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Abstract 

Multi-process bidirectional heuristic search algorithms (such as PBA*) that utilize island 
nodes have been shown to have the potential for exponential speedup over their plain 
counterparts that do not utilize island nodes. PBA* (Parallel Bidirectional A*) is a primary 
algorithm in this area and, to the best of our knowledge, unique in its usage of island nodes 
for reducing the size of the traversed search space and in its usage of multidimensional 
heuristics for reducing interprocess communication cost. Both, island nodes use and 
reference nodes use within the context of multidimensional heuristics have been reported to 
provide excellent performance, compared to plain heuristic search counterparts. However, 
both of these two features have also resisted refinements for over two decades. Specifically, 
the two main issues are: how to identify well-placed (in the state space) island nodes, and 
how to generate well-placed reference nodes. The work presented in this paper is an initial 
step toward this end. We present two methods, one employing Voronoi diagrams for the 
purpose of identifying well-placed island nodes, and one employing Kohonen Networks for 
the purpose of identifying well-placed reference nodes. We implement and compare our 
methods against a plain version of PBA*. Our finding indicate that the cost of incorporating 
the proposed improvements into PBA* is negligible; and when PBA* is equipped with the 
island identification method, or with the reference node identification method, it outperforms 
its random island nodes counterpart and its random reference nodes counterpart, 
respectively, for the vast majority of test cases.  
 
1. Introduction and Background 

Heuristic search is one of the foundational areas of artificial intelligence (AI). Recently, it 
has many applications in several diverse and practical areas such as Software Engineering and 
the Web (e.g., [1, 2, and 3]). Heuristic search is essentially a graph traversal with the 
characteristic that the number of nodes in the graph is huge and thus the graph nodes are 
generated on the fly (as opposed to being already known), as we traverse the graph. This sort 
of traversal is called heuristic search, because we always search for some “goal” node G, in 
the graph, and we always use heuristics (guesses and estimates that indicate the best way to 
proceed in the course of the graph traversal). Heuristic search algorithms can be classified 
into two types, unidirectional and bidirectional. In the unidirectional category (e.g., [4]) there 
is only one-direction type of process, emanating from the source node S and seeking the goal 
node G. The bidirectional category (e.g., [5, 6, 7, and 8]) incorporates two types of processes 
– one forward type search process, from S to G, and one reverse type search process, from G 
to S. Each of the processes can be executed using a typical unidirectional algorithm such as 
A* [4]. In some bidirectional search algorithms, special kind of nodes, called X-nodes (or 
islands), are used to aid the search. The concept of introducing X-nodes to speed up the 
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search was introduced in [9] and there have since been developed several algorithms that 
utilize X-nodes. Notable examples are PBA*, WS_PBA*, and SSC_PBA*, described in [7, 
8].  

Bidirectional multiprocessor heuristic search has been introduced by Nelson [13], first for 
2 processors as a parallelization of Pohl's algorithm [5], and it was later generalized for N 
processors, N > 2 [11, 12]. The N-processor algorithm, PBA*, uses intermediate nodes of the 
search space, called islands or X-nodes. The terms islands and X-nodes are equivalent for the 
purposes of this paper. Historically, the term island nodes first appeared in [9] to denote 
intermediate nodes in the search space, with the property that an optimal path passes through 
at least one of them. The term X-nodes was introduced in [11] to denote intermediate nodes in 
the search space but not requiring that an optimal path passes through at least one of them. 
Also, since the algorithm described in [11] requires two search processes (one forward and 
one reverse) to emanate from each node, the term X-node was coined as a reminder of the 
bidirectionalism in the search (see figure 1) in order to divide the search space into smaller 
subspaces.  

 
Figure 1. X-node. 

 

In this paper, the terms islands and X-nodes are used interchangeably, and mean 
intermediate nodes of the search space, some of which may participate in a path (not 
necessarily optimal) connecting the source and goal nodes. Note, some of these intermediate 
nodes may not participate in a solution (actually this is especially true in [9] where only one 
of the island nodes participates in the solution). As illustrated in Figure 2, in addition to the 
parallel searches conducted  
 

 
Figure 2. Parallel bidirectional search with islands. 

 
from the source node S and the goal node G, two parallel searches are conducted from each 
X-node; a forward search towards the goal node G, and a reverse search towards the source 
node S. A solution is found as soon as a set of search spaces intersect in such a way that a 
path can be traced from S to G. The complexity of PBA* was analyzed in [11, 12]. In the case 
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that the X-nodes are placed equidistantly on an optimal path from source to goal, the 
complexity of PBA* is 

 2 1

n

XO b  
 
 
 
 

 

where b is the branching factor of the problem (branching factor is the number of nodes 
generated at any node expansion), n is the length of an optimal path from source to goal, and 
|X| is the number of X-nodes (or islands). This situation is illustrated in Figure 3 for |X| = 2.  
 

 
Figure 3. Algorithm PBA* in the best case. 

 
As it is shown in Proposition 1 and Proposition 2 below, the speedup of PBA* over its 
uniprocessor version is potentially linear on the number of processors, and the speedup of 
PBA* over the conventional uniprocessor A* algorithm is potentially exponential on the 
number of processors. By “uniprocessor version of PBA*” it is meant that algorithm PBA* is 
simulated on a uniprocessor machine. This can be done, for example, by using a simulating 
program of a parallel machine running on a uniprocessor (such programs may be provided by 
the manufacturer of the parallel computer and are usually used for software development 
prior to porting to the actual parallel machine), or by simply spawning processes in a 
multitasking operating system like UNIX, or by utilizing the multithreading facility of 
modern programming languages and operating systems.  

Proposition 1. 
If all X-nodes are placed equidistantly on the straight line segment connecting the source and 
goal nodes, and the work is divided evenly among all the available processors, then the 
speedup of PBA* over UNI_PBA* is linear on the number of processors, assuming that each 
processor executes one search process of the PBA* algorithm. 

Proof 

Cost of PBA* =  2 1

n
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 
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Since  2 1P X   , where |P| is the number of processes running on either the 

uniprocessor or the multiprocessor machine, the above expression for the speedup becomes 

 _ *
| |

*

Cost of UNI PBA
Speedup O P

Cost of PBA
  . 

The result follows since one process of the PBA* runs on each processor. 

Proposition 2. 
If all X-nodes are placed equidistantly on the straight line segment connecting the source and 
goal nodes, then the speedup of algorithm PBA* over algorithm A* is exponential on the 
number of processors, assuming that each processor executes one search process of the PBA* 
algorithm. 
 
Proof 

Cost of PBA* =  2 1

n

X
O b
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   (1) 

Since  2 1P X   , where |P| is the number of processes running on the multiprocessor 

machine (or simulated on the uniprocessor), expression (1) can be written as 
 | | 1

| |*

*

n P

PCost of A
Speedup O b

Cost of PBA

  
  
 
 

  (2) 

Note, we can always write n k P  , for some positive number k (k is not necessarily an 

integer, but it is positive). Thus, expression (2) becomes 

  | | 1*

*
k PCost of A

Speedup O b
Cost of PBA

      (3) 

Expression (3) clearly shows that the obtained speedup of PBA* over A* is exponential on 
the number of processes, |P|. Note, this is the case even if k is less than 1 (but always bigger 
than 0). Since one process of PBA* runs on each processor, the obtained speedup is certainly 
exponential on the number of processors as well. 
 
 

In the general case where X-nodes are not placed equidistantly on an optimal path from 
source to goal, the complexity of PBA* is  
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where iX  and jX  range over all X-nodes, and E is either the source or the goal node. This 
situation is illustrated in Figure 4 for two X-nodes. There are two main issues regarding the 
efficiency of PBA*. The first is search space management, that is, how to efficiently detect 
intersections among the many search spaces. The second is the X-node generation, that is, 
how to find X-nodes on a path from source to goal.  
 

 
Figure 4. Algorithm PBA* in a general case. 

 
    In the case of search space management, the difficulty arises from the fact that when N 
searches are concurrently in progress, it is very time consuming to have each process test if 
one of its generated nodes is identical to some node generated by any other process (note, in 
the 2-processor case, checking for common nodes is fairly inexpensive, since there are only 
two searches in progress). As an attempt to ease this task, multi-dimensional heuristics 
(MDH) were developed by [11, 12]. As shown in Figure 5, additional nodes, called reference 
nodes, are designated into the search space, in order to "guide" the search. In Figure 5, k1 = 
k2 < k3 and d1 = d2 =d3. This leads to the prediction that the search spaces 1S  and 2S  are 
most likely to intersect, while search space 3S  does not. It has been shown in [11, 12] that if 
two search spaces 1S  and 2S  intersect, then there exist nodes 1 1n S  and 2 2n S such that  

   1 2, ,k kdist n R dist n R  
for all reference nodes kR . Actually, nodes 1n  and 2n  represent the same state in the global 

state space. This state is common to 1S  and 2S . Note, the reverse statement may not be true, 
since, for example, two diametrically opposite nodes also satisfy this condition although they 
do not lie in the same search space.  
    Based on the reference nodes use in MDH, several intersection detection algorithms have 
been devised [11, 10, and 12]. The algorithms’ task is to prevent node exchange between any 
two processes, unless there is a high probability that the search spaces of these processes 
intersect. Simulation results have shown that in the worst case, unnecessary node exchange is 
cut down in half, whereas in the best case it is cut down almost completely (only 1% of the 
nodes are exchanged between two non-intersecting subspaces). Later in this paper we outline 
some of the intersection detection algorithms since we use them in the implementation of our 
proposed method here. 
 
2. Proposed Methods 

In this section we present two algorithms that address the issues outlined in the previous 
section. The first issue is how to select X-nodes (island nodes) which are located 
appropriately in the state space. Algorithm A, later in this section, describes the proposed  
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method. The second issue is how to select R-nodes (reference nodes) which are located 
appropriately in the state space. Algorithm B, later in this section, describes the proposed 
method.  
 

 
 

Figure 5. Reference nodes in PBA*. 
 

Note, although the above two issues are both within the same algorithm, PBA*, they 
represent different problems. For the first issue (X-node placement), the purpose is to 
generate X-nodes that are located (hopefully) on, or close to, a path connecting nodes S and 
G. The motivation behind this problem is that during the execution of PBA* a path can be 
formed easier (faster) if appropriate X-nodes have been selected. For the second issue (R-
node placement) the purpose is to generate R-nodes that are located far away from each other 
so that they can provide a better guide for the multidimensional heuristics component of 
PBA*. Each of the two methods (generating appropriate X-nodes and generating appropriate 
R-nodes) can be used independently to improve the overall performance of PBA*, although 
the two methods could be also combined, to incur a cumulative effect in the improvement of 
PBA*. 

We use two different tools to address the above two separate issues. For the X-nodes 
placement issue, we employ Voronoi diagrams. For the R-nodes placement issue we employ 
Kohonen neural networks. 

Voronoi diagrams [23, 22, and 24] are named after the Russian Mathematician Georgy F. 
Voronoi [21]. They are geometric structures that partition a N-dimensional space into cells 
such that the points within each cell are closer to a centroid point of that cell than to any other 
point of any other cell. Figure 6 shows a Voronoi diagram in 2-dimensional space, created by 
using an applet in [17].  
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Figure 6. Sample Voronoi diagram. 

 
The points (dots) in Figure 6 are the centroids of the corresponding Voronoi cells. As can be 
seen from Figure 6, the main characteristic of Voronoi diagrams is that any point within a 
Voronoi cell VC is closer to the centroid of VC than to any point of any other cell. In this 
sense, a Voronoi diagram partitions a space in such a way that all close-to-each-other points 
are clustered into cells such that each cell has a representative point – the centroid of that cell, 
serving as the proximity center of the region of space covered by that cell. This characteristic 
of Voronoi cells – especially the existence of the centroids is what inspired us to adopt the use 
of Voronoi diagrams to address the issue of determining appropriately located X-nodes in a 
state space. Specifically, the idea is to partition the state space into Voronoi cells and then to 
designate as X-nodes some of the centroids of the generated cells. The benefits of such an 
approach could be two-fold. First, by carefully selecting which Voronoi cells will participate 
in the solution, we avoid selecting irrelevant centroids (this would lead to X-nodes that are 
obviously out of any path connecting S and G). Second, and most important, by designating 
as X-nodes the centroids of neighboring cells that form a path connecting S and G, it is hoped 
that the centroids of those cells will lead to forming a path connecting S and G. Note, the dual 
graph of any Voronoi diagram is the Delaunay graph [24]. Therefore, if neighboring Voronoi 
cells form a path connecting S and G, then the corresponding vertices of the Delaunay graph 
of that Voronoi diagram form a path connecting S and G! Algorithm A below, describes the 
above process in detail.  
 
Algorithm A. 

 Step A.1: generate a set  1,..., MX x x  of candidate X-nodes.  
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 Step A.2: convert set X into set  1,..., MP    such that i  is the projection of ix  

onto a 2-dim space.  
 Step A.3: Form D-graph, the Delaunay graph for set P.  
 Step A.4: Calculate the shortest path SP = [S-X1-X2- …-Xk-G] connecting S and G 

in the D-graph of step A.3.  
 Step A.5: Select as X-nodes the nodes corresponding to points X1, X2, …, Xk and 

execute algorithm PBA* between S and G.  
 

In step A.1, we randomly generate a fairly large number of nodes. These are candidate X-
nodes and the intention is that after the processing done in steps A.2, A.3, and A.4, a small 
number of those nodes is selected for being used in algorithm PBA*.  In step A.2, we map the 
nodes ix  generated in step A.1 onto points i  of an N-dim space. In our case, we use N=2. 
(This is because a 2-dim space is more convenient to use for step A.3. In the future we plan to 
extend our work for N > 2). To project a node ix  onto a point i  in 2-dim space we use two 
randomly generated nodes 1r  and 2r  (other than the ones of set X of step A.1). Then i  is 
calculated as  

    1 2, , ,i i imd x r md x r   

where  ,i jmd x r  is the Manhattan distance between ix  and jr  (j=1, 2). In step A.3, we form 
the D-graph of the set P calculated in step A.2. This graph is the Delaunay triangulation 
DT(P) for the set of points P. The main property of DT(P) is that no point in P is inside the 
circumcircle of any triangle of DT(P). Also, the DT(P) corresponds to the dual graph of the 
Voronoi diagram for P. This latter property is our main motive in calculating the DT(P). 
Without loss of generality, we assume that the vertices of DT(P) correspond to the 
centers/generators of the Voronoi cells in the Voronoi diagram that corresponds to DT(P). 
The property of interest from any Voronoi diagram is that all the points within a Voronoi cell 
are closer to the center of that cell than to the center of any other cell, including the 
neighboring cells. Therefore, by considering the Voronoi diagram of the DT(P) graph, we 
somewhat avoid choosing as X-nodes nodes that are too close to each other. (Note, such X-
nodes would correspond to search spaces that possibly duplicate each other and thus waste 
resources by exploring the same part of the global search space). Consequently, we designate 
as our X-nodes the generator nodes of the Voronoi cells that form a shortest path between S 
and G. In step A.4, we apply Dijkstra’s shortest path algorithm on graph DT(P) and calculate 
SP = [S-X1-X2- …-Xk-G], the shortest path connecting S and G. Note, S and G of path SP of 
step A.4 are not the actual source and goal nodes but they are the 2-dim points (as calculated 
in step A.2) corresponding to the actual source and goal nodes. Also, X1, …, Xk of step A.4 
are 2-dim points corresponding to certain candidate X-nodes generated during step A.1. For 
simplicity in notation we use the same symbols to refer to the corresponding actual nodes S 
and G and the corresponding X-nodes of the 2-dim points X1, …, Xk. In step A.5, we 
designate as our X-nodes the nodes that correspond to the points X1, …, Xk, and using those 
nodes we execute algorithm PBA* between S and G. 

Kohonen Nets [19, 18] (also known as Kohonen Neural Networks, or Kohonen Maps, or 
Self-Organizing Maps (SOM)) are named after Finnish Professor Teuvo Kohonen. A 
Kohonen Net (KHNN) is typically a 2-dimensional grid of nodes with the ability to organize 
these nodes in such a way that similar nodes end-up close to each other in the grid. Figure 7 
illustrates such a grid of nodes.  
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Figure 7. A Kohonen map [20]. 
 
    As we observe in Figure 7, similar symbols tend to cluster together (e.g., the symbols at the 
upper-left region of Figure 7 are very similar). This characteristic of Kohonen nets is what 
inspired us to adopt the use of Kohonen nets for addressing the issue of determining 
appropriate R-nodes in a state space. Note, it is desirable that the R-nodes are well-distributed 
in the state space, prior to the start of algorithm PBA*. The idea is that for a large number of 
randomly generated nodes, a Kohonen net will cluster those nodes in such a way that similar 
nodes are placed close to each other in the SOM. Then, we choose as our R-nodes from the 
final SOM configuration no more than one node from each such cluster. The idea is that, 
hopefully, such a selection will lead to selected R-nodes which are “far away” from each 
other in the state space. The benefit of this is the increase of the ability of algorithm PBA* to 
understand when two nodes that belong to opposing search processes are really close to each 
other, or, may be, even identical. This undersraning is important because, during the 
execution of PBA*, if two opposing search processes S1 and S2 generate nodes N1 and N2 
such that N1 is similar to N2, then S1 and S2 have high probability to intersect, i.e., contain a 
common node and, thus, form a path connecting the X-node X1 (origin of S1) and X-node X2 
(origin of S2), and, obviously, if such partial paths are found throughout the opposing search 
spaces that execute (concurrently) between nodes S and G, then a (whole) path is formed 
between S and G – and this path would signal the completion of PBA*. If the R-nodes that 
are used in PBA* are well-spread out in the state space, then the estimates of when two nodes 
N1 and N2 are close to each other tend to be more reliable than if the R-nodes are not well-
spread out in the state space. This scenario is illustrated in Figure 8.  
    In Figure 8, nodes N1 and N2 (of opposing search processes) are indeed close to each other 
and this closeness is predicted faithfully by calculating the corresponding distances to the R-
nodes R1, R2, and R3. Note, for those distances 11 21D D and 12 22D D and 13 23D D . 
That is,    11, 12, 13 21, 22, 23D D D D D D , and this leads to the (correct) prediction that 

1 2N N , i.e., that nodes N1 and N2 are either identical, or very similar. 
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Figure 8. R-nodes far-apart in the state space. 

 
The implication of such a prediction is that the opposing search processes P1 and P2 that 
generated nodes N1 and N2, respectively, will initiate communication for the purpose of 
finding out if indeed their search spaces S1 and S2 contain a common node (such a finding 
would mean that a path connecting the origin node of S1 and the origin node of S2, has been 
established. However, if the R-nodes are located very close to each other, the above test for 
node closeness may lead to a faulty prediction, as illustrated in Figure 9.  
    In Figure 9, nodes N1 and N2 (of opposing search processes) are actually far apart from 
each other. As such, based on the non-closeness of N1 and N2, the system should not instruct 
the corresponding processes P1 and P2 to initiate communication. Nevertheless, because the 
R-nodes R1, R2, and R3 are close to each other, 11 12 13D D D  , and 21 22 23D D D  , 
and 31 32 33D D D  . These similarities alone do not lead to a prediction that nodes N1 and 
N2 are close to each other; however, due to a coincidental placement of N1 and N2 as shown 
in Figure 9, it is also 11 21D D and 12 22D D and 13 23D D , which then definitely leads 
to the faulty prediction that 1 2N N ! Then, like in the case of the correct prediction (of 
Figure 8) but, in this case, under erroneous conditions, the system will initiate communication 
between search spaces S1 and S2 for the purpose of trying to determine if S1 and S2 contain a 
common node. Note, most likely, such communication will yield no common node, and 
would rather waste communication bandwidth. Interestingly, if another R-node, RX, is added 
in the state space, with RX far away from R1, R2, and R3, the above situation will not arise! 
This is illustrated in Figure 10.  
    In Figure 10, the above anomaly is still there for R-nodes R1, R2, and R3, but the fourth R-
node RX breaks the tie since the distances D1X and D2X are very different.  
    Based on the above discussion, we use a Kohonen Net to generate appropriately placed R-
nodes, as follows. First, we generate many nodes, randomly. These are candidate R-nodes. 
We place those nodes on a (unorganized) Kohonen map. Then we execute Kohonen’s self-
organizing algorithm on that map.  
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Figure 9. R-nodes close to each other in the state space. 
 
 

 
 

Figure 10. R-node RX resolves closeness confusion of N1 and N2. 
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The result is a self-organized Kohonen grid with the characteristic that closely located 
nodes on that grid are similar (along the lines of the Kohonen map of Figure 7). Then, we 
select as our R-nodes nodes from the organized Kohonen map that are far away from each 
other. It is hoped that by doing so, the selected nodes to be used as our R-nodes for algorithm 
PBA* are not similar to each other and, therefore, do not incur the R-node closeness anomaly 
discussed earlier (and illustrated in Figure 9).  

Algorithm B, next, describes the above process.  
 

Algorithm B. 
 Step B.1: Generate a set  1,..., NR r r  of candidate R-nodes, and initialize a 

Kohonen Map with the nodes of set R.  
 Step B.2: Execute Kohonen’s algorithm and self-organize the map of Step B.1.  
 Step B.3: Select a desired number of nodes from the organized map of step B.2, such 

that the selected nodes are located far away from each other on the map. 
 Step B.4: Generate, randomly, a desired number of nodes to be used as X-nodes.  
 Step B.5: Execute algorithm PBA* between S and G, using as R-nodes the nodes 

selected in step B.3 and as X-nodes the nodes generated in step B.4.  
 

In step B.1 of algorithm B, we randomly generate a fairly large number of nodes. Those are 
candidate R-nodes and the intention is that after the processing done in steps B.2 and B.3, a 
small number of nodes among those nodes are selected for being used as R-nodes in 
algorithm PBA*. Prior to beginning step B.2, the random nodes generated in step B.1 are 
placed on a Kohonen Map. In step B.2, the Kohonen map initialized in step B.1, is self-
organized. This is done by executing Kohonen’s algorithm for SOMs. In step B.3, we select a 
few nodes from the organized map and use them as R-nodes for PBA*.  
 
3. Performance evaluation 

We implement A*, the traditional heuristic search algorithm, and three versions of 
PBA*: PBA*-R, PBA*-VD, and PBA*-KH. PBA*-R is PBA* with randomly generated 
X-nodes and R-nodes; PBA*-VD is PBA* with Voronoi-Dijkstra designated X-nodes, 
per Algorithm A of Section 2, and randomly generated R-nodes; PBA*-KH is PBA* 
with Kohonen designated R-nodes, per Algorithm B of Section 2, and randomly 
generated X-nodes. We use the sliding tiles puzzle problem for our tests and run A*, 
PBA*-R, PBA*-VD, and PBA*-KH for a variety of puzzles. In comparing PBA*-R 
versus PBA*-VD, we use 17 puzzles (3 of the puzzles are 6x6, i.e., 35-puzzles, 4 are 
5x5, and 10 are 4x4 puzzles). In comparing PBA*-R versus PBA*-KH, we use 13 4x4 
puzzles (we tested the algorithms for several larger puzzles and for additional 4x4 
puzzles, but algorithm PBA*-R did not complete its execution for those, and the results 
are not reported in this paper). We use the Manhattan distance as our heuristic function. 
Algorithms PBA*-R and PBA*-VD complete their execution and find solutions for all 
17 puzzles. Due to memory space limitations, algorithm A* is not able to find a solution 
for any of the 6x6 puzzles, and for 2 of the 5x5 puzzles. Although algorithms PBA*-R, 
PBA*-VD, and PBA*-KH are not admissible, they find near-optimal solutions. For 
either version of PBA*, an intersection detection algorithm, IDA-3, is used to control 
search process communication. IDA-3 is originally described in [10] and it has been 
used in several of our previous works (e.g., [7, 8, 14, 15, 16]). The main characteristic 
of IDA-3 is that it instructs two opposite-direction search processes to exchange nodes 
(and, henceforth, compare those nodes) if such nodes are deemed to be “similar 
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enough” so that they are possibly identical. Since algorithm IDA-3 is central in our 
evaluation due to its communication cost, we describe IDA-3 here. 
 
Intersection Detection Algorithm IDA-3. 
Every search space is represented as a N-dimensional polyhedron with 2N corners. Each 
corner has coordinates  

 1 2, ,...,i i NiR R R  

where jiR  is either the minimum or the maximum distance of the X-node corresponding to 
that search space, from the reference node jR , j = 1, ..., N. Two search spaces aS  and bS  
may contain a common node when there is an overlap of their corresponding polyhedra. A 
common node between two search spaces is not possible to exist, until such an overlap 
occurs. 

Two search spaces aS  and bS  might contain an intersection when there is an overlap for 
each of their reference node ranges. Pictorially this is represented by an intersection of the 
approximated spaces in the N-space. In Figure 11 this occurs for 3S  and 4S  (for 2 reference 
nodes).  

 

Figure 11. N-space intersection in PBA* (N = 2). 

 
In algorithm PBA* a central control process (CCP) is used to coordinate the local search 
processes running concurrently. The CCP compares the search spaces with respect to their 
estimated distances to the reference nodes and instructs two search processes to start 
exchanging nodes when their search spaces seem to be intersecting. As it is quite expensive to 
store all the reference nodes' distances for all nodes generated by each search space, the CCP 
uses an overlap table to store selected distances for each reference node. Specifically, the 
overlap table holds only the minimum and maximum distances to each reference node from 
each search space. Each search space keeps track of its minimum and maximum values for 
each reference node, and informs the CCP as these values change. The CCP receives the new 
values, updates the overlap table, and checks if an overlap between a pair of opposite 
direction search spaces has occurred. An overlap with respect to a reference node k occurs 
when  

   min, max min, maxi k i k j k j kS R S R S R S R   
for all reference nodes kR , where  

  min min ,
jj k S kS R dist n R   

and  
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   max max ,
jj k S kS R dist n R  

for any node 
jSn  in jS . 

 
It happens that an intersection between two search spaces is not possible until such an overlap 
occurs. Figure 12 is an example of an overlap table maintained by the central control process 
when four search processes and four reference nodes are present. The table shows that search 
processes S1 (forward) and S2 (reverse) overlap with respect to all four reference nodes. In 
this case, the CCP will instruct search processes S1 and S2 to start node exchange. In 
particular, the reverse search process S2 is instructed to send nodes to the forward search 
process S1, and the forward search process S1 is given an alert that nodes from S2 are to 
arrive. 
 

Search 
process 

R1 R2 R3 R4 

 Min Max Min Max Min Max Min Max 
S1 

(forward) 
10 17 63 68 4 25 9 26 

S2 
(reverse) 

14 27 43 65 13 31 18 40 

S3 
(forward) 

4 7 11 19 4 12 4 19 

S4 
(reverse) 

28 32 22 31 37 51 28 43 

Figure 12. A sample overlap table. 

 

Figure 13. aS  and bS  overlap, but a bS S  . 
 
If the central control process uses an overlap table to decide when to turn on communication 
between two searches, it can be assured that some existing intersection will not be 
overlooked. Unfortunately, the existence of these overlaps does not insure that the two search 
spaces contain a common node. The condition is not sufficient for several reasons, one of 
which is that the heuristics only estimate distances to the reference nodes. However, even if 
the heuristic makes no errors in estimating distances, there are still other reasons why this 
condition is not sufficient. As shown in Figure 13, it may be that the approximated space of 



International Journal of Advanced Science and Technology 

Volume 5, April, 2009 

 

 

29 

Sa intersects with the approximated space of Sb without having any single node in (Sb) Sa 
overlap all the reference node ranges in (Sa) Sb. The result of this is that no nodes lie in the 
intersection of the approximated spaces [11]. Three different intersection detection 
algorithms, which increasingly progressive degree of refinement, are outlined next. 

(1) IDA-1 maintains a [min, max] overlap table and when the approximated spaces of Sf 
and Sr intersect, Sr will begin sending its nodes to Sf. 

(2) IDA-2 is based on addressing one of the reasons which keeps the overlap condition, 
the basis of IDA-1, from being sufficient to insure that two spaces intersect. IDA-2 
waits until the reference node values of a single node in Sr lie in the approximated 
space of Sf. When this condition occurs, Sr will then begin sending its nodes to Sf.  

(3) IDA-3 checks for the same condition as IDA-2 except that it does so on a node by 
node basis. Both IDA-1 and IDA-2 end up turning on communication permanently. It 
may be that two search spaces only come close to intersecting for a short period of 
time resulting to a lot of unnecessary node sending if communication is permanently 
turned on. Instead, IDA-3 checks as each node is generated and only sends nodes 
which lie in the approximated space of Sf. 

 
As mentioned earlier, we adopt IDA-3 for our evaluation. Our experiments reveal the 
following.  

 
Result 1: For the vast majority of tests (more than 80% of test cases), the X-nodes 

used in algorithm PBA*-VD are more likely to aid in establishing a path connecting S 
and G than the X-nodes used by algorithm PBA*-R. This is illustrated by Table 1.  
 

Table 1. IDA-3 probes for possible search space intersection. 
 

 PBA*-R PBA*-VD Winner 
 16,642  25,937  PBA*-VD 
 15,573  38,015  PBA*-VD 
 27,980  27,462  PBA*-R 
 35,753  43,784  PBA*-VD 
 1,106  3,380  PBA*-VD 
 28,756  29,584  PBA*-VD 
 56,574  72,625  PBA*-VD 
 15,605  19,599  PBA*-VD 
 239,480  231,296  PBA*-R 
 61,741  73,515  PBA*-VD 
 28,598  31,534  PBA*-VD 
 227,819  235,092  PBA*-VD 
 150,297  153,509  PBA*-VD 
 48,063  58,671  PBA*-VD 
 165,146  205,781  PBA*-VD 
 69,090  85,686  PBA*-VD 
 143,781  132,448  PBA*-R 
Total 1,332,004  1,467,918   
Average 78,353  86,348   
wins of PBA*-VD over PBA *-R 82.35% 
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Note, for all but three cases in Table 1, algorithm PBA*-VD probes more times for 
search space intersection.  

 
Result 2: The overhead for incorporating the Voronoi-Dijkstra method in finding 

useful X-nodes is negligible. This is illustrated by Table 2.  
 

Table 2. Total overhead (over all test puzzles). 
 

method Total (sec) 
PBA*-R 6,435 

PBA*-VD 6,103 
GRN overhead 16.437 
D/D overhead 8.819 

Total Overhead (GRN + D/D) 25 
 
As shown in Table 2, there are two types of overhead in incorporating Algorithm A of 
section 2 into algorithm PBA*: the GRN overhead, and the D/D overhead. The GRN 
overhead is the cost of executing essentially steps A.1 and A.2 of Algorithm A 
(generate candidate X-nodes and project them onto a 2-dim space). The D/D overhead 
is the cost of executing steps A.3 and A.4 of Algorithm A (form the D-graph and 
calculate shortest path with Dijkstra’s algorithm). As we see in Table 2, the total 
overhead (GRN + D/D) is 25 seconds, which is 0.41% (25/6103) of the time required to 
execute algorithm PBA*-VD. We also note that the total time to execute PBA*-VD (i.e. 
the time for the actual PBA*-VD plus the total overhead time) does not exceed the time 
to execute PBA*-R. Therefore, assuming that the incorporation of the Voronoi-Dijkstra 
technique into algorithm PBA* does not, in any way, harm the overall quality of the 
heuristic search process, the overhead for employing the Voronoi-Dijkstra method for 
finding useful X-nodes is not only negligible, but it also positively contributes (as 
evidenced by the results shown in Table 1), to the overall quality of PBA*.  

 
Result 3: The Voronoi-Dijkstra “anomaly”.  Our experiments uncover an unfortunate 

scenario, illustrated in Figure 14.  
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Figure 14. The Voronoi-Dijkstra “anomaly”. 
 

Figure 14 shows the D-graph formed by a specific arrangement of randomly generated 
candidate X-nodes. The path S, X1, X2, X3, G is the shortest path connecting S and G 
and, therefore, X1, X2, and X3 are chosen as the X-nodes for the execution of 
algorithm PBA*-VD. Note, however, although these nodes are the ones that form a 
shortest path between S and G, nodes C1, …, C5 seem to be a better alternative for X-
nodes to use for PBA*-VD! This leads us to speculate that the shortest path (as 
calculated by the Dijkstra algorithm) may not be the best choice for X-nodes and, 
instead, the straightest path between S and G might be a better alternative! 
Investigation of the ramifications of this “anomaly” is in our immediate research plans.  
 

Result 4: For the vast majority of tests (nearly 77% of test cases), when comparing PBA*-
R vs PBA*-KH, the R-nodes generated by the Kohonen method for algorithm PBA*-KH are 
more suitable to be used in PBA* than randomly generated R-nodes. This is illustrated by 
Table 3. 

 
Table 3. PBA*-R vs PBA*-KH; IDA-3 probes. 

 

 PBA*-R PBA*-KH Winner 
 120,715 129,608 PBA-R 
 398,695 390,862 PBA-KH 
 133,128 58,617 PBA-KH 
 101,938 87,605 PBA-KH 
 128,790 116,907 PBA-KH 
 399,206 262,215 PBA-KH 
 140,389 97,290 PBA-KH 
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 103,313 107,407 PBA-R 
 249,473 218,417 PBA-KH 
 90,892 96,533 PBA-R 
 115,640 106,108 PBA-KH 
 85,774 80,993 PBA-KH 
 256,751 96,741 PBA-KH 
Total 2,324,704 1,849,303  
Average 178,823 142,254  
wins of PBA*-KH over PBA *-R 76.92% 

 
Note, for all but three cases in Table 3, the number of probes incurred by algorithm PBA*-
KH is less that the corresponding number for algorithm PBA*-R. This means that the 
Kohonen generated R-nodes serve as a better guide to predict opposing search space 
intersections and thus, communication of opposing search processes is triggered less often in 
PBA*-KH than in PBA*-R.  
 
4. Conclusion 

We present a method to generate appropriately located island nodes (X-nodes) and a 
method to find appropriately located reference nodes (R-nodes), within a search space. The 
motive for doing so for the X-nodes is that is that such generated nodes will help establish a 
solution path faster, if used by a multi-process bidirectional heuristic search algorithm, such 
as PBA*. The motive for doing so for the R-nodes is that appropriately located R-nodes 
provide a more accurate estimate of opposing search space intersections and thus help reduce 
interprocess communication cost in PBA*. To the best of our knowledge both of these 
problems have resisted any type of general purpose solution for more than two decades. We 
implement our methods and test them using PBA*, a bidirectional multi-process heuristic 
search algorithm designed to utilize X-nodes and R-nodes. Our findings indicate that PBA*-
VD (the version of PBA* that uses the island nodes generated by our method) outperforms 
PBA*-R (the version of PBA* that uses randomly generated island nodes), more than 80% of 
the time. Also, the overhead of incorporating our method into PBA* is negligible (less than 
0.5% of the cost of executing the PBA* algorithm itself). Interestingly, we also uncover an 
“anomaly” (Result 3, in Section 3), whose remedying points to a method of generating even 
more appropriately located island nodes. For the proposed method of locating appropriate R-
nodes, our findings indicate that algorithm PBA*-KH (the version of PBA* that uses R-nodes 
generated by our method) outperforms PBA*-R more than 75% of the time. Also, like in the 
case of PBA*-VD, the cost of incorporating our method into PBA* is negligible.  

Our future research plans include investigating the ramifications of the found “anomaly” 
for the case of PBA*-VD and also extending our method to N-dimensional spaces, when N > 
2. For the case of PBA*-KH, there are several issues susceptible to improvement – especially 
during the execution of the Kohonen self-organizing algorithm. Note, the main ingredients of 
that algorithm are the learning rate (i.e., how much the winning node within the Kohonen 
grid should learn from the input vector) and the neighborhood function (which determines 
which neighbors of the winner node should learn from the input, and, in conjunction with the 
learning rate, it also determines how much those neighbors should learn form the input).  In 
our implementation we use the number of moves made to the empty tile of a NxN puzzle and 
translate the learning rate and neighborhood values into that number of moves (note, unlike 
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many problems where Kohonen NN are used, the nature of our problem – and of many 
problems where heuristic search algorithms are applicable, is such that arithmetic operations 
between two Kohonen map neurons are meaningless). A side-effect of this policy is that 
fractional values are meaningless and, as such, are discarded from our calculations, by 
rounding the corresponding values where applicable. If we can somehow incorporate those 
lost fractional values into the number of moves, we believe that our results will be more 
accurate and PBA*-KH will produce better performance. Also, as an overall issue, we would 
like to amalgamate PBA*-VD and PBA*-KH into a single algorithm, and investigate the 
benefits of that approach. We hope and expect that such an algorithm will result in an overall 
performance that improves the currently focusing only to X-nodes, or only to R-nodes 
implementations of PBA*-VD and PBA*-KH, respectively. We are currently working toward 
investigating this approach.   
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