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ABSTRACT 

The work we present deals with the problem to provide learning assistance systems in the context of 
simulation and modelling. We develop a classification scheme for learning assistance systems and their 
use cases. Beyond this, we discuss how learning from simulation data differs from traditional knowledge 
discovery from data bases.  The discussion contains a classification and review of existing approaches 
followed by an enclosing case study of an assistance system for load balancing purpose in FEM 
simulation. The presented application case uses a two-stage architecture to minimize additional 

computational costs. The approach does not require labeled data in the sense of a quality rating for a load 
distribution nor a teacher for the initial setup and can improve itself unsupervised. For the FEM 
simulation on heterogeneous distributed systems we introduce a novel feature set and perform an 
evaluation for several problem sets. 
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1. INTRODUCTION 

Nowadays numerical simulation in science and product development has become quite 

standard approach next to classical experiments. With the growing capacity of the computers 
simulation models grow in size and complexity. Also multi-domain modeling and simulation 

tools became more and more popular during the last years. To mention a few examples there is 

COMSOL Multiphysics for FEM simulations or tools based on the modeling language 

Modelica and collateral relatives like Simscape. The latter class of tools are more related to 

models which can be represented by differential algebraic equations (DAE). Expressing 

models with a declarative language increases the freedom in modeling in conjunction with the 

possibility to make mistakes during the modeling process. A lot of work has already been 

spent on the question how to assist the user debugging process see e.g. Bunus and Fritzson 

(2002) or Pop et al. (2012). 
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As an example for parameter complexity let us consider the dialog “Model Configuration 

Parameters” in Simulink (R2015a) from TheMathWorks. For special use cases e.g. for a 

real-time HIL simulation, which always comes along with code generation, there are at least 

three major sub-dialogs that might play an important role: Solver, Optimization and Code 
Generation. If we just look at the Solver dialog we can choose between many solvers. 

Especially the fixed-step solvers, like “ode14x”, lead to more parameters, such as step size 

aspects like “Solver Jacobian method”, “Extrapolation order”, “Number Newton’s 

iterations” and so on. So before the simulation can be run, a lot of choices have to be made by 

the user. This is not the case for a common simulation of a small system on a workstation, 

since in that case the default settings perform well. But also other tools with code generation 

capacity like Dymola provide a massive amount of options. Of course the problem is not 

limited to real time simulation of DAEs. There are a lot of special demands like e.g. energy or 

mass conservation that may occur. The selection of proper methods has already been covered 

for specific applications by some parts of the scientific community, e.g. Stein and Curatolo 

(1998). Due to the robustness of parameter-independent methods – such as direct solvers for 
linear systems – these are often preferred over the most efficient and parameter-dependent 

methods – such as domain decomposition and iterative solvers – in many engineering 

contexts, see e.g. Burrows et al. (2013). Assistance systems could help to choose a method 

that is superior in a specific application. 

In this paper we will deal with the question how to classify learning assistance systems for 

numerical simulation and modeling. By the term learning assistance systems we mean 

assistance systems, which are able to perform the necessary knowledge discovery and 

acquisition mainly autonomous, unlike in static approaches as e.g. discussed in Woyand et al. 

(2012). Therefore we focus on the technique of simulation data mining for building these 

assistance systems. We use the term simulation data mining in the spirit of Burrows et al. 

(2011) and similar publications. This combination of simulation and data mining has been 

successfully applied in different fields such as diagnosis of fluidic systems, see Stein (2003), 
automotive crash simulation, see Painter et al. (2006), and aircraft engine maintenance, see 

Mei and Thole (2008). Such a learning approach is able to avoid some common problems like 

acquiring knowledge by rare experts. Additionally it has the chance to improve itself, which 

also avoids being limited to an initial knowledge or rule set. Beyond this, being used in a 

certain application case type, these systems will perform better and better on particular cases 

of this type, which will be the most interesting cases for the user. 

Our contributions in this paper are summarized as follows: 

(1) We develop a classification scheme for learning assistance systems and their use 

cases. 

(2) We provide a novel survey how learning from simulation data can be distinguished 

from traditional knowledge discovery from data bases. 
(3) We provide a detailed case study about a machine learning approach for automating 

the distribution of FEM simulations in heterogeneous environments. To do this we 

develop and evaluate a working feature set and provide an appropriate performance 

measure. 

The sections of the remainder of this paper is organized along the mentioned contributions 

starting with section 2 in which we describe the classification scheme. At last the paper is 

finished with a discussion about the conclusion and future work. 
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2. CLASSIFICATION SCHEME FOR LEARNING 

ASSISTANCE SYSTEMS AND USE CASES 

This section first describes the common concept of a model hierarchy in modeling and 

simulation context. Then this hierarchy is used to classify different types of assistance 

systems, which act on different hierarchy levels. 

2.1 Model Hierarchy and Use Cases 

Firstly, we present an approach to divide the modeling process into hierarchical steps, which is 

quite natural and common, see e.g. Finn and Cunningham (1994) or Stein (2008) for related 

approaches. The purpose of a simulation is to see how a real or mental system reacts to an 

input or a modification. A user has to build a model which behaves like the system for the 

observed effects. 

So when it comes to simulation the first step is the model. The model starts with the 

physical behavior of the system and ends with the so-called computer model, which is an 

executable unit that really runs on a computer system and produces results. It is a long way 

from the intent to simulate a real or mental system to the computer model. We consider five 

steps in the modeling procedure: 

1. Real or Mental System 
2. Physical Model 

3. Mathematical Model 

4. Numerical Model 

5. Computer Model 

In our case physical model means the part of the modeling process, where e.g. the engineer 

mainly works with pen-and-paper. In this first step a lot of decisions are made. Often this is 

the time for the main simplifications, since only the important effects for the system can be 

taken into account. E.g. the geometry is simplified or material parameters are assumed to be 

constant or linear. It is not possible to simulate the real world, but the reaction should be 

realistic for the considered physical effects. However, there might be several ways or depths to 

model an effect or even coupled effects. This will make the difference between the real system 
and the simulated model. If we think about a simple pendulum, the modeler can decide that a 

mathematical pendulum is sufficient for his purpose. Sometimes these decisions might be 

performed automatically, because nowadays there exist approaches like Simscape or Modelica 

Libraries in combination with a proper GUI etc. 

When the modeler has fixed his physical model, he needs to find a mathematical 

expression for it. The mathematical expression is – in contrast to a quite common presumption 

– not unique. If you think of the pendulum example above one can e.g. describe the equations 

of motion using a Laplace or a Newton based approach. Considering partial differential 

equations, the physical model of linear elasticity can be modeled using the Lamé equation or 

with a saddle point formulation and so on. Making these decisions we end up with the 

mathematical model. In most cases these decisions will transform the physical model to a 

mathematical model without further simplifications and assumptions, but in any case these 
decisions will have implications when it comes to the numerical model. 

For a PDE in general there is a wide range of methods like Finite Differences, Finite 

Elements, Finite Volumes and Spectral Methods, see e.g. Brenner and Scott (2008) and Shen 
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et al. (2011). Some are more or less fixed to a given application domain. Finite Volume 

methods are for example preferred for hyperbolic PDEs. Let us assume that the initial problem 

was linear elasticity model and the rough choice was the Finite Element Method (FEM). 

Whatever one has chosen, the Lamé equation or saddle point formulation, it changes how the 
FEM is applied on the mathematical model. A saddle point formulation e.g. will require 

special finite element spaces providing some other benefits etc. Additionally, after one has 

chosen the discretization in space, one has to choose the discretization in time. Concerning 

discretization in time one has to decide e.g. between implicit and explicit solvers, Runge-Kutta 

based approaches or multistep methods and so on. To summarize, the step from the 

mathematical model to the numerical model requires a lot of decisions. 

When all of the numerical methods are selected there is still a very important step left. 

Most of the numerical methods have parameters to choose or rules of behavioral control. A 

simple and very common case are fixed step sizes or variable step sizes and rules how to adapt 

them. The same for non-linear solvers to increase stability, special techniques for higher order 

DAEs etc. 
Nevertheless of course the number of choices a simulation system provide or should 

provide depends on the scope of the tool. If one considers tools with a very narrow scope e.g. 

just time-independent linear elasticity models in general all choices except of a very few ones 

on the lower level of the numerical model are already made. On the opposite we have multi-

domain modeling and simulation tools like e.g. Simscape, Comsol or Modelica-based tools, 

which leave the modeler with a wide range of possibilities in modeling. For these tools the 

modeler must have deep knowledge to make good choices. 

2.2 Hierarchical Classification of Assistance Systems 

Now we suggest to classify the assistance systems. They can be classified by the modeling 

level (see above) in which they assist the user. Hence, like illustrated in Figure 1, we propose 

to distinguish between a “Model Assistance System”, a “Method Assistance System” and a 

“Parameter and Behavior Assistance System”. 

This classification is independent of whether the assistance system is a learning or a static 

one. A lot of systems known as expert systems would be considered as assistance system, but 

they often suffer from the need to acquire their knowledge from human experts and from the 

problem that they do not grow with the challenges they meet. An update of their abilities is 
always connected to a software update which again requires a software engineer and an expert 

in the application area. A learning assistance system avoids these problems. Its ability to 

improve itself is based on machine learning and pattern recognition techniques like artificial 

neural networks or clustering methods. These kind of methods require an initial learning phase 

that we are going to discuss in section 3. 
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Now we will have a closer look at the different assistance system classes, their 

characteristics and some related work already done in specific fields. We again restrict us here 

to learning approaches. 

2.2.1 Model Assistance System 

The purpose of a model assistance system is to provide help during the beginning of the 

modeling phase before the actual simulation. On the one hand the more flexible a modeling 

environment is the more important assistance systems become. But at the same time the 

development of assistants becomes much harder because the feature selection – which is in 
general already hard enough – becomes an even more demanding topic. In cases where the 

range of possible models is limited by the scope of the simulation tool this was already 

successfully performed by a learning assistance system. For example for the assistance of 

bridge design processes see e.g. Burrows et al. (2011). Another very interesting application 

case are problems arising in the context of the diagnosability of technical systems, see e.g. 

Stein (2003). For very open scenarios the analysis of the model is very demanding. This is due 

to the problems of analyzing a Modelica model for the purpose of debugging, shown e.g. by 

Bunus and Fritzson (2002) and Pop et al. (2012). These analyzing techniques are the 

fundamentals on which one can add the feature selection and processing for assistance systems 

for these open simulation tool scenarios. 

 
Figure 1. Hierarchical Classification of Assistance Systems 
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2.2.2 Method Assistance System 

Depending on the physical and mathematical model respectively, their discretization and the 

feature selection, the method assistance system can suggest a numerical method to be used. 

There has already been done some work in this field concerning learning assistance systems, 

see e.g. Stein and Curatolo (1998). One has to keep in mind that in general there is no such 

thing as a best method for a given physical or mathematical model. There are some methods 

that are for an expert or a trained assistance system clearly inappropriate. These can be sorted 

out. For the rest one needs in general additional requirements from the user. The stable and 

therefore appropriate methods have different characteristics, e.g. different computational costs, 

accuracy, conservation of constraints. Depending on the application the user might find e.g. 

conservation of constraints a very important property or the user has real-time constraints. The 

latter depends again on the available hardware. An assistance system has to take the 

preferences of the user and environment information like hardware architecture into account. 

2.2.3 Parameter and Behavior Assistance System 

This kind of assistance system works on the lower levels, nevertheless it is quite important. 

The efficiency and stability of most methods depend very much on the chosen parameters or 

behavior modules. The term behavior modules includes aspects like strategies for step size 

control (see e.g. Cellier and Kofman (2006), section 3.9 and section 4.12) or adaptive 

refinement of FEM meshes, see e.g. Verfürth (2013). The publication Burrows et al. (2013) 

indicates that it is of course possible to design learning assistance systems for FEM models. 

But as well as Burrows et al. (2011), which focusses on model assistance systems, they both 

emphasize that the feature selection is very important and non-trivial for spatial models. E.g. 
FEM output data contains an enormous set of simulation data per mesh node, geometrical data 

of the mesh itself, material properties and so on. In this context it is very important to form 

meta-features from this data. In general that cannot be done using automatic approaches. One 

really has to consider which features make sense and which not. At the end of this 

consideration the list of candidates might still be too long and one has to make a proper set of 

features with common approaches. We will discuss that point in our case study – which is 

based on the publication Bernst et al. (2015) – more detailed. 

3. LEARNING FROM SIMULATION DATA – CHALLENGES 

AND BENEFITS 

In this section we will discuss why and how learning from data bases with simulation data 

differs from ordinary knowledge discovery in databases. According to Fayyad et al (1996) this 

process contains a few steps that are not necessary when using simulation data. Common 

databases contain inaccurate or missing data and need a preprocessing step. This is quite 

different with generated simulation data which is in general clean. Such a data base may 

contain data from failed or timed-out simulations, but this problem is much easier to handle 

compared to non-generated data. The same holds for the removal of outliers, which is in 

general not necessary with simulation data. 
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The quite related task of clustering of similar tasks might be important for simulation data 

mining, but – in the logic of Fayyad et al. (1996) – for the data mining step and not for the 

preprocessing step. The reason is that clustering is a – by all means common – approach to 

group similar cases. Then one can proceed with other techniques like learning a function on a 
single grouped subset with an artificial neuronal network. 

So on the one hand the knowledge discovery in simulation databases for assistance 

systems seems to be shorter compared to the original one by Fayyad et al. (1996). On the other 

hand it contains some additional steps that are not possible for an approach on a non-generated 

data base. Such a data base contains information and there are actions performed like 

selection, preprocessing or transformation. In general it is quite hard to add a new information 

feature to an existing data set. This is different for the engineering phase of a learning 

assistance system with simulated data. There the initial learning phase – which is the more 

demanding one – is illustrated in Figure 2. This phase can be followed by an online learning 

approach during the productive phase of the assistance system. First of all let us have a closer 

look on Figure 2. 
 

 

Figure 2. Initial Learning Process 

We have some common steps like transformation – which means more or less feature 

reduction, meta-feature generation and feature selection – and learning. Then the validation 

might show, if the assistance system works satisfactory. For clustering systems this might 

mean that different cases are well separated or each sample has enough neighbors. For 

artificial neural networks (ANN) satisfactory might mean that the error is low enough for a 

validation set. Other validation test cases can be used to check the behavior of the assistance 

system. If the validation indicates that the system has to be improved, there are three ways 

shown in Figure 2. 

The two lower arrows are accessible for anyone dealing with machine learning or data 

mining, so also with non-generated data bases. The “Change Transformation” arrow is 
actually a part of the feature selection procedure. The “Change Learning Approach” can mean 

a different method, like ANNs vs clustering based methods, or just a parameter like the 

number of neurons in an ANN. 

However, the top arrow “Add Additional Information and Change Initial Data Base” is 

only possible in simulation data bases. Completely new properties can be recorded. For 

example if we want to develop an assistance system which is dealing with ordinary differential 

equations, we might decide after a failed validation in the initial learning phase to e.g. track 

the changing of the eigenvalues during the simulation. This step can give rise to new features 
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in the training data. Note, this is only possible if one has enough control over the simulation 

environment, which might be a problem when dealing with closed source software. If we have 

enough control we are able to generate new features on demand and need. This is a huge 

difference regarding to a common data base e.g. containing customer data. If this data base 
does not contain the information one has to work without it. A similar benefit is that we can 

also generate data on demand. If we are e.g. interested in unusual configuration of a simulation 

we can perform the simulation and track the results. Therefore we can generate data on 

demand with different density in the feature space according to our needs. This is again very 

different to the situation for non-generated data bases. If the data base does not contain enough 

information e.g. concerning a minority, this situation cannot be changed easily. But 

nevertheless there is no such thing as a free lunch. Considering ordinary application cases of 

data mining; the data comes more or less for free. In most cases people work on data that was 

accumulated not for the purpose of data mining. So for example an internet shop might use the 

data of its customers for the optimization of the web-shop or the supply of goods. So on the 

one hand data mining in these data bases is limited to the information given by the costumers 
or business associates but on the other hand this data comes in principle for free. The benefits 

of the on-demand generation for training data base of the assistance system is paid by need to 

spend CPU-time for this purpose. This is especially true for new features, since it might 

require to start over with the complete data base. So we can now sum-up: 
1. In general one will see a two-phase approach for the learning assistance system, first 

an initial learning phase and then an online learning during the productive phase. 
2. For the initial learning phase we have the capability to generate data on demand. 
3. Depending on how much control one has about the simulation environment feature 

generation on demand is possible. 
4. The price for top 2 und 3 is computation time and additional effort. 

In our case one has to distinguish between top 2 and top 3 because the additional effort for 
the additional data record is needed just once during the initial learning phase. If we choose to 
add a new feature, apart from eventually rebuilding the data base in the initial learning phase, 
and if this feature requires additional effort during the simulation like post-processing, it will 
in general require the same effort in the productive phase. So to use the example from above: 
If one considers eigenvalues to be a useful add-on information, one will often try to get along 
with features that are cheap to compute e.g. Gershgorin circles instead of exact eigenvalues 
and so on. 

So the one challenge for training of an assistance system is to keep the initial learning 

phase cheap. If all data for the initial phase is just generated for the purpose of training there 

might show up some scenarios in which the data generation is no more justified by the 

benefits the assistance system can provide. To negotiate this problem one should use as much 

data as possible which is generated by skilled users anyway. The more relevant simulation in 

cloud architectures become, the easier this could be in principle. Users and their simulations 

on a system without assistance system can be monitored and this data be used for the training 

of the assistance system. A big issue in this context are data privacy concerns of private 

people. Also security considerations of companies are still a problem for cloud simulation 

today, see e.g. Frochte et al. (2014). Much more common are cloud or similar approaches 
when it comes to education institutes. These tend to use academic licensed products for 

teaching, see e.g. Bouillon and Frochte (2015). The data acquired here might be helpful if it is 

mixed up with generated data in the sense of top 2. This will in general be necessary because 

education institutes might tend to simulate less complex and smaller models than industrial 

users. 
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4. CASE STUDY ON AN ASSISTANCE SYSTEM FOR LOAD 

BALANCING FOR SIMULATION IN HETEROGENEOUS 

SYSTEMS 

In this section we present a case study for an assistance system. It will help in balancing the 

load from a 3D FEM simulation on a heterogeneous cluster structure. The mesh for the FEM 
simulation is partitioned using an overlapping Schwarz method. This is a robust domain 

decomposition method, see e.g. Tosselli and Widlund (2014) or Nikishkov (2007). The major 

challenge is caused by the heterogeneity of the cluster, since then the optimal distribution is 

not trivial. Because the problem consists of distributing a computational task, it makes sense 

to look for two parameters. One is the waiting time, which is associated with convenience of 

the user and his wish to achieve results quickly. The other is the CPU time, which in a way 

represents the energy cost as a second optimization variable. This is a very important aspect of 

cloud computing concerning green IT. 

 

 

Figure 3. Hierarchical distribution of the job J on a heterogeneous system with three homogeneous  
sub-systems 

We consider a distributed system as shown schematically in Figure 3. The host computer 
plays an important role in the suggested setting, which triggers the task and manages the 

computation. It submits the relevant subsets of the simulation data to the remote masters, 

which again spreads the necessary parts to the computation nodes. The result is a 

communication cascade, in which one subsystem solves its part of the problem using 

distributed computing causing network communication between within the cloud. After this is 

done the remote master of each cloud communicates with host. Because the solving method 

we use is iterative, this is done multiple times. Most of the communication is done in each 

subsystem, which makes sense, because the network connection from within a cloud is 

generally faster than the one between the host and remote masters. Because of the 

heterogeneity of the system, which means firstly non-equal computation power per 

computation node across different server-systems and secondly non-equal connection speed 
between the host computer and the remote masters, an efficient distribution of the tasks is a 

non-trivial challenge. Because the problem set shown in Figure 3 is of wide scope, we make 

some reasonable assumptions. We assume that sub-environments are homogeneous among 

themselves. This means in every sub-environment, e.g. a cloud architecture or a standard blade 

server, we have the same connection speed between every node, and every node is equal 

concerning the computation speed. 

Load balancing is a technique to optimize the distribution of sub-problems; for a general 

insight, see e.g. Kameda et al. (1997). Because of the complexity in heterogeneous network 
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environments load balancing is a research field in which heuristic approaches, see e.g. 

Doulamis et al. (2014), and similar strategies are commonly applied. The learning assistance 

system in this case study should provide the user with a reasonable load distribution that takes 

the user's preferences of waiting time and computation time into account. This is similar to the 
case with the preferences at the time integrator, described in Section 2.2.2. Here the finding of 

a good distribution depends on the user's preferences as well. In terms of classification defined 

in Section 2.2.3, this assistance system belongs to the class of "Parameter and Behavior 

Assistance System". 

4.1 Learning Approach and Detailed Task Description 

FEM is used for a wide range of problems. Different FEM models like e.g. a model for linear 

elasticity or one for a laminar flow behaves differently on the same mesh concerning domain 

decomposition. Problem classes that behave very differently need a different numerical 

treatment anyway, and thus just problems of the same class can share the same learning data 

base. The workflow in Figure 4 concentrates as example on linear elasticity problems modeled 

with the Lamé equation, also known as displacement formulation. There the process of online 

learning is illustrated. This assumes an assistance system that has passed already the initial 

training. This initial learning process is shown in Figure 4. 

 

Figure 4. Workflow of the learning method 

Very important to understand the used approach is the fact that we have in a way just 

unlabeled data. Our data base consists of features associated with the waiting time and CPU 

time of the performed simulation. What our data base does not contain is information about 

the best choice in a given situation. This is because it is in general a very tricky task to tell 

whether the setting has been optimal – in most cases there might not be such a thing as a 

unique optimum. The key idea is to learn the waiting time and the CPU time instead and to use 

the resulting functions to find good settings. 

To achieve this, we argue for a two-stage approach; the first stage uses only a few features, 
while the second stage uses the full feature set. The reason is that it is quite cheap to evaluate 

the learned function, but if one needs a partitioning to evaluate the full feature set the call of a 

partition tool like METIS (Karypis and Kumar (1998)) is not that cheap. To identify the 

features for the machine learning task in learning workflow we need a more formal description 

of an exemplary case related to the scenario in Figure 3. 

Let J be a computational task (or job) that can be scheduled in parallel. We want to 

distribute it on a heterogeneous system with a number of major subsystems, like e.g. cloud 
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hardware provider. For example, we consider a system with three subsystems as displayed in 

Figure 3. Each of them provides a maximal number of computation nodes: c1, c2, c3. Let n1, n2, 

n3 be the numbers of computation nodes that we use for the computation and which are limited 

by the maximal number of computation nodes c1, c2, c3. 
The job J can be decomposed into maximal three main-jobs J1, J2, J3 (see Figure 3). The 

size of these jobs concerning the degrees of freedom might differ. These main-jobs can again 

be decomposed into    sub-jobs in the second step up to the number of available computation 

nodes ci (i=1…3) in this system. The result of this approach is a job hierarchy. 

At the beginning of the choice for n1, n2, n3 stands the question, how many computation 

nodes in total n1+n2+n3 the user in general would like to access. This is limited by the number 

of computation nodes the system provides him with. Because of the job hierarchy it makes 

sense in the next step to not directly try to answer the question, how we would like to choose 

n1, n2, n3, but first to answer, how many main-jobs should be in the first level of the job 

hierarchy and how they should be dimensioned. The last step is how many sub-jobs of each of 

these main-jobs should be generated and executed. For a more detailed look we will now 
continue with the feature selection. 

4.2 Feature Selection and learning Approach 

To start learning our data base must contain information about the hardware, on which the 

simulation has been carried out. Because gaining data samples is expensive in this application 
case, it makes sense to restrict us to as few as possible hardware features. As Figure 3 suggests 

a minimal description consists of 

1. number of used computation nodes n1, n2, n3. 

2. computation node speed (computation power) in every subsystem s1, s2, s3 

3. data transfer rate from J (host) to Ji (e.g. cloud provider): dh1, dh2, dh3 

4. data transfer rate in homogeneous sub-environment dc1, dc2, dc3. 

Therefore, we end up with 12 features for the hardware topology (HF). 

The next step is connected to the first task shown in Figure 3. We have just the model 

without any partitioning yet. The model consists of the discretized PDE including the right 

hand side and coefficients, e.g. representing material properties, mesh, the boundary 

conditions (Dirichlet, Neumann etc.). As mentioned above the suggested trained system is 
only suitable for a narrow class of problems. Therefore, the PDE itself is not a feature; 

consider the assistance system trained for this class as a member of a single learning assistance 

system for a more general problem class. This of course does not cover the right hand side and 

the coefficients. In Burrows et al. (2013) the aspect of coefficients were discussed. To keep the 

number of features reasonable we concentrate on the features based on the geometric mesh, 

which in our case consists of vertices, edges, facets and tetrahedral elements. There are other 

mesh types for three dimensional problems like hexagonal meshes, but the results and features 

can easily be transferred to them. Since we cannot use the geometric entities, like vertices, 

directly as features, we use meta-features as mentioned in Section 2.2.3. Here we use simply: 

1. number of vertices in the mesh nv 

2. volume ratio of minimal and maximal volume of tetrahedrons in the mesh, denoted 

with r 
3. number of boundary vertices nbv 
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The number of vertices nv as feature correlates to the size of the problem – degrees of 

freedom – which is the most important aspect. It makes no sense to divide small problems 

below some limit. The volume ratio r is one of the important aspects, which influence the 

condition of the problem and its sub problems, see e.g. Brenner and Scott (2008) or Toselli 
and Widlund (2014). The condition number in turn will influence the behavior of the linear 

solvers used by the computation nodes. The last feature nbv is related to both. For Dirichlet 

boundary conditions e.g. for all boundary elements the values are given, so they reduce the 

degrees of freedom and improve the condition. We denote these selected features as global 

mesh features (GMF). 

This leads to 12 hardware related features and 3 model related features for the first step. 

Our learning approach proposes to predict the computational cost    and the waiting time    

by a learned function. To do this we suggest multilayer feedforward artificial neural networks 

(ANN). A design decision in this context is the question whether to use one ANN with two 

outputs or to use two separate in general smaller ANNs for computation time and waiting 

time. In our test it turned out that we achieved better results using two ANNs. This might be 
related to the number of data sets in the training set and may change, if a huge amount of data 

is available. Our solution can be denoted as follows: 

          
       

         

         
           

         
By choosing a weight   the user can fix the relation of    and    for the optimization 

problem. This is a good example of a user preference that the assistance system has to take 

into account as mentioned in Section 2. The assistance system cannot know what is more 

important for the user – cost or time. The goal is to find the minimum of 

              
  

     
      

  

     
 . 

This is a problem, which just depends on the chosen number of used nodes, because in our 

scenario the rest of the features are fixed. In our example with three systems it is a  

three-dimensional problem. Which technique is used for optimization depends on the size of 

the search space defined by the total number of used nodes. In many applications it is possible 

to evaluate all possible combinations and choose the best one; otherwise techniques like the 

Hill climbing should be used. The scaling coefficients cwait and ccomp can be chosen to balance 

waiting and computation time because in general for distributed problems the computation 

time is much bigger than the waiting time. 

 

 

 

 
 

 

 

 

 

 

 

Using the approach described above we end up with some candidates, this means not just 

to pick the minimum but a small subset of the best candidates. If we evaluate all variations, we 

choose the m smallest ones; if one uses Hill climbing, one may choose a whole region near the 

 

Figure 5. Overlapping Partitions 
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minimum or a union of results of Hill climbing iterations started from different initial points 

and maybe stopped in local minima. 

So, for the next step we partition the mesh once for each of the resulting m combinations 

using METIS. Because of the hierarchical structure of the problem set this is performed in two 
steps: In the first step three weights, w1, w2, w3 are chosen. These control how many percent of 

the mesh every partition should consist of before the overlapping part is added. Therefore, 

these weights represent roughly the sizes of the main-jobs Ji in the first hierarchy level. 

However, computation is mainly performed on the computation nodes in the second level of 

the job hierarchy. Hence, the main-jobs are further partitioned into sub-jobs Ji,k. The 

corresponding sub-partitions below a main-partition are equally weighted, since all used nodes 

within one cluster are equal. wi = 0 is interpreted as turn off the specific subsystem. As Figure 

4 suggests for this second step, there are additional features available, because now we know 

more details about how this job will be partitioned. 

A new aspect is the size of the overlaps illustrated in Figure 5. This is very important for 

the convergence speed of the domain decomposition methods. To improve convergence and 
stability, we let the host J and the local master Ji perform a few iterations of a GMRES 

algorithm, see e.g. Greenbaum (1987), which leads to less network traffic, particularly 

between J and Ji, which is the most expensive one. Nevertheless, on the one hand bigger 

overlap leads to fewer iterations. On the other hand more parts of the problem are solved 

redundantly and increase the problem size artificially. Beyond this, we have the effect that 

concerning the network traffic small overlaps are desirable, because this is the data that has to 

be transferred in every iteration step. Thus, we have here a non-linear effect that is mainly 

associated with the number of vertices, which are exchanged between neighbor domains. 

Therefore, we choose the following feature set per main partition, which means on the first 

level for all i partitions: 

1. npi, number of vertices in the partition 

2. rpi, volume ratio of minimal and maximal volume of tetrahedrons in the partition 
3. opi, ratio of number of overlapping vertices to the partition size. 

Because the number of features would increase dramatically, the equally-sized  

sub-partitions are not considered, and nevertheless their effect is quite deterministic and static 

using METIS, if one does not optimize the overlapping size as done by Burrows et al (2013) 

but just keep it fixed as we do it here. If one looks at the features on the second level, one may 

argue, if concerning some aspects there is less information compared to the first level. One has 

to keep in mind that nv correlates with npi and opi. A partition equivalent for the global 

information nbv is missing but for the solution of the sub problems of less importance. With a 

fixed rule, how to dimension the overlap, the degrees of freedom on the boundaries of the 

partitions correlate with opi. For dynamic chosen overlap sizes this information might play a 

bigger role. We denote the set of all of these features for all main partition as partition mesh 
features (PMF). Using this together with the hardware features (HF) this leads us to the 

following approach for the next two ANNs, which are again multilayer feedforward artificial 

neural networks: 

         
       

         

         
           

         
This network ANN2 has the potential to give a more accurate answer compared to ANN1 

but at the prize of an increased number of features – in the case of three main-partitions we 

have 9 PMF instead of 3 GMF. Additionally, each evaluation is preceded by a partitioning 
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procedure to extract the features from the main-partitions. The first aspect leads to the demand 

of more data for the training and the last makes it more expensive. To emphasize this aspect: 

this is the main reason for using a two-stage approach. The features for ANN1 are available 

just by analyzing the FEM model geometry and the evaluation is cheap. Therefore, it is the 
first filter selecting a few candidates. For these candidates the partitioning of the main-jobs Ji 

is performed by METIS, which leads to much higher additional costs but only for these few 

new candidates. With this information for these candidates the ANN2 picks up the most 

promising distribution. The simulation is then performed, distributed accordingly. When the 

simulation has finished, we can use the corresponding features with the measured times and 

add it to our data base to improve the neuronal networks. Because the approach is not based on 

labeled data, in the sense of knowing the optimal distribution, this leads to a system improving 

itself in an unsupervised way. 

4.3 Performance of the Assistance System 

As test problem we choose the linear elasticity model using the Lamé equation with a 

homogeneous isotropic material parameter and Dirichlet boundary conditions. For training 

purpose this has been simulated for four three-dimensional objects (geometries), shown in 

Figure 6, with a mesh size from 250,000 vertices up to 400,000. Because the Lamé equation 

computes the displacement vector, this means up to 1,200,000 degrees of freedom. The four 

objects refer to prototypes, like a full convex geometry (sphere), a geometry with a hole 

(Torus), one with a re-entrant angle (L-shape) and the simple cube. 
 

         

 

Figure 6. Training objects (with coarse meshes for the visualization) 

We provided 564 FEM simulations for different hardware topologies with two and three 

server systems to prepare the training set. They contain different CPUs, in this case 1) Xeon 

E5645 @ 2.4GHz, 6-Core, 2) Xeon E5-2660 @2,2GHz 8-Core, 3) Xeon E5-2640 @ 2,5GHz 

6-Core. These are constant as well as the connection speed between the nodes in one server 

system, which differ from server system to server system between fast Ethernet (100 Mbit/s) 

and Gigabit Ethernet (10 Gbit/s). The connection speed from the host server to each of the 
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server systems has been varied between 10 Mbit/s, 100 Mbit/s and 1 Gbit/s. In this test 

problem we assume that the user constantly wishes to use 16 computational nodes and at least 

two server systems, which means clouds in the scenario discussed by Frochte et al. (2014). 

With the constraint to use always 16 computational nodes we can reduce the number of 
features by one, because we have n3 = 16 – n1 – n2. Furthermore we choose the weights of the 

main partitions to be    
  

  
. 

 

 

Figure 7. Training of ANN1 (left) and ANN2 (right) 

We used the standard approach, see e.g. Marsland (2015), Chapter 2.2, to control the 

training of the ANNs by dividing our data into three subsets: training, validation and test, as 

Figure 7 shows. 

As mentioned above the ANNs differ concerning their features and as expected they differ 

concerning their size as well. In our experiments it turned out that the following choices 

produce reasonable results: ANN1 for the computation time has 23 neurons and 36 for the 

waiting time. ANN2 has for the waiting time 75 neurons and 45 for the computation time. One 
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can sum up that the approximation of the waiting time is more complex than the computation 

time and that ANN2 is more complex than ANN1. 

While the difference between ANN1 and ANN2 is expected, because ANN2 has more 

information to consider, the difference between waiting and computational time might need a 
further discussion. The communication between host and server system is performed in a 

network system, which is used unexclusively. This means traffic caused by other users tends 

to add some additional statistical errors to our measurement. 

All the results above, e.g. shown in Figure 7, were achieved on a validation and test set, 

that is not used for the training. In this case the suggested approach works very well, but the 

data set just contains geometries, that are used for training. The meshes may differ because of 

global mesh refinements, but they represent the same geometries with more or less the same 

ratio between boundaries and inner vertices etc. 

For testing the load balancing approach we additionally used three new objects, see Figure 

8, which were not included in the initial training, test or validation set above. Ellipsoid is 

related but not equal to sphere, T-Shape is in a way related to L-Shape and the cube. The 
hardest geometry is the crankshaft, which is totally different to the training geometries. 

 

         

 

Figure 8. Test objects (with coarse meshes for the visualization) 

We tested the quality of predictions of ANNs for foreign objects and geometries on these 

three. As one can see from Figure 7, the ANN1 works quite well on our initial data base with 

known objects. If ANN1 works so well, does it really make sense to apply a second more 

expensive step using ANN2 afterwards? Yes, it makes sense, because ANN1 loses some of its 
quality on foreign objects. In our approach the main job of ANN1 is to work as a filter before 

using ANN2. 

To do this ANN1 must mainly keep the relation between the results. If a configuration is 

better than another in real life, the learned function should keep this relationship. The absolute 

values are less important. To illustrate effects we picked the shaft as the most demanding 

geometry. Figure 9 shows the results of 5 randomly picked data base entries with three 

different values for  . So, the first plot is the use case for optimization of computation time 

only, the last for waiting time only, and       is a mixed scenario. The data is ordered by 

the value of ANN1. A theoretical optimal result would be that both graphs are monotonically 

increasing. Again this figure illustrates that the computation time is easier to predict than the 

waiting time. For     both are monotonically increasing, in the two other scenarios it is not. 

So, it turned out in our tests that ANN1 is able to work as a reasonable filter, but as proposed it 
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is necessary to attach a second step with ANN2 to increase the probability to pick the best one 

of the set collected by ANN1.  

The results for the three test objects of Figure 8 are shown in the regression plot in Figure 

10. They illustrate that the learned functions correlate with the real world measurements we 
performed for comparison. Again we see, that it is easier for us to predict the computation 

time than the waiting time. We assume, that with a bigger data base, the statistical effects 

concerning the waiting time will be eliminated more and more. 

Concerning the waiting time the results suggest that for new objects not always the best 

solution would be picked up. This corresponds with our tests, in which always a reasonable 

approach is suggested by the assistance system, but sometimes with expertise knowledge and 

experience we could provide a better solution. 

This assistance system belongs to the class of "Parameter and Behavior Assistance 

Systems", as already mentioned. This class affects models in the bottom of the hierarchy 

shown in Figure 1. An assistance system is developed for a specific model type from the class. 

This also implies that whenever a decision in the modeling process is made differently above 
in the hierarchy, it will affect this assistance system. If for example in the numerical model the 

solving method changes, the computation and waiting times might behave completely 

different. The same holds for example if the mathematical model uses a saddle point 

formulation instead of the Lamé equation. So for a complete system of assistance systems that 

support the whole modeling process, there would be a tree hierarchy of assistants necessary. 
 

 

5. CONCLUSION 

In this paper, we proposed a classification scheme for learning assistance systems and their 

use cases. The challenge is to provide assistance systems for complex scenarios in simulation 

for end-users like engineers. We emphasized that static approaches, like e.g. traditional expert 

systems, cannot keep up with today’s demands. For a new generation of self-learning and  

self-improving systems like e.g. the ones by Burrows et al. (2011) or Stein and Curatolo 

            Figure 9. Performance of ANN1 keeping relation              Figure 10. Comparison of ANN2 predictions vs. real on                 
                             the crankshaft geometry                                     simulation times (scaled) for foreign test objects 
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(1998), we discussed how learning from simulation data differs from traditional knowledge 

discovery from data bases. The transfer of these concepts to a novel assistance systems on the 

level of “Parameter and Behavior Assistance System” was performed in the presented case 

study. The goal was an assistance system for load balancing of a simulation task on a 
heterogeneous hardware architecture. We described the design in detail. To achieve this, our 

assistance system introduced a novel feature set for a learning approach using artificial 

neuronal networks. These were implemented in a two-stage design to minimize additional 

computational costs. The presented work shows how in a complex scenario the decisions of 

assistance systems on more abstract levels like “Model Assistance System” may affect the 

work of the lower levels. As future prospects we see that modern – especially multi-domain 

and multi-physics – simulation tools will integrate more and more assistance systems. 

Sometimes one may realize them because personal preferences will be requested, sometimes 

they will become the equivalent of assistant systems in automotive and do their work in 

silence. To achieve this, the interaction of such assistance systems as well as assistance 

systems particularly on the modeling level need further improvements in future work. 
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