Parallel bidirectional search with islands.

from the source node S and the goal node G, two parallel searches are conducted from each
X-node; a forward search towards the goal node G, and a reverse search towards the source
node S. A solution is found as soon as a set of search spaces intersect in such a way that a
path can be traced from S to G. The complexity of PBA* was analyzed in [11, 12]. In the case

International Journal of Advanced Science and Technology

Volume 5, April, 2009

17

that the X-nodes are placed equidistantly on an optimal path from source to goal, the
complexity of PBA* is

 2 1

n

XO b  
 
 
 
 

where b is the branching factor of the problem (branching factor is the number of nodes
generated at any node expansion), n is the length of an optimal path from source to goal, and
|X| is the number of X-nodes (or islands). This situation is illustrated in Figure 3 for |X| = 2.

Figure 3. Algorithm PBA* in the best case.

As it is shown in Proposition 1 and Proposition 2 below, the speedup of PBA* over its
uniprocessor version is potentially linear on the number of processors, and the speedup of
PBA* over the conventional uniprocessor A* algorithm is potentially exponential on the
number of processors. By “uniprocessor version of PBA*” it is meant that algorithm PBA* is
simulated on a uniprocessor machine. This can be done, for example, by using a simulating
program of a parallel machine running on a uniprocessor (such programs may be provided by
the manufacturer of the parallel computer and are usually used for software development
prior to porting to the actual parallel machine), or by simply spawning processes in a
multitasking operating system like UNIX, or by utilizing the multithreading facility of
modern programming languages and operating systems.

Proposition 1.
If all X-nodes are placed equidistantly on the straight line segment connecting the source and
goal nodes, and the work is divided evenly among all the available processors, then the
speedup of PBA* over UNI_PBA* is linear on the number of processors, assuming that each
processor executes one search process of the PBA* algorithm.

Proof

Cost of PBA* =  2 1

n

XO b  
 
 
 
 

.

Cost of UNI_PBA* =    2 12 1

n

XO X b  
 
   
 
 

.

Therefore,

   

 
  

2 1

2 1

2 1_ *
2 1

*

n

X

n

X

X bCost of UNI PBA
Speedup O O X

Cost of PBA
b

 

 

 
   

     
  
 

.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

18

Since  2 1P X   , where |P| is the number of processes running on either the

uniprocessor or the multiprocessor machine, the above expression for the speedup becomes

 _ *
| |

*

Cost of UNI PBA
Speedup O P

Cost of PBA
  .

The result follows since one process of the PBA* runs on each processor.

Proposition 2.
If all X-nodes are placed equidistantly on the straight line segment connecting the source and
goal nodes, then the speedup of algorithm PBA* over algorithm A* is exponential on the
number of processors, assuming that each processor executes one search process of the PBA*
algorithm.

Proof

Cost of PBA* =  2 1

n

X
O b

 
 
 
 
 

.

Cost of A* =  nO b .

Therefore,

 

 
 
2 | | 1

2 1

2 1

*

*

n X
n

X

n

X

Cost of A b
Speedup O O b

Cost of PBA
b

  

 

 

   
            

 (1)

Since  2 1P X   , where |P| is the number of processes running on the multiprocessor

machine (or simulated on the uniprocessor), expression (1) can be written as
 | | 1

| |*

*

n P

PCost of A
Speedup O b

Cost of PBA

  
  
 
 

 (2)

Note, we can always write n k P  , for some positive number k (k is not necessarily an

integer, but it is positive). Thus, expression (2) becomes

  | | 1*

*
k PCost of A

Speedup O b
Cost of PBA

   (3)

Expression (3) clearly shows that the obtained speedup of PBA* over A* is exponential on
the number of processes, |P|. Note, this is the case even if k is less than 1 (but always bigger
than 0). Since one process of PBA* runs on each processor, the obtained speedup is certainly
exponential on the number of processors as well.

In the general case where X-nodes are not placed equidistantly on an optimal path from
source to goal, the complexity of PBA* is

    max , , ,

2

i j idist X X dist X E

O b
 
 
 
 

International Journal of Advanced Science and Technology

Volume 5, April, 2009

19

where iX and jX range over all X-nodes, and E is either the source or the goal node. This
situation is illustrated in Figure 4 for two X-nodes. There are two main issues regarding the
efficiency of PBA*. The first is search space management, that is, how to efficiently detect
intersections among the many search spaces. The second is the X-node generation, that is,
how to find X-nodes on a path from source to goal.

Figure 4. Algorithm PBA* in a general case.

 In the case of search space management, the difficulty arises from the fact that when N
searches are concurrently in progress, it is very time consuming to have each process test if
one of its generated nodes is identical to some node generated by any other process (note, in
the 2-processor case, checking for common nodes is fairly inexpensive, since there are only
two searches in progress). As an attempt to ease this task, multi-dimensional heuristics
(MDH) were developed by [11, 12]. As shown in Figure 5, additional nodes, called reference
nodes, are designated into the search space, in order to "guide" the search. In Figure 5, k1 =
k2 < k3 and d1 = d2 =d3. This leads to the prediction that the search spaces 1S and 2S are
most likely to intersect, while search space 3S does not. It has been shown in [11, 12] that if
two search spaces 1S and 2S intersect, then there exist nodes 1 1n S and 2 2n S such that

   1 2, ,k kdist n R dist n R
for all reference nodes kR . Actually, nodes 1n and 2n represent the same state in the global

state space. This state is common to 1S and 2S . Note, the reverse statement may not be true,
since, for example, two diametrically opposite nodes also satisfy this condition although they
do not lie in the same search space.
 Based on the reference nodes use in MDH, several intersection detection algorithms have
been devised [11, 10, and 12]. The algorithms’ task is to prevent node exchange between any
two processes, unless there is a high probability that the search spaces of these processes
intersect. Simulation results have shown that in the worst case, unnecessary node exchange is
cut down in half, whereas in the best case it is cut down almost completely (only 1% of the
nodes are exchanged between two non-intersecting subspaces). Later in this paper we outline
some of the intersection detection algorithms since we use them in the implementation of our
proposed method here.

2. Proposed Methods

In this section we present two algorithms that address the issues outlined in the previous
section. The first issue is how to select X-nodes (island nodes) which are located
appropriately in the state space. Algorithm A, later in this section, describes the proposed

International Journal of Advanced Science and Technology

Volume 5, April, 2009

20

method. The second issue is how to select R-nodes (reference nodes) which are located
appropriately in the state space. Algorithm B, later in this section, describes the proposed
method.

Figure 5. Reference nodes in PBA*.

Note, although the above two issues are both within the same algorithm, PBA*, they
represent different problems. For the first issue (X-node placement), the purpose is to
generate X-nodes that are located (hopefully) on, or close to, a path connecting nodes S and
G. The motivation behind this problem is that during the execution of PBA* a path can be
formed easier (faster) if appropriate X-nodes have been selected. For the second issue (R-
node placement) the purpose is to generate R-nodes that are located far away from each other
so that they can provide a better guide for the multidimensional heuristics component of
PBA*. Each of the two methods (generating appropriate X-nodes and generating appropriate
R-nodes) can be used independently to improve the overall performance of PBA*, although
the two methods could be also combined, to incur a cumulative effect in the improvement of
PBA*.

We use two different tools to address the above two separate issues. For the X-nodes
placement issue, we employ Voronoi diagrams. For the R-nodes placement issue we employ
Kohonen neural networks.

Voronoi diagrams [23, 22, and 24] are named after the Russian Mathematician Georgy F.
Voronoi [21]. They are geometric structures that partition a N-dimensional space into cells
such that the points within each cell are closer to a centroid point of that cell than to any other
point of any other cell. Figure 6 shows a Voronoi diagram in 2-dimensional space, created by
using an applet in [17].

International Journal of Advanced Science and Technology

Volume 5, April, 2009

21

Figure 6. Sample Voronoi diagram.

The points (dots) in Figure 6 are the centroids of the corresponding Voronoi cells. As can be
seen from Figure 6, the main characteristic of Voronoi diagrams is that any point within a
Voronoi cell VC is closer to the centroid of VC than to any point of any other cell. In this
sense, a Voronoi diagram partitions a space in such a way that all close-to-each-other points
are clustered into cells such that each cell has a representative point – the centroid of that cell,
serving as the proximity center of the region of space covered by that cell. This characteristic
of Voronoi cells – especially the existence of the centroids is what inspired us to adopt the use
of Voronoi diagrams to address the issue of determining appropriately located X-nodes in a
state space. Specifically, the idea is to partition the state space into Voronoi cells and then to
designate as X-nodes some of the centroids of the generated cells. The benefits of such an
approach could be two-fold. First, by carefully selecting which Voronoi cells will participate
in the solution, we avoid selecting irrelevant centroids (this would lead to X-nodes that are
obviously out of any path connecting S and G). Second, and most important, by designating
as X-nodes the centroids of neighboring cells that form a path connecting S and G, it is hoped
that the centroids of those cells will lead to forming a path connecting S and G. Note, the dual
graph of any Voronoi diagram is the Delaunay graph [24]. Therefore, if neighboring Voronoi
cells form a path connecting S and G, then the corresponding vertices of the Delaunay graph
of that Voronoi diagram form a path connecting S and G! Algorithm A below, describes the
above process in detail.

Algorithm A.

 Step A.1: generate a set  1,..., MX x x of candidate X-nodes.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

22

 Step A.2: convert set X into set  1,..., MP   such that i is the projection of ix

onto a 2-dim space.
 Step A.3: Form D-graph, the Delaunay graph for set P.
 Step A.4: Calculate the shortest path SP = [S-X1-X2- …-Xk-G] connecting S and G

in the D-graph of step A.3.
 Step A.5: Select as X-nodes the nodes corresponding to points X1, X2, …, Xk and

execute algorithm PBA* between S and G.

In step A.1, we randomly generate a fairly large number of nodes. These are candidate X-
nodes and the intention is that after the processing done in steps A.2, A.3, and A.4, a small
number of those nodes is selected for being used in algorithm PBA*. In step A.2, we map the
nodes ix generated in step A.1 onto points i of an N-dim space. In our case, we use N=2.
(This is because a 2-dim space is more convenient to use for step A.3. In the future we plan to
extend our work for N > 2). To project a node ix onto a point i in 2-dim space we use two
randomly generated nodes 1r and 2r (other than the ones of set X of step A.1). Then i is
calculated as

    1 2, , ,i i imd x r md x r 

where  ,i jmd x r is the Manhattan distance between ix and jr (j=1, 2). In step A.3, we form
the D-graph of the set P calculated in step A.2. This graph is the Delaunay triangulation
DT(P) for the set of points P. The main property of DT(P) is that no point in P is inside the
circumcircle of any triangle of DT(P). Also, the DT(P) corresponds to the dual graph of the
Voronoi diagram for P. This latter property is our main motive in calculating the DT(P).
Without loss of generality, we assume that the vertices of DT(P) correspond to the
centers/generators of the Voronoi cells in the Voronoi diagram that corresponds to DT(P).
The property of interest from any Voronoi diagram is that all the points within a Voronoi cell
are closer to the center of that cell than to the center of any other cell, including the
neighboring cells. Therefore, by considering the Voronoi diagram of the DT(P) graph, we
somewhat avoid choosing as X-nodes nodes that are too close to each other. (Note, such X-
nodes would correspond to search spaces that possibly duplicate each other and thus waste
resources by exploring the same part of the global search space). Consequently, we designate
as our X-nodes the generator nodes of the Voronoi cells that form a shortest path between S
and G. In step A.4, we apply Dijkstra’s shortest path algorithm on graph DT(P) and calculate
SP = [S-X1-X2- …-Xk-G], the shortest path connecting S and G. Note, S and G of path SP of
step A.4 are not the actual source and goal nodes but they are the 2-dim points (as calculated
in step A.2) corresponding to the actual source and goal nodes. Also, X1, …, Xk of step A.4
are 2-dim points corresponding to certain candidate X-nodes generated during step A.1. For
simplicity in notation we use the same symbols to refer to the corresponding actual nodes S
and G and the corresponding X-nodes of the 2-dim points X1, …, Xk. In step A.5, we
designate as our X-nodes the nodes that correspond to the points X1, …, Xk, and using those
nodes we execute algorithm PBA* between S and G.

Kohonen Nets [19, 18] (also known as Kohonen Neural Networks, or Kohonen Maps, or
Self-Organizing Maps (SOM)) are named after Finnish Professor Teuvo Kohonen. A
Kohonen Net (KHNN) is typically a 2-dimensional grid of nodes with the ability to organize
these nodes in such a way that similar nodes end-up close to each other in the grid. Figure 7
illustrates such a grid of nodes.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

23

Figure 7. A Kohonen map [20].

 As we observe in Figure 7, similar symbols tend to cluster together (e.g., the symbols at the
upper-left region of Figure 7 are very similar). This characteristic of Kohonen nets is what
inspired us to adopt the use of Kohonen nets for addressing the issue of determining
appropriate R-nodes in a state space. Note, it is desirable that the R-nodes are well-distributed
in the state space, prior to the start of algorithm PBA*. The idea is that for a large number of
randomly generated nodes, a Kohonen net will cluster those nodes in such a way that similar
nodes are placed close to each other in the SOM. Then, we choose as our R-nodes from the
final SOM configuration no more than one node from each such cluster. The idea is that,
hopefully, such a selection will lead to selected R-nodes which are “far away” from each
other in the state space. The benefit of this is the increase of the ability of algorithm PBA* to
understand when two nodes that belong to opposing search processes are really close to each
other, or, may be, even identical. This undersraning is important because, during the
execution of PBA*, if two opposing search processes S1 and S2 generate nodes N1 and N2
such that N1 is similar to N2, then S1 and S2 have high probability to intersect, i.e., contain a
common node and, thus, form a path connecting the X-node X1 (origin of S1) and X-node X2
(origin of S2), and, obviously, if such partial paths are found throughout the opposing search
spaces that execute (concurrently) between nodes S and G, then a (whole) path is formed
between S and G – and this path would signal the completion of PBA*. If the R-nodes that
are used in PBA* are well-spread out in the state space, then the estimates of when two nodes
N1 and N2 are close to each other tend to be more reliable than if the R-nodes are not well-
spread out in the state space. This scenario is illustrated in Figure 8.
 In Figure 8, nodes N1 and N2 (of opposing search processes) are indeed close to each other
and this closeness is predicted faithfully by calculating the corresponding distances to the R-
nodes R1, R2, and R3. Note, for those distances 11 21D D and 12 22D D and 13 23D D .
That is,    11, 12, 13 21, 22, 23D D D D D D , and this leads to the (correct) prediction that

1 2N N , i.e., that nodes N1 and N2 are either identical, or very similar.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

24

Figure 8. R-nodes far-apart in the state space.

The implication of such a prediction is that the opposing search processes P1 and P2 that
generated nodes N1 and N2, respectively, will initiate communication for the purpose of
finding out if indeed their search spaces S1 and S2 contain a common node (such a finding
would mean that a path connecting the origin node of S1 and the origin node of S2, has been
established. However, if the R-nodes are located very close to each other, the above test for
node closeness may lead to a faulty prediction, as illustrated in Figure 9.
 In Figure 9, nodes N1 and N2 (of opposing search processes) are actually far apart from
each other. As such, based on the non-closeness of N1 and N2, the system should not instruct
the corresponding processes P1 and P2 to initiate communication. Nevertheless, because the
R-nodes R1, R2, and R3 are close to each other, 11 12 13D D D  , and 21 22 23D D D  ,
and 31 32 33D D D  . These similarities alone do not lead to a prediction that nodes N1 and
N2 are close to each other; however, due to a coincidental placement of N1 and N2 as shown
in Figure 9, it is also 11 21D D and 12 22D D and 13 23D D , which then definitely leads
to the faulty prediction that 1 2N N ! Then, like in the case of the correct prediction (of
Figure 8) but, in this case, under erroneous conditions, the system will initiate communication
between search spaces S1 and S2 for the purpose of trying to determine if S1 and S2 contain a
common node. Note, most likely, such communication will yield no common node, and
would rather waste communication bandwidth. Interestingly, if another R-node, RX, is added
in the state space, with RX far away from R1, R2, and R3, the above situation will not arise!
This is illustrated in Figure 10.
 In Figure 10, the above anomaly is still there for R-nodes R1, R2, and R3, but the fourth R-
node RX breaks the tie since the distances D1X and D2X are very different.
 Based on the above discussion, we use a Kohonen Net to generate appropriately placed R-
nodes, as follows. First, we generate many nodes, randomly. These are candidate R-nodes.
We place those nodes on a (unorganized) Kohonen map. Then we execute Kohonen’s self-
organizing algorithm on that map.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

25

Figure 9. R-nodes close to each other in the state space.

Figure 10. R-node RX resolves closeness confusion of N1 and N2.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

26

The result is a self-organized Kohonen grid with the characteristic that closely located
nodes on that grid are similar (along the lines of the Kohonen map of Figure 7). Then, we
select as our R-nodes nodes from the organized Kohonen map that are far away from each
other. It is hoped that by doing so, the selected nodes to be used as our R-nodes for algorithm
PBA* are not similar to each other and, therefore, do not incur the R-node closeness anomaly
discussed earlier (and illustrated in Figure 9).

Algorithm B, next, describes the above process.

Algorithm B.
 Step B.1: Generate a set  1,..., NR r r of candidate R-nodes, and initialize a

Kohonen Map with the nodes of set R.
 Step B.2: Execute Kohonen’s algorithm and self-organize the map of Step B.1.
 Step B.3: Select a desired number of nodes from the organized map of step B.2, such

that the selected nodes are located far away from each other on the map.
 Step B.4: Generate, randomly, a desired number of nodes to be used as X-nodes.
 Step B.5: Execute algorithm PBA* between S and G, using as R-nodes the nodes

selected in step B.3 and as X-nodes the nodes generated in step B.4.

In step B.1 of algorithm B, we randomly generate a fairly large number of nodes. Those are
candidate R-nodes and the intention is that after the processing done in steps B.2 and B.3, a
small number of nodes among those nodes are selected for being used as R-nodes in
algorithm PBA*. Prior to beginning step B.2, the random nodes generated in step B.1 are
placed on a Kohonen Map. In step B.2, the Kohonen map initialized in step B.1, is self-
organized. This is done by executing Kohonen’s algorithm for SOMs. In step B.3, we select a
few nodes from the organized map and use them as R-nodes for PBA*.

3. Performance evaluation

We implement A*, the traditional heuristic search algorithm, and three versions of
PBA*: PBA*-R, PBA*-VD, and PBA*-KH. PBA*-R is PBA* with randomly generated
X-nodes and R-nodes; PBA*-VD is PBA* with Voronoi-Dijkstra designated X-nodes,
per Algorithm A of Section 2, and randomly generated R-nodes; PBA*-KH is PBA*
with Kohonen designated R-nodes, per Algorithm B of Section 2, and randomly
generated X-nodes. We use the sliding tiles puzzle problem for our tests and run A*,
PBA*-R, PBA*-VD, and PBA*-KH for a variety of puzzles. In comparing PBA*-R
versus PBA*-VD, we use 17 puzzles (3 of the puzzles are 6x6, i.e., 35-puzzles, 4 are
5x5, and 10 are 4x4 puzzles). In comparing PBA*-R versus PBA*-KH, we use 13 4x4
puzzles (we tested the algorithms for several larger puzzles and for additional 4x4
puzzles, but algorithm PBA*-R did not complete its execution for those, and the results
are not reported in this paper). We use the Manhattan distance as our heuristic function.
Algorithms PBA*-R and PBA*-VD complete their execution and find solutions for all
17 puzzles. Due to memory space limitations, algorithm A* is not able to find a solution
for any of the 6x6 puzzles, and for 2 of the 5x5 puzzles. Although algorithms PBA*-R,
PBA*-VD, and PBA*-KH are not admissible, they find near-optimal solutions. For
either version of PBA*, an intersection detection algorithm, IDA-3, is used to control
search process communication. IDA-3 is originally described in [10] and it has been
used in several of our previous works (e.g., [7, 8, 14, 15, 16]). The main characteristic
of IDA-3 is that it instructs two opposite-direction search processes to exchange nodes
(and, henceforth, compare those nodes) if such nodes are deemed to be “similar

International Journal of Advanced Science and Technology

Volume 5, April, 2009

27

enough” so that they are possibly identical. Since algorithm IDA-3 is central in our
evaluation due to its communication cost, we describe IDA-3 here.

Intersection Detection Algorithm IDA-3.
Every search space is represented as a N-dimensional polyhedron with 2N corners. Each
corner has coordinates

 1 2, ,...,i i NiR R R

where jiR is either the minimum or the maximum distance of the X-node corresponding to
that search space, from the reference node jR , j = 1, ..., N. Two search spaces aS and bS
may contain a common node when there is an overlap of their corresponding polyhedra. A
common node between two search spaces is not possible to exist, until such an overlap
occurs.

Two search spaces aS and bS might contain an intersection when there is an overlap for
each of their reference node ranges. Pictorially this is represented by an intersection of the
approximated spaces in the N-space. In Figure 11 this occurs for 3S and 4S (for 2 reference
nodes).

Figure 11. N-space intersection in PBA* (N = 2).

In algorithm PBA* a central control process (CCP) is used to coordinate the local search
processes running concurrently. The CCP compares the search spaces with respect to their
estimated distances to the reference nodes and instructs two search processes to start
exchanging nodes when their search spaces seem to be intersecting. As it is quite expensive to
store all the reference nodes' distances for all nodes generated by each search space, the CCP
uses an overlap table to store selected distances for each reference node. Specifically, the
overlap table holds only the minimum and maximum distances to each reference node from
each search space. Each search space keeps track of its minimum and maximum values for
each reference node, and informs the CCP as these values change. The CCP receives the new
values, updates the overlap table, and checks if an overlap between a pair of opposite
direction search spaces has occurred. An overlap with respect to a reference node k occurs
when

   min, max min, maxi k i k j k j kS R S R S R S R 
for all reference nodes kR , where

  min min ,
jj k S kS R dist n R

and

International Journal of Advanced Science and Technology

Volume 5, April, 2009

28

   max max ,
jj k S kS R dist n R

for any node
jSn in jS .

It happens that an intersection between two search spaces is not possible until such an overlap
occurs. Figure 12 is an example of an overlap table maintained by the central control process
when four search processes and four reference nodes are present. The table shows that search
processes S1 (forward) and S2 (reverse) overlap with respect to all four reference nodes. In
this case, the CCP will instruct search processes S1 and S2 to start node exchange. In
particular, the reverse search process S2 is instructed to send nodes to the forward search
process S1, and the forward search process S1 is given an alert that nodes from S2 are to
arrive.

Search
process

R1 R2 R3 R4

 Min Max Min Max Min Max Min Max
S1

(forward)
10 17 63 68 4 25 9 26

S2
(reverse)

14 27 43 65 13 31 18 40

S3
(forward)

4 7 11 19 4 12 4 19

S4
(reverse)

28 32 22 31 37 51 28 43

Figure 12. A sample overlap table.

Figure 13. aS and bS overlap, but a bS S  .

If the central control process uses an overlap table to decide when to turn on communication
between two searches, it can be assured that some existing intersection will not be
overlooked. Unfortunately, the existence of these overlaps does not insure that the two search
spaces contain a common node. The condition is not sufficient for several reasons, one of
which is that the heuristics only estimate distances to the reference nodes. However, even if
the heuristic makes no errors in estimating distances, there are still other reasons why this
condition is not sufficient. As shown in Figure 13, it may be that the approximated space of

International Journal of Advanced Science and Technology

Volume 5, April, 2009

29

Sa intersects with the approximated space of Sb without having any single node in (Sb) Sa
overlap all the reference node ranges in (Sa) Sb. The result of this is that no nodes lie in the
intersection of the approximated spaces [11]. Three different intersection detection
algorithms, which increasingly progressive degree of refinement, are outlined next.

(1) IDA-1 maintains a [min, max] overlap table and when the approximated spaces of Sf
and Sr intersect, Sr will begin sending its nodes to Sf.

(2) IDA-2 is based on addressing one of the reasons which keeps the overlap condition,
the basis of IDA-1, from being sufficient to insure that two spaces intersect. IDA-2
waits until the reference node values of a single node in Sr lie in the approximated
space of Sf. When this condition occurs, Sr will then begin sending its nodes to Sf.

(3) IDA-3 checks for the same condition as IDA-2 except that it does so on a node by
node basis. Both IDA-1 and IDA-2 end up turning on communication permanently. It
may be that two search spaces only come close to intersecting for a short period of
time resulting to a lot of unnecessary node sending if communication is permanently
turned on. Instead, IDA-3 checks as each node is generated and only sends nodes
which lie in the approximated space of Sf.

As mentioned earlier, we adopt IDA-3 for our evaluation. Our experiments reveal the
following.

Result 1: For the vast majority of tests (more than 80% of test cases), the X-nodes

used in algorithm PBA*-VD are more likely to aid in establishing a path connecting S
and G than the X-nodes used by algorithm PBA*-R. This is illustrated by Table 1.

Table 1. IDA-3 probes for possible search space intersection.

 PBA*-R PBA*-VD Winner
 16,642 25,937 PBA*-VD
 15,573 38,015 PBA*-VD
 27,980 27,462 PBA*-R
 35,753 43,784 PBA*-VD
 1,106 3,380 PBA*-VD
 28,756 29,584 PBA*-VD
 56,574 72,625 PBA*-VD
 15,605 19,599 PBA*-VD
 239,480 231,296 PBA*-R
 61,741 73,515 PBA*-VD
 28,598 31,534 PBA*-VD
 227,819 235,092 PBA*-VD
 150,297 153,509 PBA*-VD
 48,063 58,671 PBA*-VD
 165,146 205,781 PBA*-VD
 69,090 85,686 PBA*-VD
 143,781 132,448 PBA*-R
Total 1,332,004 1,467,918
Average 78,353 86,348
wins of PBA*-VD over PBA *-R 82.35%

International Journal of Advanced Science and Technology

Volume 5, April, 2009

30

Note, for all but three cases in Table 1, algorithm PBA*-VD probes more times for
search space intersection.

Result 2: The overhead for incorporating the Voronoi-Dijkstra method in finding

useful X-nodes is negligible. This is illustrated by Table 2.

Table 2. Total overhead (over all test puzzles).

method Total (sec)
PBA*-R 6,435

PBA*-VD 6,103
GRN overhead 16.437
D/D overhead 8.819

Total Overhead (GRN + D/D) 25

As shown in Table 2, there are two types of overhead in incorporating Algorithm A of
section 2 into algorithm PBA*: the GRN overhead, and the D/D overhead. The GRN
overhead is the cost of executing essentially steps A.1 and A.2 of Algorithm A
(generate candidate X-nodes and project them onto a 2-dim space). The D/D overhead
is the cost of executing steps A.3 and A.4 of Algorithm A (form the D-graph and
calculate shortest path with Dijkstra’s algorithm). As we see in Table 2, the total
overhead (GRN + D/D) is 25 seconds, which is 0.41% (25/6103) of the time required to
execute algorithm PBA*-VD. We also note that the total time to execute PBA*-VD (i.e.
the time for the actual PBA*-VD plus the total overhead time) does not exceed the time
to execute PBA*-R. Therefore, assuming that the incorporation of the Voronoi-Dijkstra
technique into algorithm PBA* does not, in any way, harm the overall quality of the
heuristic search process, the overhead for employing the Voronoi-Dijkstra method for
finding useful X-nodes is not only negligible, but it also positively contributes (as
evidenced by the results shown in Table 1), to the overall quality of PBA*.

Result 3: The Voronoi-Dijkstra “anomaly”. Our experiments uncover an unfortunate

scenario, illustrated in Figure 14.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

31

Figure 14. The Voronoi-Dijkstra “anomaly”.

Figure 14 shows the D-graph formed by a specific arrangement of randomly generated
candidate X-nodes. The path S, X1, X2, X3, G is the shortest path connecting S and G
and, therefore, X1, X2, and X3 are chosen as the X-nodes for the execution of
algorithm PBA*-VD. Note, however, although these nodes are the ones that form a
shortest path between S and G, nodes C1, …, C5 seem to be a better alternative for X-
nodes to use for PBA*-VD! This leads us to speculate that the shortest path (as
calculated by the Dijkstra algorithm) may not be the best choice for X-nodes and,
instead, the straightest path between S and G might be a better alternative!
Investigation of the ramifications of this “anomaly” is in our immediate research plans.

Result 4: For the vast majority of tests (nearly 77% of test cases), when comparing PBA*-
R vs PBA*-KH, the R-nodes generated by the Kohonen method for algorithm PBA*-KH are
more suitable to be used in PBA* than randomly generated R-nodes. This is illustrated by
Table 3.

Table 3. PBA*-R vs PBA*-KH; IDA-3 probes.

 PBA*-R PBA*-KH Winner
 120,715 129,608 PBA-R
 398,695 390,862 PBA-KH
 133,128 58,617 PBA-KH
 101,938 87,605 PBA-KH
 128,790 116,907 PBA-KH
 399,206 262,215 PBA-KH
 140,389 97,290 PBA-KH

International Journal of Advanced Science and Technology

Volume 5, April, 2009

32

 103,313 107,407 PBA-R
 249,473 218,417 PBA-KH
 90,892 96,533 PBA-R
 115,640 106,108 PBA-KH
 85,774 80,993 PBA-KH
 256,751 96,741 PBA-KH
Total 2,324,704 1,849,303
Average 178,823 142,254
wins of PBA*-KH over PBA *-R 76.92%

Note, for all but three cases in Table 3, the number of probes incurred by algorithm PBA*-
KH is less that the corresponding number for algorithm PBA*-R. This means that the
Kohonen generated R-nodes serve as a better guide to predict opposing search space
intersections and thus, communication of opposing search processes is triggered less often in
PBA*-KH than in PBA*-R.

4. Conclusion

We present a method to generate appropriately located island nodes (X-nodes) and a
method to find appropriately located reference nodes (R-nodes), within a search space. The
motive for doing so for the X-nodes is that is that such generated nodes will help establish a
solution path faster, if used by a multi-process bidirectional heuristic search algorithm, such
as PBA*. The motive for doing so for the R-nodes is that appropriately located R-nodes
provide a more accurate estimate of opposing search space intersections and thus help reduce
interprocess communication cost in PBA*. To the best of our knowledge both of these
problems have resisted any type of general purpose solution for more than two decades. We
implement our methods and test them using PBA*, a bidirectional multi-process heuristic
search algorithm designed to utilize X-nodes and R-nodes. Our findings indicate that PBA*-
VD (the version of PBA* that uses the island nodes generated by our method) outperforms
PBA*-R (the version of PBA* that uses randomly generated island nodes), more than 80% of
the time. Also, the overhead of incorporating our method into PBA* is negligible (less than
0.5% of the cost of executing the PBA* algorithm itself). Interestingly, we also uncover an
“anomaly” (Result 3, in Section 3), whose remedying points to a method of generating even
more appropriately located island nodes. For the proposed method of locating appropriate R-
nodes, our findings indicate that algorithm PBA*-KH (the version of PBA* that uses R-nodes
generated by our method) outperforms PBA*-R more than 75% of the time. Also, like in the
case of PBA*-VD, the cost of incorporating our method into PBA* is negligible.

Our future research plans include investigating the ramifications of the found “anomaly”
for the case of PBA*-VD and also extending our method to N-dimensional spaces, when N >
2. For the case of PBA*-KH, there are several issues susceptible to improvement – especially
during the execution of the Kohonen self-organizing algorithm. Note, the main ingredients of
that algorithm are the learning rate (i.e., how much the winning node within the Kohonen
grid should learn from the input vector) and the neighborhood function (which determines
which neighbors of the winner node should learn from the input, and, in conjunction with the
learning rate, it also determines how much those neighbors should learn form the input). In
our implementation we use the number of moves made to the empty tile of a NxN puzzle and
translate the learning rate and neighborhood values into that number of moves (note, unlike

International Journal of Advanced Science and Technology

Volume 5, April, 2009

33

many problems where Kohonen NN are used, the nature of our problem – and of many
problems where heuristic search algorithms are applicable, is such that arithmetic operations
between two Kohonen map neurons are meaningless). A side-effect of this policy is that
fractional values are meaningless and, as such, are discarded from our calculations, by
rounding the corresponding values where applicable. If we can somehow incorporate those
lost fractional values into the number of moves, we believe that our results will be more
accurate and PBA*-KH will produce better performance. Also, as an overall issue, we would
like to amalgamate PBA*-VD and PBA*-KH into a single algorithm, and investigate the
benefits of that approach. We hope and expect that such an algorithm will result in an overall
performance that improves the currently focusing only to X-nodes, or only to R-nodes
implementations of PBA*-VD and PBA*-KH, respectively. We are currently working toward
investigating this approach.

References

[1] G. Antoniol, M. Di Penta, and M. Harman, “Search-Based Techniques Applied to Optimization of Project

Planning for a Massive Maintenance Project”, Proceedings of IEEE International Conference on Software
Maintenance, 2005, pp. 240-249.

[2] F. Yu, H.S. Ip, and C.H. Leung, “A Heuristic Search for Relevant Images on the Web”, Lecture Notes in
Computer Science, Springer, Vol. 3568, 2005, pp. 599-608

[3] R. Bekkerman, S Zilberstein, and J. Allan, “Web Page Clustering using Heuristic Search in the Web Graph”,
Proceedings of IJCAI-07, the 20th International Joint Conference on Artificial Intelligence, 2007.

[4] P.E. Hart, N.J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost
Paths” , IEEE Transactions on Systems, Science, and Cybernetics, vol. 4, no. 2, 1968, pp. 100–107.

[5] I. Pohl, “Bi-Directional Search”, Machine Intelligence, 1971, pp. 127-140.
[6] D. DeChampeaux, “Bidirectional Heuristic Search Again”, Journal of the ACM, Vol. 30, No. 1, 1983, pp.

22-32.
[7] P.C. Nelson, and A.A. Toptsis, “Superlinear Speedup Using Bidirectionalism and Islands”, Proc.

International Joint Conference on Artificial Intelligence (IJCAI) – Workshop on Parallel Processing in AI,
Sydney, Australia, 1991, pp. 129-134.

[8] P.C. Nelson, and A.A. Toptsis, “Unidirectional and Bidirectional Search Algorithms”, IEEE Software, Vol.
9, No. 2, March 1992, pp. 77-83.

[9] P.P. Chakrabarti, S., Ghose, and S.C. Desarkar, Heuristic Search Through Islands, Artificial Intelligence,
vol. 29, 1986, pp. 339-348.

[10] P.C. Nelson, and L. Henschen, “Multi-Dimensional Heuristic Searching”, IJCAI '89 - International Joint
Conf. on Artificial Intelligence, 1989, pp. 316-321.

[11] P.C. Nelson, “Parallel Bidirectional Search Using Multi - Dimensional Heuristics”, Ph.D. Dissertation,
Northwestern University, Evanston, Illinois, June 1998.

[12] P.C. Nelson, Parallel Heuristic Search Using Islands, Proc. 4th Conf. on Hypercubes, Concurrent Computers
and Applications, Monterey, March 1989..

[13] P.C. Nelson, and L. Henschen, “Parallel Bidirectional Heuristic Searching”, Proc. Canadian Information
Processing Society 5, Montreal, Canada, 1987, pp. 117-124.

[14] A.A. Toptsis, and P.C. Nelson, “Parallel Bidirectional Heuristic State-Space Search”, Heuristics Journal,
Vol. 6, No. 4, Winter 1993, pp. 40-49.

[15] A.A. Toptsis, “Parallel Bidirectional Heuristic Search with Dynamic Process Re-Direction”, Proc. 8-th
International Parallel Processing Symposium, IPPS'94, IEEE Computer Society Press, April 1994, pp. 242-
247.

[16] P.C. Nelson, and A.A. Toptsis, “Search Space Clustering in Parallel Bidirectional Heuristic Search”, Proc.
4th UNB Artificial Intelligence Symposium, New Brunswick, Canada, September 1991, pp. 563-573.

[17] Applet for Voronoi diagrams, http://hirak99.googlepages.com/voronoi, (last accessed March 31, 2009).
[18] T. Kohonen, Self-Organizing Maps, Third extended edition. Springer, 2001.
[19] T. Kohonen, “Self-organized formation of topologically correct feature maps”, Biological Cybernetics, Vol.

43, 1982, pp. 59-69.
[20] T. Kohonen and T. Honkela, “Kohonen Network”, Scholarpedia, 2(1):1568, 2007.
[21] Georgy Voronoi, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques”,

Journal für die Reine und Angewandte Mathematik, 133, 1907, pp. 97-178.
[22] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessellations - Concepts and Applications of

Voronoi Diagrams, 2nd edition,. John Wiley, 2000.

International Journal of Advanced Science and Technology

Volume 5, April, 2009

34

[23] Franz Aurenhammer, “Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure”, ACM
Computing Surveys, Vol. 23, No. 3, 1991, pp.345-405.

[24] M de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, third edition,
Springer-Verlag, 2008.

