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Abstract. We explore the software metrics and build a Bayesian Network 
Model for defect prediction. Much previous work has concentrated on how to 
select the software metrics that are most likely to indicate fault-proneness, 
based on the hypnosis that these metrics are independent. But in reality, 
software metric values are predicted not only correlated with fault-proneness, 
but also observed internal complex relationship with each other. In this paper, 
we build a Bayesian network model to represent the probability distribution of 
each factor and how they affect defects, considering strong or weak correlations 
are existed between individual metric attributes. We perform a comparative 
experimental study of effectiveness of Bayesian Network, logistic regression 
and Naive Bayes on a public data set from an open source software system. The 
result shows that our approach produces statistically significant estimations. 

Keywords: Bayesian analysis, Bayesian networks, software defects, code 
metrics, software quality. 

1. Introduction 

Acquisitions of which files in the large software system are most likely to contain 
the largest number of defects always are significant valuable to any project developer. 
As software defects cannot be directly measured, many researches tend to explore 
software metrics, which are considered to efficiently predict software quality in the 
early age of software development, for example code complexity, OO metrics, file 
change histories and etc., to predict product’s failure-proneness.  

One of the empirical facts towards software failures is that software modules tend 
to be classified as failure-prone or non-failure-prone. Basically, former work on 
software failure-prone prediction has prove that correlation exists between software 
metrics and fault-proneness, but most of them concentrated on how to select software 
metrics, and build a model to compute the result. These work are weak in two points, 
for one thing, the effect is subsequently cut down, when evaluable dimensions 
decreased [1]. For another, they are based on the hypnosis that these metrics are 
considered singly. Whereas in reality, in terms of these metrics measure various 
aspects of the same software product, individual metric attributes tend to be highly 
correlated with each other (known as multicollinearity) [13]. To avoid these 
weaknesses, our approach tends to predict failure probabilistic by a Bayesian Network 
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Classifier that related software metrics and failure history, in order to classify free 
defect module from non-free ones. 

Traditionally, to constructed a BN (structure and conditional probability 
distributions) usually by following two ways: 1) to provide a structural model which 
representing relationships between the attributes by domain experts, then learn 
available data to get their corresponding probabilities, and 2) mining the available 
data in order to get relationships, typically using learning algorithms [14]. For the 
reason of exploring unsure composition of software metrics, in our approach, we use 
the second way to draw the structure by learning from data.  

In this paper, we use a BN which relates software product metrics and failure 
history to fault proneness after removing the sick related factors. Then learning the 
conditional probability of each factor to draw up how they impact the probability of 
one file inclines to have defect. The original data set is derived from the Eclipse 
project (www.eclipse.org), which has been provided and published by Zimmermann 
et al. [4]. While Zimmermann et al. predict defects using logistic regression and 
complexity metrics, and our work differ from theirs in using a Bayesian Network to 
represent correlation between metrics and get a more accuracy result in file level.  

The remainder of this paper is organized as follows: In Section 2, we discussed 
related work in the literature and introduced Bayesian networks. Our research method, 
including data description, model construction is proposed in Section 3. Experiments 
and model evaluation are discussed in Section 4. At last, we conclude our work with 
directions for future work in Section 5. 

2. Related work 

In this section, we review the relevant literature from software quality management. 
In particular, we look at the 1) use and analysis of software metrics, 2) introduction of 
Bayesian Network methodology. 

2.1 Analysis of software metrics 

In the field of software development, software metrics are collected at various 
stages in the development cycle, and utilized to evaluate the quality of a software 
product. They are also considered as the most critical factors to identify potentially 
error-prone modules in software systems, so that extra development and maintenance 
effort can be directed at those modules [7], [8], [9]. Several statistical tools used in the 
analysis of software metrics include logistic regression, linear least-squares regression, 
Poisson regression and etc. 

 Although various software metrics suites have developed, there is still no one 
metric or known combination of metrics can predict software quality as a general 
model. Furthermore, due to experience that specific subset of predictors from the suite 
which seem to show a significant relationship to fault proneness differs from system 
to system, therefore, to predict software quality accuracy is always to be a hard work. 
To fill up the inadequacy of traditional linear models, many machine learning 
techniques of non-linear models (Fuzzy [11], ANN [15]) are applied by researchers, 
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which are expected to provide superior performance than their linear counterparts.  
Some studies also show that software quality at the module level of future releases 

can also be predicted base on the past history. Former studies have proved that 
modules with more defects in development are likely to have more defects after 
release [12].Zimmermann et al. [4] mapped defects from the bug database of Eclipse 
to source code locations for three releases of the Eclipse project and additionally 
annotated such data with a vast amount of size and complexity metrics extracted from 
source code. They found a significant correlation between complexity metrics and 
pre- and post-release defects.  

Although there is one existing work in the literature that describes BN-based 
methods for fault content and fault proneness prediction [5], but they draw a general 
linear relation directly between attributes and target. We present a more reasonable 
BN model to predict failure-prone and perform a comparative experimental study of 
the effectiveness of Bayesian Network, logistic regression and Naive Bayes model on 
a data set from an open source software system - eclipse.  

2.2 Bayesian Network Introduction 

A Bayesian Network is based on the Bayes thermo by calculating the conditional 
probabilities between variables, then to derive a more precise result. Assuming a 
simple set that is , , … . ,,  , where (i [1, n]) is the occurred events 
in E and B refers to one existing event 0. Bayesian Network of S consists of 
two components:  

1) Joint probability distribution of i 1, n , as a directed acyclic graph D 
that encodes a set of conditional independence assertions about variables in S.  

2) A set P of local probability distribution for , which is called Conditional 
Probability Table (CPT). Each node corresponds to a variable, and the CPT given 
every possible combination of states of its parents.  

The set of parents of , denoted , is the set of nodes with an arc to  in the 
graph. Then the probability of an arbitrary event  can be calculated as 

 ∏ |     (1) 
Given this joint probability, the marginal probability of an  is computed as 

∑ , ,    (2) 
BN are practically applied to model causal influences, where the modules of a 

system are modeled as the nodes of a BN, while the edges represent the cause-effect 
relationships between the entities. The qualitative part of a BN is encoded in the 
structure of the digraph, while the conditional probability distributions for the nodes 
encode the quantitative portion [5].  

We are motivated to choose BNs based on three reasons. One, Bayesian networks 
in presentation of intra-relationship between software metrics. Two, Bayesian 
networks allow one to learn about causal relationships. Especially facilitate the 
combination of domain knowledge and data. Three, once a BN has been specified, not 
only defect probability can be deduced, but also software quality can be controlled by 
balance evaluable factors. Thus, in our context, using a BN to handle the relationship 
between evaluable factors of software product permits us to explore the drivers of 
observed good quality. 
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3. Research Method 

Our research approach is to use a BN to model the relationships between the 
measurable properties of a software product and its quality. Especially in the 
following way: to formulate a BN structure that represents the relationships and 
conditional probability between the software metrics and error-prediction. 

3.1 Model Parameters 

In this paper, the main variables are a suite of metrics measuring the structural 
quality of object-oriented code and design; specifically, we consider the suite in [6]. 
The dataset we used is coming from a well-known open source project- eclipse that is 
written in Java which encompasses 10593 files. The following 32 OO code metrics 
are associated with each file, we choose these metrics for the advantage of being 
easier to implement and understand.  
1. Fan OUT (FOUT): The number of method calls, including avg, max, sum1. 
2. Method Lines of Code (MLOC): The number of lines of code inside method bodies, 

excluding blank lines and comments, including avg, max, sum.  
3. Total Lines of Code (TLOC): Total lines of code in the selected file. Only counts non-

blank and non-comment lines inside method bodies computed KLOC.  
4. Number Of Methods (NOM): The number of methods implemented in a given file, 

including avg, max, sum. 
5. Number Of Attributes (NOF): The number of attributes in a given file, including avg, 

max, sum. 
6. Number Of Static Methods (NSM): The number of static methods in a given file 
7. Number of Static Attributes (NSF): The number of static attributes in a given file, 

including avg, max, sum. 
8. McCabe cyclomatic complexity (VG): Counts the number of flows in a given file. Each 

time a branch occurs (if, for, while, do, case, catch and the ?: ternary operator, as well as 
the && and || conditional logic operators in expressions) this metric is incremented by 
one. Calculated for methods only, including avg, max, sum. 

9. Number of Parameters (PAR): The number of parameters in a given scope, including avg, 
max, sum. 

10. Nested Block Depth (NBD): The depth of nested blocks of code in a given file, including 
avg, max, sum. 

11. Number of Interfaces (NOI): Total number of interfaces in a given file, including avg, 
max, sum. 

12. Number of Classes (NOT): Total number of classes in a given file, including avg, max, 
sum.  

13. Pre-release Defects (pre): The number of non-trivial defects that were reported in the last 
six month before release. 

One output is as follows:  
1. Post-release Defects (post): The number of non-trivial defects that were reported in the 

first six months after release.  
                                                           

1 avg, max and sum is the abbreviation of average, maximum and accumulation respectively, 
means the specified variable’s average, maximum and accumulation number of each method 
in a given file.  
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In terms of classifying modules as failure-prone or not, we discrete the number of 
post in two classes, for “Yes” means the 0 of defects in a given class while “No” 
represent there is at least 1 defects appeared during testing. Then this problem can 
simply be considered as a two-class classification.  

3.2 Construct Bayesian Network 

In our approach, Bayesian Network is used as a classifier. Considering former set 
 in software defect prediction case, we suppose X " ", " "  is a discrete 

random variable related to B, accords with the following Equation (3): 

X ,       
,                      (3) 

Then we can deduct the posterior probability (or conditional probability) under the 
condition of B occurred: p A |X |A A

∑ A A 
, 1,2, … n     (4) 

The learning procedure is: 
1. Compute IPD

A ; A B  between each pair of attributes, i j. 
2. Build a complete undirected graph in which the vertices are the attributes 

, , … . . Annotate the weight of an edge connecting A  to A  by A ; A B . 
3. Build a maximum weighted spanning tree. 
4. Transform the resulting undirected tree to a directed one by choosing a root variable 

and setting the direction of all edges to be outward from it. 
5. Construct a BN model by adding a vertex labeled by B and adding an arc from B to 

each A. 
6. Remove the edges with low weight between B and each A. 
7. Learn the parameters and output the structure. 
In the step one, IPD

A ; A B  is given by 

IPD
A ; A B ∑ P A , A ,A ,A , log P A ,A |

P A | P A  

In the last step of construct BNs, marginal distribution of each node in our model is 
calculated by Bayes Network Editor, a tool in Weka2, for its underlying Bayesian 
propagation algorithm. However, learning a BN towards cost sensitive for software 
failure prediction is left as an aspect of future work.  

4. Experiments 

In this section, we evaluate our approach empirically using the metrics from the [4] 
data set. By analyzing the error in software defect prediction, we examine our model 
in three dimensions, and compare it with exist work and Naïve-Bayes model. 

                                                           
2  Weka is a collection of machine learning algorithms for solving real-world data mining 

problems. It contains the tool of edit Bayesian Network and learning dataset. 
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4.1 Data pre-processing   

Before constructing the BNs, we first discretize the data into 5 levels. 
Discretization reduces the number of values for a given continuous attribute by 
dividing the range of the attribute into intervals, therefore reduces the size of the 
network. It also reduce the data by collecting and replacing low level concepts (such 
as numeric values for the attribute pre in our model) by higher level concepts (showed 
as number field), then evaluate the correlation between selected key factors. In our 
model, the numeric values of each attribute are collapsed into 5 levels with equal-
frequency binning. Equal-frequency binning is method in discrete the data, which is 
simply but proved to be efficiency.  

 

 
Figure 1  BN model for fault proneness analysis in file level 

4.2 Fault Proneness Analysis 

By applying the previous steps in chapter 3, Bayesian Network structures are 
constructed as Figure 1, and Table 1 shows the confusion matrices obtained. As in the 
BN model for assessing fault content, we performed a 10-fold cross validation to construct 
the functional form of the CPD for fault proneness.  

Correspond to table, the less numerical value of False Negative (FN) and True 
Negative (TN) represent better software quality. One of the goals of this paper is to 
experimentally evaluate how Bayesian methods can be used for assessing software 
fault proneness. Table 2 illustrates the comparison among Zimmermann’s model, 
Naïve-Bayes model and our approach. The FN equals 0.0522 means very little 
observed as non-failure modules are predicted as a failure-prone module, while TN 
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equals 0.6103 means 61% of high failure-prone modules are predicted as non-failure 
modules. All corrected classified cases in our model occupy 86.51%. In 
Zimmermann’s case, although we get the similar value of TN, FN rate in our 
approach is much less than their values, the Accuracy is higher as well. When 
compared with the Naïve-Bayes model, FN and Accuracy present précised.  

TABLE  1   Confusion Metrics 

Observed as have 
defects 

Classified as  

No Yes Total

No 8553 957 9510

Yes 472 611 1083

Total 9025 1568 10593

TABLE  2   Comparsion with other researches 

  FN rate TN rate Accuracy

Zimmermann. [4] 0.337 0.621 0.711 

Naïve-Bayes 0.2575 0.3327  0.7310 

Our approach 0.0522 0.6103 0.8651 

5. Conclusion and Future Work 

The broad goal of our research is to build a model to analysis the causal relation 
between evaluable metrics and software quality in software development. Then 
enhance software development efficiency by exploring the dependence between them.  

In this paper, we apply BNs to solve the problem of classifying software modules 
as defect-free or non-defect-free. The experimental results confirmed the superior 
performance by comparing our approach with logistic model. The BN model provides 
a robust mechanism to include diverse sources of data into the analysis. 

However, there is always more to do. Our future work will be improved in these 
fields: First, to exam this method with more data. Besides only use one project’s data 
is not convictive enough, dataset in different software project which focus on different 
functions tends to present different weight of each matrix [3]. Secondly, to evaluate 
more efficient way to discrete the dataset, naming data preprocessing, which is a 
important factor in present results.  

Finally, there have been several empirical studies that have examined the 
relationship of product metrics, failure history and fault proneness, but few that have 
explored the casual inference between them. The BN model provides a robust 
mechanism to detect the software defect prone. 

International Journal of Advanced Science and Technology          41



 

 

6. ACKNOWLEDGMENTS 

The authors would like to thank Kamswee, who help us in using Matlab to get the 
model. We also acknowledge all the reviewers who helped to improve the paper with 
their detailed and constructive comments. 

7. REFERENCES 

1. John C Munson, Taghi M Khoshgoftaar, “The Detection of Fault- Prone Programs,” 
IEEE Transactions on Software Engineering, 1992. 

2. Taghi M. Khoshgoftaar, Naeem Seliya, “Comparative Assessment of Software Quality 
Classification Techniques: An Empirical Case Study,” Empirical Software Engineering, 
Volume 9, Issue 3, Pages: 229 - 257, September 2004. 

3. N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict component failures", 
Proceedings of the International Conference on Software Engineering (ICSE 2006), 
Shanghai, China, 2006. 

4. T.Zimmermann, R.Premraj, A.Zeller, “Predicting Defects for Eclipse”, Predictor Models 
in Software Engineering, 2007. PROMISE'07: ICSE Workshops, 2007.  

5. G.J.Pai, J.B.Dugan, “Emprical Analysis of Software Fault Content and Fault Proneness 
Using Bayesian Methods”, IEEE Trans. Software Eng., vol. 33, no. 10, pp. 675- 686, July 
2007. 

6. Henderson-Sellers, B., “Object Oriented Metrics - Measures of Complexity”, Prentice 
Hall, Upper Saddle River, NJ, 1996. 

7. N. Fenton and S. L. Pfleeger. “Software Metrics: A Rigorous and Practical Approach”, 
International Thomson Computer Press, London, UK, second edition, 1997. 

8. C. Lewerentz and F. Simon. A product metrics tool integrated into a software 
development environment. In S. Demeyer and J. Bosch, editors, Object-Oriented 
Technology (ECOOP'98 Workshop Reader), LNCS 1543, pages 256 - 257. Springer-
Verlag, 1998. 

9. L.C. Briand, W.L. Melo, and J. Wu. st, “Assessing the  applicability of Fault-Proneness 
Models across Object-Oriented Software Projects,” IEEE Trans. Software Eng., vol. 28, 
no. 7, pp. 706-720, July 2002. 

10. R. Subramanyam and M.S. Krishnan, “Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects,” IEEE Trans. Software 
Eng., vol. 29, no. 4, pp. 297-310, Apr. 2003. 

11. R.K. Lind, K. Vairavan, An experimental investigation of software metrics and their 
relationship to software development eIort, IEEE Trans. Software Eng. 15 (1989) 649–
653. 

12. S. Biyani, Santhanam, P., “Exploring defect data from development and customer usage 
on software modules over multiple releases", Proceedings of International Symposium on 
Software Reliability Engineering, pp. 316-320, 1998. 

13. S. Dick, A. Meeks, M. Last, H. Bunke, A. Kandel, “ Data Mining in Software Metrics 
Databases”, Fuzzy Set and Systems, pp. 81-110 

14. Dan Geiger, Moises Goldszmidt, G. Provan, P. Langley, P. Smyth, “Bayesian Network 
Classifiers”, Machine Learning, 1997 

15. D.Heckerman, “A Tutorial on Learning With Bayesian Networks”, Microsoft, 1996 
16. I.Gondra, “Applying machine learning to software fault-proneness prediction”, System 

and Software, pp. 186-195, 2008 
 

42          International Journal of Advanced Science and Technology




