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ABSTRACT 

Topological properties of graphs derived from social network platforms, like Twitter, give important 
insights on the nature of the social activities or on the way information spreads over the network. It may 
have also a relevant impact on designing new applications and improving already existing services. 
Different types of relations among the nodes define different graphs that can be analyzed, by tracking 
how  relations evolve over time. Usually, this is performed in a cumulative way: once an edge is inserted, 

it is never deleted, see Leskovec et al. (2005) and Leskovec et al. (2010). However, the tweet life is 
limited, spanning from its birth to the very last retweet it receives. Therefore, we want to analyze the 
dynamics of  evolutionary graphs,  that is deleting tweets and thus edges among the nodes when they 
naturally expire as well as accounts that become therefore inactive. We introduce a variant of the retweet 
graph which takes into account the dynamics of Twitter users: Dynamic Retweet Graph (DRG). In a 
DRG, once a tweet has been retweeted the last time all the edges representing this tweet are deleted, to 
model the decay of  tweet life in  the social platform. We analyze the characteristics of this graph using 
three different Twitter streams, built on three different contexts: two are event based (the 2015 Black 

Friday and the 2015 World Series), the third is the firehose of the whole Twitter stream, filtered by the 
Italian language. We use some standard social network analysis metrics to compare the structural 
properties of the DRG graph with cumulative evolving graphs. 
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1. INTRODUCTION 

The study of the topological properties of graphs derived from social network platforms has a 

great importance from both social and information point of views. Twitter has specific 

characteristics that makes it substantially different from other social networks such as, for 
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example Facebook, because of its openness to account interactions. Moreover, Twitter allows  

different users activities such as following other users, retweetting posts, mention or 

hashtagging other users, and such interactions between users induce a new kind of network, 

Amati et al. (2015). The following/follower graph (from now on will be denoted as follow 
graph) is the most studied: it represent a relatively static type of relation, and is obtained by 

associating nodes to users and assuming a directed edge from a node a to a node b if a follows 

b. The first quantitative study of the follow graph, Kwak et al. (2010), have found a  

non-power-law for the follow distribution, a short effective diameter, and low reciprocity, 

which overall marks a deviation from known characteristics of human social networks. These 

outcomes were successively strengthen, Myers et al. (2014), by the observation that the 

Twitter follow graph exhibits structural characteristics of both an information network and a 

social network. Other work, Java et al. (2007), studied the follow graphs to identify 

authoritative accounts. 

Unfortunately, the follow graph datasets are prohibitive to crawl on a massive scale due to 

the very restrictive policy of Twitter, and, additionally, it could be not so meaningful for 
describing the Twitter behavior since the follow graph may not completely explain how 

information spreads over the network, Myers et al. (2014). 

Another kind of network derivable from the Twitterverse is the Retweet graph. A Retweet 

graph is defined as a directed graph where nodes are accounts and edges between accounts a 

and b is set when a retweets a tweet of b. Also the retweet graph has been widely studied see 

Yang et al. (2012), Build et al. (2015), Ten-Thij et al. (2014), Amati et al. (2016) to cite a few.  

Graph representation of a network are often used to evaluate the temporal evolution of the 

network, and mathematical models are derived to predict the network growth and the trends 

evolution, see for example Ten-Thij et al. (2014), Bhamidi et al. (2015), Zubiaga et al. (2015). 

All these works consider the graph growth of the Twitterverse in a cumulative way: once an 

edge is inserted, it is never deleted. While this approach could be reasonable when considering 

a more static relationship such as the follow one (the deletion of a follow link occurs rarely 
and hence, a cumulative follow network is a good evolutionary model), it is particularly 

unrealistic when more dynamic relations, such as retweets, are also considered. In this paper, 

we introduce a variant of the retweet graph which takes into account the dynamics of Twitter 

users: Dynamic Retweet Graph (DRG, for short). In a DRG, once a tweet has been retweeted 

for the last time all the edges representing this tweet are deleted, to model the expiration of a 

tweet in a stream of the social medium. In contrast to the DRG, in the Cumulative Retweet 

Graph (in short CRG), vertices and edges once inserted will no longer be removed. 

We analyze the characteristics of these graphs using three different Twitter collections, 

built by monitoring the activities in three different contexts: two such collections are event 

driven (related to the 2015 Black Friday and the 2015 World Series), while the third one is 

obtained from the overall Twitter stream, filtered by language (Italian), denoted Italian 
Firehose. To obtain the Italian Twitter Firehose we use a list of the most used Italian  

stop-words and the Twitter native selection function for languages.  

We analyze the evolution of the DRG over a period of two months, and compare the main 

structural measures that are generally used to characterize the nature of graphs with the ones 

derived from the same datasets considering CRG: average distance, clustering coefficient,  

in- and out-degree distribution;, number of strongly connected components, size of biggest 

strongly connected component. See also Amati et al. (2016) for a preliminary analysis on 

CRG. 
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Results show a significant difference between CRG and the corresponding DRG, both in 

the way they grow, and in the way the above measures evolve. We have seen that only the 

DRG for the Italian Firehose dynamically maintains the same structural properties of the CRG, 

whilst the event based do not preserve some structural properties. 
In this paper, after a fast survey on related bibliography (Section 2), in Section 3 we 

formally define the DRG and the CRG together with other notions that are used in the paper. 

In Section 4, we analyze the evolution of the graphs by using the measures that we have 

previously describes. We close the paper with some final considerations in Section 5, here we 

also describe some interesting problems still left open. 

2. RELATED WORK 

There is a large literature on Twitter social network evolution: Kwak et al. (2010) and Myers 

et al. (2014) compare Twitter with other social networks; Bhattacharya and Ram (2012) and  

Zhou et al. (2010) study the temporal evolution to model topic trends; Bhattacharya and Ram 

(2012), Zhou et al. (2010), Ten-Thij et al. (2014), Ten-Thij et al. (2015) and Zubiaga et al. 

(2015) that assess authoritative users. The analysis to assess the social nature of Twitter, 

whether it is a social network or a social media, is not conclusive since both can be explained, 

see Kwak et al. (2010) and Myers et al. (2014). On the other side, the temporal evolution of 

Twitter is mainly studied for trends analysis. The diffusion of news in Twitter and in several 

popular news media show a star-like phenomenon of the information flows, Bhattacharya and 

Ram (2012). Similar results are derived for the diffusion of information on Twitter during the 
Iranian election on 2009, Zhou et al. (2010). The results showed that the flows tend to be 

wide, not too deep and their size follow a power law-distribution. In Bhamidi et al. (2015), the 

authors proposed and validated the superstar random graph model to represent the 

condensation phenomenon represented by the largest component of the retweet graph. Based 

on this approach, Ten-Thij et al. (2014) and successively Ten-Thij et al. (2015) define a 

mathematical model that describes the evolution of a retweet graph on some basic 

characteristics, such as the density of edges and the size and density of the largest connected 

component. In Zubiaga et al. (2015), the authors explore the types of triggers that spark trends 

on Twitter, through a categorization that allows to quickly identify types of trend. 

3. GRAPH CONSTRUCTION 

The DRG (Dynamic Retweet Graph) G = (V, E, L) is defined as follows: the set V of nodes are 
Twitter accounts and an edge e in E represents an interaction (a retweet) between two 

accounts. In particular, there is a directed edge from an account a towards an account b, if a 

has retweeted at least one tweet of b, that can be itself already a retweet. Observe that user a 

may retweet more tweets of b. For this reason we keep distinct all edges (a, b) by attaching the 

id of the original tweet and the timestamp on which this retweet occurs. This edge information 

is implemented with a list L(e) associated to every edge e = (a, b) that contains pairs (i, t) 
where i is the id of a tweet and t is the timestamp in which a retweets i from b. The pairs of 

L(e) are sorted for timestamps in non-decreasing order. 
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From the data that we have collected in G we define, for all tweets i, the date of birth of i 

(in short, dob(i) is the timestamp of the first retweet of i, similarly, the date of death of i (in 

short, dod(i)) is the timestamp of the last retweet of i. Formally, 

 dob(i) = mine ∈  E{ t: (i, t) in L(e)} 
and 

 dod(i) = maxe ∈  E{ t: (i, t) in L(e)}. 

A tweet with id i is alive at time t if and only if dob(i) ≤ t ≤ dod(i).  
A node v in V is alive at time t if and only if there is a tweet connecting the node v that is 

alive.  

By using these definitions we construct a time series of DRG {Gt} Let t be a timestamp, we 
define the subgraph Gt = (Vt, Et) at time t where Et contains any edge e in E of alive tweets, 

that is, e is in Et if and only if at least one of the tweets in the list L(e) is alive at time t; Vt is 

the set of alive nodes of Et. 

For example if G is the DRG represented in the left part of Figure 1, V20 contains all nodes 

of G since all nodes are alive, because of the tweets with ids 1 or 2 that are the only tweets 

alive before the timestamp 20, and similarly E20 contains all edges of G (see the left part of 

Figure 1. On the contrary E35 contains only edges (a, b) and (c, a) 

 

 

Figure 1. On the left side, an example of a DRG. Edges are labeled by pairs with the  id of the tweet and 
the timestamp of the retweet. On the right side, there is a graphical representation of the life-time of the 

tweets 

In a similar way we denote by CRG (which stands for Cumulative Retweet Graph) the 

graph of retweets that grows in cumulative way (once an edge is inserted, it is never deleted). 

For this graphs a tweet i is alive at time t if and only if t ≥ dob(i). 

In our experiment settings we study the properties of the sequence of graphs {Gt(i)}i ≥ 0 
where t(i+1) - t(i) is 4 hours.  

For our experiments we use a dataset that consists in two different classes of retweet 

graphs: the event driven retweet graph, filtered by topics about specific events (i.e. the Black 

Friday 2015 and the World Series 2015) and the firehose retweet graph, filtered by the Italian 

language from the whole Twitter stream. To obtain the Italian Twitter Firehose we use a list of 

the most used Italian stop-words and the Twitter native selection function for languages. In 

Table 1 it is shown the dimensions of the three graphs. 
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Table 1. Dimensions of the Final graphs 

 Italian Firehose Black Friday World series 
Vertices 2.541739e+06 2.7e+06 4.74e+05 
Edges 1.3708317e+07 3.8e+06 8.40e+05 
Tweets/edges 5.45 2.603 2.3 
Tweets/vertices 29.4 3.66 4 

 

In Figure 2 we show the evolution of the dimensions of the three datasets over the period 

of observation. The figure shows both the trends of the CRG and the DRG.. 
 

 

Figure 2. Number of vertices (blue) and number of edges (green) of: Black Friday, World Series and 
Italian Firehose as functions of hours. With dashed lines are represented the CRG. and with the solid 

lines are represented the DRG 

Most of the graphs densify over time, with the number of edges growing more than the 

number of nodes, and this densification follows a power-law pattern (the Densification Power 

Law, DPL), see Leskovec et al. (2005) and Leskovec et al. (2007). This behavior can be found 

in the growth of the CRG of our three datasets, see Figure 3. 

 

Figure 3. The densification of the three CRG in log-log scale 

Figure 4 shows the densification of the three DRG, here we can observe that DPL also 

holds for all DRG graphs. 
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Figure 4. Densification Power Law holds for all three DRG graphs. The gradient color goes from green 
to red along with the timestamp growth. In the case of the Italian Firehose, when approaching the end of 

the stream the number of edges decays more quickly than the number of vertices 

In Table 2 are reported the coefficients of the power laws that explain the densification of 

our datasets. 

Table 2. Power law coefficients 

 Black Friday World Series Italian Firose 
CRG 1.10 1.19 1.34 
DRG 1.06 1.18 1.32 

 

Referring to Figure 4, it is interesting to note that the event-driven graphs and the firehose 

graph evolve in two different way: the event-driven ones show a rapid growth close to the 

event, and then a slow decline. On the contrary, the Twitter firehose graph have a slower 

growth and a rapid decline. The DPL trends indeed shows that the Twitter firehose graph 
follows two lines: initially it follows the green line, going up, and then it turns downwards, as 

soon as it approaches the final timestamp, with a steeper red line. 

About the event-driven graphs, the rapid growth in proximity of the event is justified by 

the interest for that event. And also the gradual loss of interest explains the slow decline. 

Regarding the Italian Firehose DRG, the growth and decline is due to “border effects”. 

Starting from G0, the empty graph, we observe a number of intermediate sizes before reaching 

a stationary configuration. Similarly, approaching Gfinal, the final empty graph, the stationary 

configuration starts to decay. The tail effect is due to the death of tweets born near to the end 

of time listening window. The final part of the curve is not vertical because the date of death is 

the last time the tweet is retweeted. 

4. GRAPH EVOLUTION 

In our analysis we have considered a number of measures both for the CRG than for the DRG 

and for the three datasets. These measures include, in addition to the number of vertices and 

edges (NumVertives and NumEdges), the following ones: the maximum in- and out-degree of 

vertices (MaxInDegree, MaxOutDegree); number of strongly connected components 
(NumCCs); the size of the biggest strongly connected component (MaxCCsize); the average 

distance between vertices (AverageDist) and the clustering coefficient (ClusterCoeff). These 

measures may or may not be statistically correlated. In Figure 5 are shown the Pearson 
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correlation coefficients between the observed measures. We note that NumVertices, 

NumEdges, MaxInDegree, MaxOutDegree, NumCCs and MaxCCsize are strongly related in 

the case of CRG. This behavior does not occur in DRG.. 

 

 

Figure 5. Pearson correlation coefficients between the observed measures. The coefficients are 
represented by colors 

4.1 Average Distance 

The average distance is obtained by considering the distances between all the connected pairs 

of vertices. Let d be an integer, N(d) is defined as the number of pairs of vertices of G at 

distance exactly d. Then, the average distance, Avg(G), of G is 

 Avg(G) = ∑d ≥ 1d ∙ N(d)/S. 

Where S denotes the number of connected pairs of vertices, that is S = ∑d ≥ 1N(d). 

 

Figure 6. Trends of the average distance for the CRG (dashed lines) DRG (solid lines) for the three 
datasets: Black Friday in blue; World Series in green and Italian Firehose in red 

The trend of the average distances over the time is shown in Figure 6. In the Italian 

Firehose the average distance is almost constant and shows the same trend and the same 

magnitude in the CRG and DRG: in particular the CRG have an average distance slightly 

smaller than the DRG. On the contrary, event-driven graphs are very unstable and growth and 
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decay are very rapid reaching a peek and they do not converge. In addition the average 

distance magnitude of event-driven DRG graphs is much smaller than the conresponding 

CRG.. 

4.2 Clustering Coefficient 

As a second feature we considered the evolution of the global clustering coefficient as widely 

used in social science and introduced by Barrat and Weigt (2000) in the mathematical and 

physical literature. The global clustering coefficient quantifies the probability that if a vertex a 

is connected to vertex b and vertex b is connected to vertex c then the vertex a will also be 
connected to vertex c. In other words, the probability that the friend of your friend is likely 

also to be your friend. Thus, let T be the number of triangles in the network and let P be the 

number of path of length 2, the clustering coefficient be quantified as follows: C = 3∙T/P. Most 
social networks are characterized by relatively hight clustering coefficients: in particular on 

those social networks the global clustering coefficient is higher than in random networks Watts 

and Strogatz (1998). 

 

Figure 7. Trends of the clustering coefficient for the CRG (dashed lines) DRG (solid lines) for the three 
datasets: Black Friday in blue; World Series in green and Italian Firehose in Red 

In Figure 7, we show the clustering coefficient evolution in the three datasets in the case of 

CRG and DRG. For World Series we have very low clustering coefficient for both the CRG 

that for the DRG. In the other two cases we get values slightly higher in the case of CRG 

which tend to decrease considerably as time goes. However these values are an order of 
magnitude lower than the ones observed in social networks, see Myers et al. (2014). 

4.3 In-degree and out-degree Distributions 

The plot in Figure 8 shows the distribution of the in-degrees for a particular DRG Gt. In the  

y-axis are represented the number of vertices with in-degree that corresponds to the value in 
the x-axis. The time-stamp t is chosen so that it is close to the event (in the case of event-
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driven graph) or in the middle of temporal observation window (in the case of Italian 

Firehose). The plot is in logarithmic scale in both the axes. 

 

Figure 8. The in-degrees distributions of three particular DRG, one for dataset 

By observing Figure 8 we deduce that the in-degrees distributions of the three graphs 

follow a power-law distribution. We observe the same behavior also with other timestamps or 

considering the out-degrees distribution. 

 

Figure 9. Power-law exponents of the in-degrees distribution (blue) and out-degrees distribution (green) 
of Italian Firehose, World Series, and Black Friday DRG 

Starting from these consideration we have derived the trend of the power-law exponents of 

the in- and out- degrees distribution. The results are shown in Figure 9. It is important to note 

that, except in the beginning an the end of the observation periods that suffer for the border 

effect, the power-low exponents are substantially constant over time. 

4.4 Other Properties 

In the three datasets and for both CRG and DRG, the number of connected components 

evolves in the same way as the number of vertices, so much that from Figure 5 these two 

measures appear to be strongly correlated. On the other hand, the trends of the sizes of the 

biggest strongly connected components are shown in Figure 10. 
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Figure 10.Trends of the size of the biggest strongly connected component for the CRG (dashed lines) 
DRG (solid lines) for the three datasets: Black Friday in blue; World Series in green and Italian Firehose 

in Red 

Although there is not a strong correlation between the number of vertices and the size of 

strongly connected components (see Figure 5), the two event-driven DRG show a peak in 

correspondence of the event. 

5. DISCUSSION AND CONCLUSIONS 

Thanks to the Big Data technology, we have performed an extensive analysis of the evolution 

of retweet graphs relative to three Twitter streams for different periods of time. This is one of 

the first papers that systematically studies the temporal growth of graphs generated by a social 

network. We conducted the analysis on two types of graphs: the event-driven graphs and the 

graph constructed by an Italian stream of tweets (Italian Firehose). We considered two 

opposing models of evolution graph: the Cumulative Retweet Graphs (CRG) in which the 

vertices and edges corresponding to users and tweets once added, will never be deleted; the 

Dynamic Retweet Graphs (DRG) in which vertices and edges that correspond to inactive users 

and obsolete tweets are cutting off from the graph. 

There are well known properties that real graphs derived from social networks satisfy, such 

as heavy tails for the in-degree and out-degree distribution, shrinking average distance and 
diameters, and the Densification Power Law (DPL), see Leskovec et al. (2005) and Leskovec 

et al. (2007). From our analysis it follows that also, the CRG, both of the whole Italian 

Firehose and the two event-based streams, satisfy such properties - see also Amati et al. 

(2016). Moreover, we have compared the behavior of the DRG with the CRG and we have 

seen that for the Italian Firehose, that contains the involution of many event-based subgraphs, 

the DRG dynamically maintains the same structural properties of the cumulative graph. 

Interestingly, the clustering coefficient and the average distance are very close, witnessing thus 

that the Italian Firehose is indeed the outcome of the union of different communities. 

Conversely, single event-based graphs show the border effects on all structural measures, 
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generally growing and decaying in a similar manner, and reaching a peek activity around the 

middle of their lifetime much below the values of their corresponding cumulative graphs. 

Moreover, all real properties shown for other cumulative graphs, with the exception of the 

DPL and Degree Power Laws, do not hold: average distance and the clustering coefficient 
converge super-linearly. 

One important problem still remains open that is to rigorously define a mathematical 

model that describes the evolution of Twitter graphs according to topic, communities and type 

of events. 
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