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ABSTRACT

Objective: To study the antioxidative and protective properties of aqueous extract of
Hammada scoparia (H. scoparia) against the effects of sub-chronic aluminium (Al)
intoxication on mnemonic process and some neurochemical markers.
Methods: Al was administered intraperitoneally (50 mg/kg body weight, three times a
week), and H. scoparia and malic acid were given orally by gavage at a daily dose
(100 mg/kg body weight) to rats for 90 days.
Results: Al caused significant short-term and long-term memory disturbances, a
decrease in locomotor activity, a significant inhibition of acetylcholinesterase activity in
brain and a significant depletion of antioxidant enzymes (catalase, glutathione reductase
and glutathione peroxidase) and glutathione. It significantly increased lipid peroxidation
levels in cerebrum and cerebellum. However, treatment with H. scoparia extract pro-
tected efficiently the neurological functions of intoxicated rats by considerably
increasing antioxidants levels and decreasing production of thiobarbituric acid reactive
substances by 4.26% compared to untreated group. We noted some controversial results
with malic acid. It showed some positive results but it was not as efficient as
H. scoparia extract. Current results were consistent with histopathological observations
including neurodegeneration and vacuolated cytoplasm (spongiosis) in Al treated sec-
tions when H. scoparia and malic acid treated sections showed marked neuroprotection
signs.
Conclusions: This study strongly suggested that H. scoparia extract could possibly
restore the altered neurological capacities and antioxidant power in rats, and it could even
be a good alternative to chelating agents or other chemical medicines against Al-induced
neurotoxicity.
1. Introduction

Aluminium (Al) is the most abundant metal present on the
earth's crust. It is extensively used in daily life and was found in
drinking water probably due to water purification procedures[1].
The new 20th century industrial products containing Al salts
like antiperspirants are another source of exposure; vaccines
adjuvants, phosphate binders, dialysis, total parenteral nutrition
solutions and foods provide easy exposure of Al to human
being[2–7].

The toxicity of Al is directly linked to its bioavailability. In
biological systems, this element has been shown to accumulate
in many mammalian tissues such as brain, bone, liver and kid-
ney[8–10], and its elimination half-life from human brain is
calculated to be seven years[2].

Al is the most common neurotoxicant[11–16], and the evidences
about its implication in developing Alzheimer's disease are
getting increased[17–20]. It was also found that this trivalent
cation can participate as a factor in the development of
neural tube defects in human[21]. Many studies showed that
there were neuropathological, neurobehavioral, neurophysical
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and neurochemical changes after Al exposure[22–27]. The brain is
considered to be the most vulnerable to the toxic manifestation
of Al, and it is particularly sensitive to oxidative stress due to
increased levels of free radicals and decreased levels of
antioxidants following toxicity[28–32].

Oxidative events have frequently been linked to neurode-
generative disorders such as Alzheimer's disease[33–36]. Public,
academic, and government interest in traditional medicines or
their isolated bioactive constituents seems to become amplified
because of the adverse drug reactions and economic burden of
the modern system of medicine[37].

Hammada scoparia (Pomel) Iljin (H. scoparia) belongs to
Chenopodiaceae family, and it is a glabrous, grey brown, woody,
dwarf shrub usually turning darker or blackish when dried. It
grows wild in dry habitats of the Mediterranean region and the
Near East[38]. In Algeria, it is commonly known as “rimth”.
Tunisian colleagues reported that H. scoparia possessed a large
spectrum of pharmacological and therapeutic activities and it
has been shown recently that flavonoid-enriched fraction of the
plant has a protective effect on hepatic ischemia/reperfusion
injury. A hepatic damage usually happens during liver surgery
and transplantation[39]. Another study showed molluscicidal
activity of the plant leaves extract against Galba truncatula[40].
It also possesses a potent antitumoral activity[41]. On the other
hand, malic acid (MA), a naturally occurring, nontoxic and
organic dicarboxylic acid, and magnesium are both known to
be involved in the processes of generating adenosine
triphosphate through Krebs cycle, and they play a pivotal role
in mitochondrial adenosine triphosphate synthesis[42]. The
MA-magnesium combination presented a big efficacy in treat-
ment of patients having fibromyalgia when served as a die-
tary supplement[43]. Additionally, the chelation abilities of
MA against Al toxicity were assessed at the University of
Barcelona when toxicologists administered MA to mice
exposed to Al at about one-fourth of the LD50 level. LD50 is
the concentration of compound that will kill 50% of the exper-
imental animals. Compared to other chelators (oxalic acid,
malonic acid and succinic acid), MA showed the best therapeutic
effectiveness at the same level compared with synthetic defer-
oxamine mesylate[44].

The lack of data information about the protective properties
of H. scoparia against Al-induced neurotoxicity pushed us to
conduct the present study as an answer to the wonders that if a
nutritional strategy like chronic administration of aqueous
extract of H. scoparia could efficiently prevent Al-induced
neurotoxicity in terms of oxidative stress in rat brain as it
could be with chelation therapy.

2. Materials and methods

2.1. Preparation of Arthrophytum plant extracts

Whole plants of H. scoparia [Arthrophytum scoparium
(Pomel) Iljin, Haloxylon articulatum (Cav.) Bunge, Haloxylon
scoparium (Pomel)][45,46] were collected from the region of Aı€n
Sefra, Algeria in June, 2013. The plant was subjected to the
identification and authentication at the Herbarium of Botany
Directorate in Ahmed Ben-Bella (Oran) University (voucher
specimen No. LB0748). Twenty five grams of aerial parts of
the plant were extracted with 250 mL of distilled water by the
method of continuous hot extraction at 60 �C. Once the filtrate
recovered, it was lyophilized and the residue collected (yield
11%) was stored at −20 �C.

2.2. Animals and experimental design

A total of 24 male Wistar rats with weight of (150 ± 10) g
were used for the study. The processes of protocols using the
experimental animals were in accordance to the Guide for the
Care and Use of Laboratory Animals (8th edition, 2011) and
approved by the scientific committee of the university. The
animals were housed in the cages with six per cage and fed ad
libitum, and they were exposed to a 10 h light: 14 h dark cycle
and the room temperature was maintained at (23 ± 2) �C.
Animals were divided into four groups of six animals each.
Group 1 (control) served as untreated control and received a
intraperitoneal injection of 0.9% saline solution (NaCl); Group
2 consisted of Al intoxicated rats which were given a dose of
50 mg/kg body weight (BW) of Al chloride (AlCl3$6H2O)
three times a week; Group 3 was Arthrophytum (H. scoparia)
treated group which received intragastrically aqueous extract at
a dose of 100 mg/kg BW of H. scoparia simultaneously with
an intraperitoneal injection of 50 mg/kg BW of Al chloride
(AlCl3$6H2O); Group 4 was MA treated group which was
given 100 mg/kg BW of MA by gavage in parallel with
intraperitoneal injection of 50 mg/kg BW of Al chloride
(AlCl3$6H2O).

All the groups were treated under the same housing con-
ditions for a period of 90 days. The injection solution was
prepared in sterilized saline solution. The animals were
weighed and behavioural observations were recorded at the
end of the experiment, then the animals were sacrificed under
pentobarbital anaesthesia. The organs were removed, cleaned,
washed with saline (0.9% of sodium chloride) then weighed
and the organ weight ratio was estimated, and the relative
weight of organs was calculated as g/100 g BW.

2.3. Tissue simple preparation

After anesthetization by intraperitoneal injection of pento-
barbital, animals were sacrificed and the brains were immedi-
ately removed, placed in ice-cold isotonic saline and dissected
into cerebrum and cerebellum which were stored at −80 �C.
Later the brain regions were taken and minced into small pieces
then homogenized with ten volumes of phosphate buffer
(0.1 mol/L, pH 7.4) containing 0.3 mol/L sucrose and 0.08 mol/
L potassium chloride using WiseTis® (HG-15A) homogeniser,
and the homogenates were then centrifuged at 7600 r/min for
10 min at 4 �C and the resultant supernatant was further
centrifuged at 12000 r/min for 10 min at 4 �C to yield the
supernatant which was later used for the estimation of anti-
oxidants parameters [malondialdehyde (MDA), catalase
(CAT), glutathione (GSH), glutathione peroxidase (GPx),
glutathione reductase (GR)] and acetylcholinesterase (AChE)
activity.

2.4. Behavioural parameters

Behavioural tests were conducted in order to evaluate how Al
intoxication can affect locomotor, learning and memory
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capacities in the different experimental groups and to assess the
ability of either plant antioxidant molecules or chelators to
restore a physiological homoeostasis. The following behavioural
tests were used.

2.4.1. Open field
The open field test provides simultaneous measures of

locomotion and anxiety[47]. The open field used was a square
wooden arena (90 cm × 90 cm × 25 cm). The floor was
divided by white lines into 36 smaller squares (15 cm × 15
cm). The open field maze was cleaned between each rat to
avoid odour cues. The rats were carried to the test room in
their home cages and tested once at a time period of 30 min
each. Other parameters of exploratory activity such as rearing,
grooming and sniffing were carefully observed and time spent
in performing each behaviour was recorded. These parameters
were defined as follows: rearing was defined as standing on
hind legs with paws pressing against the wall of the arena;
sniffing was defined as continuously placing nose against the
floor for at least 2 s; grooming was defined as using paws or
tongue to clean/scratch body[48].

2.4.2. Elevated T-maze
The test was realized according to the procedure described by

Viana et al.[49]. This behavioural task assessed an effective
memory of the experimental model related to the environment
due to the open arms of the elevated T-maze apparatus[49–53]

which was elevated by 50 cm from the ground and composed
of two open arms of equal dimensions (50 cm × 10 cm) and
two enclosed arms surrounded by 15 cm high walls. Rodents
were found aversive to the characteristics and keeping a vivid
memory of the aversive situation through measuring the time
spent in the open arms during the test[50,53].

Right after the open field test, rats were placed at the end of
the enclosed arms and the time (latency) taken to withdraw
from the arm was recorded over 300 s (a cut off time if no
changes have been noted). This time was called baseline.
Afterwards this step was repeated two successive times at
about 30 s of intervals between all attempts and the times to
get out from the closed arms were recorded, and these were
called inhibitory avoidances (inhibitory avoidance 1, inhibi-
tory avoidance 2). The escape test was performed following
the inhibitory avoidance 2, and it was represented by the time
used for animal to withdraw from the open arms. To assess
long-term memory, inhibitory avoidance and escape were
measured again 72 h later[50,53].

2.5. Lipid peroxidation (LPO) levels, reduced GSH and
antioxidant enzyme activities

2.5.1. LPO levels [thiobarbituric acid reactive
substances (TBARS)]

The LPO levels in cerebrum and cerebellum homogenates
were measured colourimetrically as described by Okhawa
et al.[54] by measuring MDA formation. This is a method based
on the reaction of thiobarbituric acid with some products of lipid
peroxidation in acidic environment at increased temperature.
The formed product was coloured in pink which enabled its
spectrophotometric determination.
In brief, 0.2 mL of supernatant prepared from homogenized
tissues using 9 mL potassium chloride (1.15%) was added with
0.2 mL of sodium dodecyl sulphate, 1.5 mL of acetic acid and
1.5 mL of thiobarbituric acid. After completing volume with
4 mL of distilled water, the samples were heated in boiling water
bath for 60 min, and the samples were then cooled and centri-
fuged at 4000 r/min for 10 min. Absorbance was measured at
535 nm. The amount of MDA was calculated using a molar
extinction coefficient of 1.56 × 105 mol/L/cm.

2.5.2. Determination of CAT (EC 1.11.16) levels
CAT was assayed by the method of Aebi[55] with

slight modification. The rate of H2O2 decomposition was
followed by monitoring absorption at 420 nm. In brief,
250 mL of phosphate buffer (0.066 mol/L), 250 mL of
cerebrum and cerebellum homogenates and 250 mL of
0.03 mol/L H2O2 (prepared in phosphate buffer, 0.066 mol/
L, pH 7.0) were added in a cuvette. After incubation for
5 min, TiOSO4 was added to the mixture and absorbance
was directly measured against phosphate buffer as a blank,
and one unit of CAT is equal to 1 mmol H2O2 degraded/
mg of protein.

2.5.3. Reduced GSH levels
Reduced GSH was determined using a colourimetric tech-

nique as described by Sedlak and Lindsay[56]. The principle was
based on reaction of compounds containing sulfydryl groups
with 5,50 dithiobis(2-nitrobenzoic acid) (DTNB) which pro-
duced yellow coloured product that absorbed at 412 nm. In brief,
1 mL of cerebrum and cerebellum supernatant (homogenates)
was prepared after treatment with 1 mL of 50% trichloroacetic
acid-distilled water (1:4), and the supernatant obtained after
centrifugation at 2400 r/min for 15 min was mixed with 0.02 mL
of 0.01 mmol/L DTNB and an amount of Tris buffer (0.4 mol/L,
pH 8.5). Total GSH content was expressed as nanomoles of
GSH per milligram of protein.

2.5.4. GR
GR catalyses the conversion of oxidized glutathione

employing nicotinamide adenine dinucleotide phosphate
(NADPH) as a substrate, and it was assayed by the procedure
adopted by David and Richard[57].

The amount of NADPH utilized was a direct measure of
enzyme activity in our tissue homogenates. In brief, the assay
system contained 1 mL of phosphate buffer (0.12 mmol/L, pH
7.2), 0.1 mL of 15 mmol/L ethylene diamine-tetra-acetic acid,
0.1 mL of sodium azide (10 mmol/L), 0.1 mL of oxidized
glutathione and 0.1 mL of supernatant (cerebrum and cerebellum
homogenates) and the volume was made up to 2 mL with
distilled water. The reaction was started by the addition of
NADPH solution, and the absorbance was read at 340 nm and
the enzyme activity was expressed as mmol NADPH oxidized/
mg of protein.

2.5.5. Activity of GPx
GPx (EC 1.11.1.9) activity in brain tissues was assessed by

the method of Rotruck et al.[58]. Briefly the reaction mixture
contained 0.2 mL of Tris–HCl buffer (0.4 mol/L, pH 7.0),
0.2 mL of reduced GSH (1 mmol/L), 0.1 mL of sodium azide
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(10 mmol/L), 0.1 mL of H2O2 (1 mmol/L) and 0.2 mL of tissue
sample.

After incubation at 37 �C for 10 min, reaction was stopped by
the addition of 0.4 mL of 10% trichloroacetic acid, and tubes
were subjected to centrifugation at 2400 r/min for 10 min. The
supernatant (0.2 mL) was then added with 0.1 mL Ellman's re-
agent (0.019 8 g of DTNB prepared in 0.1% sodium citrate).
Absorbance was recorded at 340 nm.

2.5.6. Estimation of tissue AChE
AChE belongs to cholinesterase family. The enzyme activity

was assessed according to the procedure of Ellman et al.[59].
Acetylthiocholine was hydrolysed by AChE to acetic acid and
thiocholine. The catalytic activity was measured by following
the increase of yellow anion, 5-thio-2-nitrobenzoate, produced
from thiocholine when it reacted with DTNB[59] at 410 nm.

In brief, an aliquot of cerebrum and cerebellum homogenate
(0.02 mL) was added to tubes containing 3 mL of phosphate
buffer (100 mmol/L, pH 8.0), 0.02 mL of acetylthiocholine so-
lution (75 nmol/L) and 0.1 mL of DTNB.

2.5.7. Protein estimation
Protein was measured by the method of Lowry et al.[60] using

bovine serum albumin as a standard, and necessary dilutions
were realized to get the correct concentrations of the proteins
present in tissues.

2.6. Histopathological studies [haematoxylin and eosin
(H&E) staining]

Samples (entire brains: cerebrum and cerebellum) from each
group were selected, transversely cut and fixed in 10% buffered
formaldehyde solution, then conserved in paraffin. Four-
micrometre tissue sections were realized and dried at adequate
temperature to get paraffin removed from the glass slides. The
next step was to rehydrate sections then stain them with hae-
matoxylin and eosin as nuclear and cytoplasmic stains. The
sections were analysed using Leica®DM5000B microscope and
photographed with Leica EC3 digital camera.

2.7. Statistical analysis

Data were expressed as mean ± SEM with six rats in each
group. Data comparisons were carried out by using One-way
ANOVA followed by least significant difference (LSD) test
Table 1

The effects of H. scoparia and MA on BW, absolute whole brain, cerebrum a

of treatment.

Groups Initial BW (g) Final BW (g) Absolute
whole brain
weight (g)

Relative
brain w
(g/100 g

Control 150.12 ± 4.92 270.52 ± 4.92 2.015 ± 0.086 0.842 ± 0
AlCl3 150.85 ± 7.45 230.85 ± 4.92* 1.879 ± 0.096 0.757 ± 0
AlCl3+ H.
scoparia

151.10 ± 12.61 237.60 ± 15.61* 1.936 ± 0.057 0.841 ± 0

AlCl3 + MA 150.00 ± 8.06 237.50 ± 17.14* 1.999 ± 0.060 0.798 ± 0

Values are given as mean ± SEM each group. *: P � 0.05 compared with
to compare means between the different treatment groups,
and results were considered statistically significant when
P � 0.05.

3. Results

3.1. Effect of treatment on body, cerebrum and
cerebellum weights

As shown in Table 1, there was a significant difference in
BWs of all experimental animals compared to controls. How-
ever, there was no significant change between Groups 2 and 3.
The relative whole brain and cerebrum weights were also
significantly lower in Group 2 than in the control group, and
administration of H. scoparia in parallel with Al produced a
recovery in relative whole brain compared to Group 2. MA had
the same effect on relative cerebrum weight.

3.2. Effect of treatment on behavioural parameters

The Al chloride treatment induced significantly decreased
(P � 0.05) locomotor activity as shown in Figure 1. This was
concluded through the significant decrease in numbers of
crossed squares and the highly significant decrease in rearing
and sniffing performed by the animals in intoxicated group
compared to the control one (Figure 1C,D).

Treatment with H. scoparia aqueous extract during Al
exposure showed a very protective effect by significantly
improving some of the previously altered scores in intoxi-
cated rats, and this result was available for MA treatment
group.

The mean inhibitory avoidance latency (IAL) and escape
latency (ESL) of the elevated plus maze task presented some
adverse variations. The IAL was significantly higher in
intoxicated animals compared to control (Figures 2–5)
(P � 0.05), and the rats permanence time (IAL1) was three
times much longer in enclosed arms compared to baseline. In
the next attempt (avoidance 2 test), the results showed a highly
significant decrease in term of latencies in the protected arms
(169 s was spent by intoxicated rats when controls stayed there
over 300 s).

Treatment with Al and H. scoparia simultaneously presented
a recovery in term of learning-short term memory capacities, and
the animals had been stationary for about 30.8 s more than those
in Al treated group.
nd cerebellum weights of control and rats treated with AlCl3 after 90 days

whole
eight
BW)

Absolute
cerebrum
weight (g)

Relative
cerebrum
weight

(g/100 g BW)

Absolute
cerebellum
weight (g)

Relative
cerebellum
weight

(g/100 g BW)

.166 1.498 ± 0.061 0.640 ± 0.021 0.517 ± 0.031 0.198 ± 0.014

.166* 1.415 ± 0.093 0.553 ± 0.002* 0.456 ± 0.022 0.198 ± 0.016

.160* 1.453 ± 0.020 0.588 ± 0.019 0.482 ± 0.034 0.196 ± 0.018

.166 1.547 ± 0.043 0.632 ± 0.016# 0.462 ± 0.039 0.208 ± 0.008

control group; #: P � 0.05 compared with AlCl3 group.
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For the first escape trial, rats joined the closed arms of the
apparatus within 17 s, 36.61 s, 16.65 s, and 87.88 s for Groups
1–4 respectively.

The long-term memory tests (avoidance 3: IAL3 and escape 2:
ESL2) was performed at 3 days after avoidance 2 and escape 1
tests. Control andH. scoparia treated rats performed good scores,
which were very close to each other even there was no statistical
differences between values of both IAL3 and ESL2 for the two
groups, when those of Al intoxicated group clearly indicated an
impairment in long-term memory process through a highly sig-
nificant decrease in IAL3 compared to controls (Figure 2).
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Finally, MA treatment procedure presented some contradic-
tion since there was no statistical difference between avoidances
of Al + H. scoparia treated group and Al intoxicated group, but
their ESL2 values were favourable for amelioration of the
memory process.

3.3. Effect of treatment on AChE activity

Acute/sub-chronic Al chloride administration in rats pro-
duced a significant (P � 0.05) decrease in cerebrum AChE ac-
tivity by 19.13% as compared to control rats. However, the
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Arthrophytum (100 mg/kg) treatment improved modestly the
alteration in AChE activity in the region mentioned above when
compared to Al treated rats (Figure 6).

3.4. Effect of treatment on lipid peroxidation and GSH
contents in cerebrum and cerebellum

Changes in TBARS and GSH levels were illustrated in
Figures 7 and 8, and a significant increase in TBARS levels by
53.43% in cerebrum of intoxicated rats was noted when
compared to controls. A highly significant (P � 0.001) increase
was also noted in cerebellum of exposed rats, and these results
were accompanied by a reduction in GSH levels in cerebrum and
cerebellum of Al treated rats (59.72% and 5.04% respectively) in
comparison with those of controls.

The co-administration of H. scoparia and Al decreased the
TBARS production by a rate of 4.26% in cerebrum and 72.36% in
cerebellum. This treatment alleviated significantly GSH levels in
brain regions when compared to intoxicated rats. The plant extract
showed more efficient results in term of restoring normal values
of some altered parameters than the chelation strategy did.

3.5. Effect of treatment on antioxidant enzymes activities
in cerebrum and cerebellum

Exposure to Al produced significant changes in the
cerebrum and cerebellum redox status. A very significant
decrease (P � 0.01) in CAT levels, GR and GPx activities
was recorded in intoxicated group compared to controls
(Figures 9–11).

Oral administration of aqueous H. scoparia extract during Al
exposure showed an amelioration in CAT, GR and GPx by
significantly increasing their values (61.79%, 43.74% and
48.47% respectively) in cerebrum when compared to those in Al
treated group.

Treatment with MA failed again in establishing normal balance
between oxygen reactive species (ROS) generating and antioxidants.

3.6. Effect of treatment on brain histopathological
changes

Pathological changes in the cerebrum and cerebellum
of Al intoxicated rats were examined under light microscopy.
We noted that there were a neuronal loss, a spongy
degeneration and vacuolated cytoplasm when sections were
found to be intact in control group. These changes were
minimized in Al + H. scoparia and Al + MA treated groups
(Figure 12).
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Figure 7. Effects of H. scoparia and MA on TBARS (nmol/mg of protein) in cerebrum (A) and cerebellum (B) of control and rats treated with Al after 90
days of treatment.
Values are given as mean ± SEM. **: P � 0.01, ***: P � 0.001 compared with control group. ##: P � 0.01, ###: P � 0.001 compared with AlCl3 group.
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Figure 12. Effects of H. scoparia on Al-induced histological changes in cerebral cortex and cerebellum of control and experimental rats.
A and B (control): Sections of cerebral cortex (A) and cerebellum (B) showing normal histo-architecture (H&E, 20×); C and D (Al: 50 mg/kg BW): Sections
of cerebral cortex (C) and cerebrum (D) showing neuronal spongiosis, gliosis with apparent vacuoles in both regions in addition to disorganization in
cerebellum layers (H&E, higher magnification, C: 40×; B: 10×); E and F (Al + H. scoparia 100 mg/kg BW): Sections of cerebrum (E) and cerebellum (F)
showing very reduced vacuolar spaces around the pyramidal cells in cerebral cortex, a modest loss in Purkinje's cells and a minimized spongiosis in
cerebellum (H&E, 20×); G and H (Al + MA 100 mg/kg BW): Cerebrum and cerebellum section showing less alterations in the histoarchitecture compared to
Al group especially in cerebellum, some vacuolated neuronal cells still exist in cerebrum (H&E, 20×). GL: Granular layer; ML: Molecular layer; GC: Glial
cell; PM: Pia mater; PC: Purkinje's cell; Py: Pyramidal cells; VPy: Vacuolated pyramidal cell; PCL: Purkinje's cell loss; WM: White matter; S: Spongiosis;
OD: Oligo dendrocyte.
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Figure 11. Effects of H. scoparia and MA on GPx (nmol/min/mg of protein) activity in cerebrum (A) and cerebellum (B) of control and rats treated with Al
after 90 days of exposure.
Values are given as mean ± SEM. *: P � 0.05, **: P � 0.01, ***: P � 0.001 compared with control group. ###: P � 0.001 compared with AlCl3 group. H. sc:
H. scoparia.
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4. Discussion

The results from the present research indicate that Al expo-
sure has changed the BW and relative weights of the whole brain
and cerebrum, which reveal a possible detrimental effect of Al
on the body and brain weight as compared to the control
(Table 1). These results concur with many previous researches.
Julka et al.[61] reported that sub-acute Al exposure of rats
generated a loss of about 27.8 g in animals BW. Tripathi et al.[62]

also noticed a reduction in terminal body weights of animals
administered Al during 90 days while Sharma et al.[35] noticed
a significant reduction of about 50.44% gain in weight in Al
treated rats. The loss of brain weight after sub-acute Al treat-
ment could be a result of the spongiosis of the neuropil resulting
in retarded development of the animals[61]. This agrees with our
results about histology of studied organs.

In this study, we have investigated the behavioural and
the potential neuropathological effect of acute/sub-chronic
experimental exposition of rats to Al chloride, and tested ani-
mals presented neurological disorders including learning im-
pairments and memory deficits as well as neuronal loss when
compared to controls.
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In the present study, Al chloride was found to decrease the
crossing scores according to the results obtained after perform-
ing in the open field apparatus. Even secondary parameters
evaluated in this test were altered including rearing, grooming
and sniffing. Similar observations have also been reported by Lal
et al.[63] who noticed significant reduction in the spontaneous
locomotor activity after daily Al treatment of rats (500 mg Al/
L in drinking water) for 180 days. Sharma et al.[35] made the
same observations after an intragastrically administration of Al
lactate to rats for 12 weeks. Yellamma et al.[64] also reported
an hypokinesia (reduced locomotor activity) in rats
administered with sub lethal dose of Al once a day for 25
days continuously. Elsewhere, Abd-Elhady et al.[13] did not
find any distinct effects of Al on crossing or rearing done by
the animals.

The elevated T-maze apparatus which reflects learning and
memory abilities by measuring inhibitory avoidance revealed
that intoxicated animals presented differences in IAL compared
to normal control animals. This refers to possible learning pro-
cess failures and memory deficits caused by the neurotoxicant.

These results are supported by those described in previous
works when peripheral and oral administrations of Al to rodents
lead to learning and memory deficits[65–67], and the same result
was found in studies using other forms of Al which showed
that administration of Al citrate to rats decreased IAL
values[53]. Similar results that indicate impairments of rats
receiving Al in drinking water in the passive avoidance task
have been reported[68]. Abd-Elhady et al.[13] also demonstrated
that Al caused a deterioration in learning and memory
functions in passive avoidance task after Al treatment. The
latencies of animals in the closed arms of the previously
described apparatus seem to be higher when compared the
values of inhibitory avoidance of the intoxicated group to their
baseline latency and the IAL 1 values of control group. This
matches with anterior works reporting that Al citrate
administration impaired inhibitory avoidance performance[53].
While others have indicated that the stay of animals is
normally longer in the closed arms in attempts following the
first trial because they prefer to explore more open space than
confine and protect ones[50,53].

In Arthrophytum treated group and MA treated group, we
found that IAL 1 is particularly closed to IAL of control group,
which reflects an effective action of plant molecules and
chelating elements on restoring normal state.

In the present work, short-term memory was seen to be
significantly affected by Al exposure referring to values of
Avoidance 2. The amnestic effect of Al was also consolidated by
performances done 72 h after avoidance 2 when tested IAL3 in
AlCl3 group was reduced in comparison with control group
suggesting a long-term memory alterations.

Obtained results showed that one-way escape from the open
arms of the T-maze was not affected by Al intoxication as it was
with IAL trials when compared intoxicated group to control
group. Additionally it was shown that memory in this task was
not impaired. Thus, different types of memory seem to exist,
each having specific underlying brain mechanisms. This can be
explained by the fact that some brain structures (like amygdala
complex) lesions attenuate expression of emotion, behaviour and
memory whereas their integrity is not required for other types of
memory[50,69]. Based on our results, Al-induced neuro-
degeneration seems to be verified, and this is in accordance with
the findings that memory impairments along with compromised
learning behaviour are the major neurodegeneration disorders[70]

such as Alzheimer's disease affecting particularly some brain
structures like hippocampus[71] and amygdala[72].

Al exposure is known to produce neurotransmission
disruption and cholinotoxicity[73–75], and acetylcholine is
usually related to short-term memory. Our finding demon-
strated that Al causes disturbances in cholinergic neurotrans-
mission, and H. scoparia extract co-administrated with Al
revealed a better effect on learning in animals since passive
avoidance in this group were improved in comparison with
intoxicated animals. These results concur with previously re-
ported data indicating that a co-administration of some plant
preparation like Vitis vinifera extract with Al showed a re-
covery from amnestic troubles[76].

AChE is usually located in membranes (erythrocytes) of
vertebrates and non-vertebrates. The enzyme controls ionic
current in excitable membranes and plays an essential role in
nerve conduction process at the neuromuscular junction[77] and
motor function[78]. That's why some previous studies reported
that Al altered the muscular-locomotion activities by
decreasing them, which can explain our result about behaviour
(crossing task values) since high levels of Al not only interfered
with the memory but also attenuated the motor functions and led
to decreased motor activities and grip strength in mice[79].
However, giving H. scoparia antioxidant extract could restore
altered motor function and acquisition-memory process (closed
to normal) by modulating AChE activity.

Although AChE enzyme always receives a big attention in
the study of Al neurotoxicity, the elevated acetylcholine levels
are known to improve learning and memory[80] and AChE plays
an essential role in cognitive functions[81] by two mechanisms
including elevating acetylcholine levels and promoting the
cholinergic neurogenesis[82]. Results of previous studies
showed that Al has biphasic effect on AChE activity
(increased at 4 and 14 days and decreased at 60 days of
intoxication)[83]. Lakshmi et al.[76] have also reported an
decrease in AChE activity in brain as a response to Al
intoxication.

AChE activity measured in the present study was observed to
be decreased after Al exposure. This could be explained by an
accumulation of the metal in rat brain. Authors mentioned that
exposure of rats to Al chloride by intubation for 60 days pre-
sented accumulation of the neurotoxicant at different levels in
the brain[83] affecting even serotoninergic neurotransmission.
Similar results suggested that the decrease of 5-HT level in
hippocampus while causing cholinergic hypofunction by
administration of neurotoxin AF64A is a direct result of losing
cholinergic input[73]. Also, it has been observed that Al
influences the metabolism of acetyl-CoA which leads to a
possible reduction in the formation of acetylcholine and hence
the substrate for AChE enzyme[84]. These results were also
described by Ravi et al.[85].

Other works highlighted the relation between Al exposure
and glucose since production of acetyl-CoA is widely linked to
pyruvate, a key molecule in glycolysis process[86]. Our results
about AChE activity disagree with some others indicating that
Al exposure led to an increase in AChE activity in brain of
rats[87–89]. This could be explained by the hypothesis of the
biphasic effect of Al related to the metal exposure duration
established by Kumar[83].

H. scoparia extract administered in parallel with Al improved
modestly the decreased enzyme activity in brain regions. Similar
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reports have been noted by Kakad et al.[90] and Lakshmi et al.[76]

when administration of Vitis vinfera, a black grapes fruit from
India, to Al exposed rats alleviated AChE activity. Also
Kumar et al.[25] have found that chronic oral treatment with
curcumin (30 mg/kg and 60 mg/kg) significantly ameliorated
the reduction in AChE activity compared to Al chloride
treated group.

The positive response of cholinergic neurons in term of
system reactivation has been explained by two hypothesis:
antioxidant plant extract/flavonoids administration changed the
configuration of AChE or corrected the impaired metabolism of
glucose[76,91].

Since it was reported that the manifestation of oxidative stress
generation in brain was a response to sub-chronic exposure to
Al[32,74,89], we undertook the present study based on measuring
LPO levels and quantitating endogenous antioxidants (CAT,
GR, GSH, GPx).

Now, it is well documented that Al-induced oxidative stress
in neurons involves an imbalance between generation of ROS
and antioxidants[92,93].

Lipid oxidation products are one of the main consequences
associated with oxidative stress and brain is considered to be the
most sensitive target to be damaged due to the high level of lipid
content and tissue oxygen consumption[32].

The significant increased cerebrum and cerebellum levels of
MDA found in our study reflect the efficiency of Al in acti-
vation of lipid production process. These results corroborated
the previous findings that Al exposure enhanced iron-
dependant LPO in rat brain[94,95]. While administration of Al
through intraperitoneal injection increased LPO in cerebrum
and cerebellum.

GSH is an important intracellular non-enzymatic antioxidant,
and it is considered as the most important scavenger of free
radicals and cofactor of many detoxifying enzymes against
oxidative stress like GPx, GR and others. It is able to regenerate
the most important antioxidants, vitamins C and E, back to their
active forms[96,97].

In our case, we noted decreased GSH levels in cerebrum and
cerebellum of intoxicated rats compared to those found in
controls. Antioxidant enzymes are the first cellular molecules
required for defence against ROS generation. Thus, in the
present work, increased oxidative stress and brain injury were
evident by decreased GPx, GR activities and CAT level in
cerebrum and cerebellum. All of these records are in agreement
with the fact that Al reduced the total antioxidant parameter
levels enhancing imbalance between pro-oxidant and antioxi-
dant potentials. Results similar to ours made it clear that Al
chloride intraperitoneally administered at dosages of 0.7 and
35 mg/kg BW for 14 days resulted in higher Al concentration
in hippocampus and cerebellum in the Al treated group
compared to the control[26]. Also, Azadeh and Abdollahi[98]

reported that most studies on Al toxicity demonstrated a
decrease in both the activity of GPx and the concentration of
GSH. Nayak et al.[99] found the same results with GR and
GSH when co-exposure of rats to both ethanol and Al fav-
oured the development of Al-induced oxidative stress in
cerebrum.

H. scoparia administration to Al treated rats was found to
significantly re-equilibrate antioxidant parameters back to normal
values. This positive effect of Algerian Arthrophytum on oxidative
stress defence is probably due to its secondary metabolites
composition including alkaloids, polyphenols and flavonoids.
Benkrief et al.[100] reported thatH. scoparia fromAlgeria contained
the alkaloids carnegine, and N-methylisosalsoline as major
tetrahydroisoquinoline alkaloids in addition to isosalsoline, N-
methylcoryaldine, dehydrosalsolidine, isolsalsolidine and N-
methyltryptamine as minor alkaloids, while others reported that
H. scoparia from Algeria Nabors regions contained quercetin-
galactose-rhamnose commonly called rutin as the major and
most active flavonoid[42].

Similarly, recent studies highlighted the determinant role of
some specified isolated secondary metabolites such as resvera-
trol[101] and quercetin[35] in protection and remission from
respectively Al-induced brain neuroinflammation and cognitive
impairments/neurotransmission dysfunction related to oxidative
damage. Similar studies using bioflavonoids from plant and fruit
extracts such as pomegranate peel showed decreased Al accu-
mulation and stimulated anti-apoptotic proteins against Al
exposure in rat brain[102]. Prakash et al.[103] also found that fisetin,
a natural flavonol, can attenuate increased LPO and reduced
GSH levels in brains of Al chloride treated mices. Similar
findings were recorded when curcumin supplementation
helped to normalize the levels of some oxidative stress
parameters including reduced GSH following chronic
administration of Al to rats[104]. In the other hand, some
authors claim that the supplementation of rodents by some
trace element metals as antioxidants like selenium is suitable
for removing Al toxicity[105].

The examination of H&E stained sections revealed that
Al can cause marked histopathological abnormalities in
brain tissues (cerebrum and cerebellum) including neuronal
vacuolization, spongiosis, gliosis and cellular rarefaction
in cerebral cortex. These results are correlated to those
claimed by many authors. Bhadauria[9], Prakash et al.[103],
Bihaqi et al.[106], Matyja[107] and Sumathi et al.[108] all
reported the same modifications induced by Al on cerebral
cortex histoarchitecture. Therefore, these alterations are
associated with learning-memory impairments[109]. Others
reported that vacuolated cells are a striking feature in both
ageing and Al-treated brain parenchyma[110], and they may
be considered as the initial stages of dying cells producing
a swollen appearance with indistinct boundaries[110,111].

In Al + H. scoparia group, spongiosis and alterations were
really minimized and loss of cell degeneration appeared clearly.

Histological observations of control cerebellum H&E stained
sections showed typical cell characteristics and organizations
including pia mater, molecular and granular cell layer and Pur-
kinje's cell layer. In Al-treated group, spongiosis was also
noticed in addition to disorganization in layers and some Pur-
kinje's cells loss. It was documented that these cells are
responsible for motor co-ordination through their projections
until cerebral cortex and any damage in the cell layer may
change the motor co-ordination[112]. This could explain the
decreased locomotor activity found in Al-teated rats in the pre-
sent study.

The co-administration of Al and H. scoparia showed better
improvement in cerebrum and cerebellum histology than that in
Al + MA group.

In conclusion, the results of the present study indicate that
H. scoparia extract is a potential formulation which can be
used for treatment of Al neurotoxicity. It shows more effi-
cient recovery from the toxicant-induced oxidative damage,
histopathological changes and AChE activity inhibition than
MA.
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[45] Täckholm V. Students' flora of Egypt. 2nd ed. Beirut: Cairo
University and Cooperative Printing Company; 1974, p.127.

[46] Boulos L. Flora of Egypt. Azollaceae-Oxalidaceae, Vol. 1. Cairo:
Al Hadara Publishing; 1999, p. 123.

[47] Millan MJ. The neurobiology and control of anxious states. Prog
Neurobiol 2003; 70: 83-244.

[48] Cauli O, Morelli M. Subchronic caffeine administration sensitizes
rats to the motor-activating effects of dopamine D(1) and D(2)
receptor agonists. Psychopharmacology (Berl) 2002; 162: 246-54.

[49] Viana MB, Tomaz C, Graeff FG. The elevated T-maze: a new
animal model of anxiety and memory. Pharmacol Biochem Behav
1994; 49: 549-54.

[50] Graeff FG, Netto CF, Zangrossi H Jr. The elevated T-maze as an
experimental model of anxiety. Neurosci Biobehav Rev 1998; 23:
237-46.

[51] Dhingra D, Parle M, Kulkarni SK. b-Alanine protects mice from
memory deficits induced by ageing, scopolamine, diazepam and
ethanol. Indian J Pharm Sci 2006; 68: 216-21.

[52] Kulkarni KS, Kasture SB, Mengi SA. Efficacy study of Prunus
amygdalus (almond) nuts in scopolamine-induced amnesia in rats.
Indian J Pharmacol 2010; 42: 168-73.

[53] Silva AF, Aguiar MS, Carvalho OS, Santana Lde N, Franco EC,
Lima RR, et al. Hippocampal neuronal loss, decreased GFAP
immunoreactivity and cognitive impairment following experi-
mental intoxication of rats with aluminum citrate. Brain Res 2013;
1491: 23-33.

[54] Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal
tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2):
351-8.

[55] Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzy-
matic analysis. Vol. 2. 2nd ed. Weiheim: Verlag Chemie; 1974,
p. 673-84.

[56] Sedlak J, Lindsay RH. Estimation of total, protein-bound, and
nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal
Biochem 1968; 25(1): 192-205.

[57] David H, Richard JS. Methods of enzymatic analysis. 1st ed.
Bergmeyer J, Grab M, editors. Beach Floride: Verlag Chemie
Weinheim Deer Field; 1983, p. 358.

[58] Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG,
Hoekstra WG. Selenium: biochemical role as a component of
glutathione peroxidase. Science 1973; 179: 588-90.

[59] Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM. A new
and rapid colorimetric determination of acetylcholinesterase ac-
tivity. Biochem Pharmacol 1961; 7: 88-95.

[60] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein mea-
surement with the Folin phenol reagent. J Biol Chem 1951;
193(1): 265-75.
[61] Julka D, Vasishta RK, Gill KD. Distribution of aluminum in
different brain regions and body organs of rat. Biol Trace Elem
Res 1996; 52(2): 181-92.

[62] Tripathi S, Mahdi AA, Hasan M, Mitra K, Mahdi F. Protective
potential of Bacopa monniera (Brahmi) extract on aluminum
induced cerebellar toxicity and associated neuromuscular status in
aged rats. Cell Mol Biol (Noisy-le-grand) 2011; 57(1): 3-15.

[63] Lal B, Gupta A, Gupta A, Murthy RC, Ali MM, Chandra SV.
Aluminum ingestion alters behaviour and some neurochemicals in
rats. Indian J Exp Biol 1993; 31(1): 30-5.

[64] Yellamma K, Saraswathamma S, Kumari BN. Cholinergic system
under aluminium toxicity in rat brain. Toxicol Int 2010; 17(2):
106-12.

[65] Sethi P, Jyoti A, Singh R, Hussain E, Sharma D. Aluminium-
induced electrophysiological, biochemical and cognitive modifi-
cations in the hippocampus of aging rats. Neurotoxicology 2008;
29: 1069-79.

[66] Ribes D, Colomina MT, Vicens P, Domingo JL. Impaired spatial
learning and unaltered neurogenesis in a transgenic model of
Alzheimer's disease after oral aluminum exposure. Curr Alz-
heimer Res 2010; 7(5): 401-8.

[67] Linardaki ZI, Orkoula MG, Kokkosis AG, Lamari FN,
Margarity M. Investigation of the neuroprotective action of
saffron (Crocus sativus L.) in aluminum-exposed adult mice
through behavioral and neurobiochemical assessment. Food
Chem Toxicol 2013; 52: 163-70.

[68] Connor DJ, Harrell LE, Jope RS. Reversal of an aluminum-
induced behavioral deficit by administration of deferoxamine.
Behav Neurosci 1989; 103(4): 779-83.

[69] Antunes M, Biala G. The novel object recognition memory:
neurobiology, test procedure, and its modifications. Cogn Process
2012; 13(2): 93-110.

[70] Shimizu S, Mizuguchi Y, Sobue A, Fujiwara M, Morimoto T,
Ohno Y. Interaction between anti-Alzheimer and antipsychotic
drugs in modulating extrapyramidal motor disorders in mice.
J Pharmacol Sci 2015; 127(4): 439-45.

[71] Moodley KK, Chan D. The hippocampus in neurodegenerative
disease. Front Neurol Neurosci 2014; 34: 95-108.

[72] Klein-Koerkamp Y, Heckemann RA, Ramdeen KT, Moreaud O,
Keignart S, Krainik A, et al. Amygdalar atrophy in early Alz-
heimer's disease. Curr Alzheimer Res 2014; 11(3): 239-52.

[73] Kumar S. Aluminium-induced changes in the rat brain serotonin
system. Food Chem Toxicol 2002; 40(12): 1875-80.

[74] Abu-Taweel GM, Ajarem JS, Ahmad M. Neurobehavioral toxic
effects of perinatal oral exposure to aluminum on the develop-
mental motor reflexes, learning, memory and brain neurotrans-
mitters of mice offspring. Pharmacol Biochem Behav 2012;
101(1): 49-56.

[75] Singla N, Dhawan DK. Regulatory role of zinc during aluminium-
induced altered carbohydrate metabolism in rat brain. J Neurosci
Res 2012; 90(3): 698-705.

[76] Lakshmi BV, Sudhakar M, Aniska M. Neuroprotective role of
hydroalcoholic extract of Vitis vinifera against aluminium-
induced oxidative stress in rat brain. Neurotoxicology 2014;
41: 73-9.

[77] Nachmansohn D. Chemical and molecular basis of nerve activity.
New York: Academic Press; 1975, p. 120.

[78] Poulin B, Butcher A, McWilliams P, Bourgognon JM,
Pawlak R, Kong KC, et al. The M3-muscarinic receptor regu-
lates learning and memory in a receptor phosphorylation/
arrestin-dependent manner. Proc Natl Acad Sci U S A 2010;
107(20): 9440-5.

[79] Hu H, Yang YJ, Li XP, Chen GH. [Effect of aluminum chloride
on motor activity and species-typical behaviors in mice].
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2005; 23(2):
132-5. Chinese.

[80] Batool Z, Sadir S, Liaquat L, Tabassum S, Madiha S, Rafiq S,
et al. Repeated administration of almonds increases brain acetyl-
choline levels and enhances memory function in healthy rats
while attenuates memory deficits in animal model of amnesia.
Brain Res Bull 2016; 120: 63-74.

http://refhub.elsevier.com/S2221-6189(16)30168-8/sref38
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref38
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref38
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref39
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref39
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref39
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref39
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref39
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref40
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref40
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref40
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref40
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref41
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref41
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref41
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref41
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref42
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref42
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref43
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref43
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref43
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref43
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref44
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref44
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref44
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref44
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref44
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref45
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref45
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref45
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref46
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref46
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref47
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref47
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref48
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref48
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref48
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref49
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref49
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref49
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref50
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref50
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref50
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref51
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref51
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref51
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref52
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref52
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref52
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref53
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref53
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref53
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref53
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref53
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref54
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref54
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref54
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref56
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref56
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref56
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref58
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref58
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref58
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref59
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref59
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref59
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref60
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref60
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref60
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref61
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref61
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref61
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref62
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref62
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref62
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref62
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref63
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref63
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref63
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref64
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref64
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref64
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref65
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref65
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref65
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref65
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref66
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref66
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref66
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref66
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref67
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref67
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref67
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref67
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref67
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref68
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref68
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref68
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref69
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref69
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref69
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref70
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref70
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref70
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref70
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref71
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref71
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref72
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref72
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref72
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref73
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref73
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref74
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref74
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref74
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref74
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref74
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref75
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref75
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref75
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref76
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref76
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref76
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref76
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref77
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref77
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref78
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref78
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref78
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref78
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref78
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref79
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref79
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref79
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref79
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref80
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref80
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref80
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref80
http://refhub.elsevier.com/S2221-6189(16)30168-8/sref80


Kaddour Taı€r et al./Journal of Acute Disease 2016; 5(6): 470–482482
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