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ABSTRACT

Objective: To determine the antimicrobial susceptibility patterns, the frequency of
integrons and associated gene cassettes in Acinetobacter baumannii (A. baumannii)
strains isolated from selected hospital intensive care units.
Methods: During a ten-month period, 120 A. baumannii isolates were studied. The
resistance rates to different classes of antimicrobial agents were determined. PCR was
used to detect different types of integrons and associated gene cassettes.
Results: The resistance rates to the majority of antibiotics tested were found to be be-
tween 39.3% and 99.1%. No isolate was observed to be resistant to colistin and poly-
myxin B. The rate of extensive drug-resistance among these clinical isolates was 62.5%.
The prevalence of class 1 and 2 integrons was found to be 74.1% and 12.5%, respec-
tively. Seven different gene cassettes (ampC, aacA4-catB8, ISAba1-blaOXA-23-GES-14,
aadA2-cm1A6-GES-14-qacF, VIM-25-GES-24-qacF, dfrA5-ISAba1-blaOXA-51-blaOXA-40
and aadA2-GES-11-IMP-1) were observed in Class 1 integron-carrying strains. Three
gene cassettes (IMP-4, VIM-2-VEB-aacA4 and dfrA2-sat-2-aadA4) were detected in class
2 integron-bearing A. baumannii strains.
Conclusions: A high prevalence of integron was described among multidrug resistant
A. baumannii in the hospital. The findings highlighted the need for continuous surveillance in
order to prevent dissemination of multidrug resistance among A. baumannii strains in Iran.
1. Introduction

Acinetobacter baumannii (A. baumannii), as an important
nosocomial pathogen especially in intensive care units (ICUs), is
responsible for a wide range of infections that can be ranged
from urinary tract infections to surgical wounds infection,
ventilator-associated pneumonia, meningitis, bacteremia, and
life threatening infections. The most important factor contrib-
uting to the successful extensive distribution of this nosocomial
pathogen is stated to be its remarkable ability for the acquisition
of a wide variety of antibiotic resistance genes and also adap-
tation in various harsh environments[1]. The acquisition of a wide
variety of antibiotic resistance genes not only leads to an
increase in economic burden, but also causes serious
therapeutic problems. Moreover, it can lead to difficulties in
infection control in hospitals and eradication of the bacteria.
The emergence and extremely rapid spread of multidrug
resistant A. baumannii isolates are becoming a serious concern
in global public health. The spread of the resistant genes in
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hospitals and community is mediated by horizontal gene
transfer[2]. Mobile elements including plasmids, transposons, or
integrons are the most efficient genetic elements promoting
acquisition and dissemination of resistance determinants[3].
During the past several decades, despite introduction of new
therapeutic options, A. baumannii strains have shown a
remarkable ability to rapidly develop multidrug resistance
(MDR). This rapid increase of MDR is not only due to the
intrinsic resistant genes carried by these strains, but also due
to their outstanding capacity to acquire resistant elements from
other bacteria. Recently, the role of efflux pumps,
class B b-lactamase (metallo-beta-lactamase), chromosomal
class C b-lactamase AmpC, class D b-lactamase (OXA-type
carbapenemase), integrons, and associated insertion sequence
elements in the occurrence of MDR has been well documented[3,4].
The acquisition and dissemination of antimicrobial resistant
determinants in multidrug resistant A. baumannii strains are
frequently mediated by integrons.

Integrons are a key element in spreading MDR particularly in
Gram-negative pathogens[5]. They are normally motionless but
can be transferred through mobile genetic elements, e.g.
plasmids and transposons. Integrons are genetic elements
composed of an intI gene encoding an integrase, flanked by a
recombination site attI and a strong promoter gene, where
mobile gene cassettes, mostly containing antibiotic resistance
determinants, can be inserted or excised by a site-specific
recombination mechanism catalyzed by the integrase. Inte-
grons carry divergent gene cassettes that are rearranged under
antibiotic selective pressure[3,5]. In A. baumannii, these gene
cassettes often contain efflux pump genes, beta-lactam resis-
tance genes, and aminoglycosides resistance genes. To date,
several classes of integrons have been distinguished upon the
basis of the sequence of the integrase gene. Among the several
classes of integrons, class 1 integron is the most prevalent class
type that is essential in the emergence and spread of resistance
genes, followed by class 2. Reports on the other classes of
integrons are scarce[5,6]. According to the literature, class 1
integrons and the pool of associated gene cassettes are the
major contributors to the MDR of A. baumannii and also
could be a useful tool for studying molecular epidemiology in
possible cross-infection cases, especially in critical wards of
hospitals, such as ICU[2,7]. Although the presence of integrons
has already been documented in A. baumannii clinical isolates,
the content of their cassette has not been fully characterized.
The current study was carried out in order to characterize the
occurrence of drug resistance, presence and dissemination of
different classes of integrons, and associated gene cassettes
among A. baumannii isolates recovered from inpatients in ICUs.

2. Materials and methods

2.1. Sampling and data collection

The present cross-sectional study was conducted during
February–November 2015. During this period, a total of 120
non-repetitive A. baumannii isolates were recovered from 490
clinical specimens of hospitalized patients in ICU wards of four
hospitals in Tehran, Iran. Duplicate isolates from the same pa-
tients were excluded from the study. The study protocol was
performed according to the Helsinki declaration and approved
by Ethics Committee of Shahid Beheshti University of Medical
Sciences, Tehran, Iran (No. 13478). Written informed consent
was obtained from the patients to use their samples for research
purposes. All the obtained samples were transported to labora-
tory within 4 h of collection and were processed immediately.
Bacterial identification was performed using the conventional
biochemical tests and the API 20 NE system (bioMérieux SA,
Marcy-10Etoile, France). A. baumannii isolates were stored in
tryptic soy broth (Merck Co., Germany) containing 20% glyc-
erol at −70 �C and were subjected to further molecular analysis.

2.2. Antimicrobial susceptibility testing

In vitro susceptibility test was performed using a panel of 17
antibiotics for all the isolates by micro-broth dilution method.
The susceptibility test was performed according to the guidelines
of the Clinical and Laboratory Standards Institute[8]. The
minimum inhibitory concentration (MIC) was defined as the
lowest concentration of each antimicrobial agent inhibiting
visible growth of the tested isolate. The antimicrobial agents
used in the present survey included: amikacin, ampicilin/
sulbactam, cefepime, cefotaxim, ceftazidime, ceftriaxone,
ciprofloxacin, colistin, gentamicin, imipenem, meropenem,
netilmicin, piperacillin/tazobactam, polymixin B, tetracyclin,
tobramycin and trimethoprim-sulfamethoxazole. MDR was
defined as resistance to three or more unique antimicrobial drug
classes[2]. Extensive drug-resistant A. baumannii was defined as
resistant to three or more unique antimicrobial drug classes and
carbapenems[9]. All the antibiotic powders used in the current
study were supplied by Sigma–Aldrich (St. Louis, MO, USA).
The standard reference strains Escherichia coli ATCC 25922
and Pseudomonas aeruginosa ATCC 27853 were used as
quality control strains in every test run. The ranges
of MIC value used for antimicrobial agents were as follows:
0.5–256 mg/mL of amikacin; 1–128 mg/mL of cefepime; 0.5–
256 mg/mL of cefotaxim; 0.25–128 mg/mL of ceftazidime;
2–256 mg/mL of ceftriaxone; 0.125–32 mg/mL of
ciprofloxacin; 0.125–4 mg/mL of colistin; 0.25–64 mg/mL of
gentamicin; 0.125–256 mg/mL of imipenem; 0.125–128 mg/mL
of meropenem; 0.5–64 mg/mL of netilmicin; 0.125–4 mg/mL
of polymixin B; 0.5–64 mg/mL of tetracycline; 0.5–64 mg/mL
of tobramycin; 4–256 mg/mL of piperacillin/tazobactam; 4–
512 mg/mL of ampicilin/sulbactam and 2–128 mg/mL of
trimetoprim-sulfamethoxazole.

2.3. Extraction of plasmid and genomic DNA

Genomic DNA of strains was extracted using the commercial
kit (InstaGene Matrix, Bio-Rad, Hercules, CA, USA). The
QIAGEN Plasmid Midi Kit was used for plasmid DNA
extraction according to the manufacturer's instruction.

2.4. Integron assessment in A. baumannii isolates

The existence of integrons was confirmed using PCR with
degenerate primers described by Moura et al.[10]. PCR conditions
for amplification of the int1 and the int2 by thermocycler
(Eppendorf Co., Hamburg, Germany) are as follows: initial
denaturation for 4 min at 94 �C, 35 cycles of denaturation at
94 �C for 1 min, annealing at 57 �C for 50 s, and extension at
72 �C for 1 min. The final extension was carried out at 72 �C
for 3 min.
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2.5. Mapping of the integrons

Amplification of the variable region in integron was per-
formed using primer pairs introduced by Moura et al.[10].
Integron cassette PCR products were purified by the QIAquick
Gel Extraction Kit (Qiagen Co., Hilden, Germany). Purified
PCR products were subjected to sequencing with an ABI
Prism 377 automated sequencer (Applied Biosystems, Perkin–
Elmer Co., Foster City, CA, USA) in both directions. The
sequences were assembled making use of SeqMan program
within the Lasergene suite version 7 (DNASTAR Inc.,
Madison, WI, USA). Sequences obtained were compared with
those in the NCBI database using a BLAST program (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) and the integron database
INTEGRALL (http://integrall.bio.ua.pt/).

2.6. Statistical analysis

Statistical analysis was carried out using SPSS version 18.0
(SPSS Inc., Chicago, IL, USA). Chi-square test was run to
determine the P value. A P value less than 0.05 was considered
as statistically significant.

3. Results

3.1. Bacterial strains

During the ten-month period of the study, a total of 120
A. baumannii clinical isolates were recovered from 490 clinical
specimens of hospitalized patients in ICU wards in four hospi-
tals in Tehran, Iran. A. baumannii isolates were obtained from
different clinical specimens including respiratory secretions
(n = 42, 35%) followed by blood (n = 30, 25%), wound (n = 21,
17.5%), urine (n = 11, 9.2%), catheter (n = 8, 6.7%), cerebro-
spinal fluid (n = 5, 4.2%), ascitic fluid (n = 2, 1.7%) and pleural
effusion (n = 1, 0.7%). The average age was 41 (median 40.8,
ranging from 4 months to 63 years of age). In the present study,
67.5% of the patients were men and 32.5% were women.
Table 1

Antibiotic resistance pattern and integron frequency of 120 A. baumannii iso

Antibiotics Integron positive (n = 112)

R [n (%)] I [n (%)] S [n (%)]

Ampicillin/sulbactam 61 (54.5) 2 (1.8) 49 (43.7)
Piperacillin/tazobactam 85 (75.9) 2 (1.8) 25 (22.3)
Cefepime 65 (58.0) 3 (2.7) 44 (39.3)
Cefotaxime 81 (72.3) 12 (10.7) 19 (17.0)
Ceftazidime 55 (49.1) 0 (0.0) 57 (50.9)
Ceftriaxone 104 (92.8) 1 (0.9) 7 (6.3)
Imipenem 111 (99.1) 0 (0.0) 1 (0.9)
Meropenem 70 (62.5) 1 (0.9) 41 (36.6)
Gentamicin 89 (79.5) 8 (7.1) 15 (13.4)
Amikacin 90 (80.3) 5 (4.5) 17 (15.2)
Netilmicin 44 (39.3) 1 (0.9) 67 (59.8)
Tobramycin 61 (54.5) 2 (1.8) 49 (43.7)
Tetracyclin 75 (67.0) 2 (1.8) 35 (31.2)
Polymixin B 0 (0.0) 0 (0.0) 112 (100.0)
Colistin 0 (0.0) 0 (0.0) 112 (100.0)
Ciprofloxacin 100 (89.3) 5 (4.5) 7 (6.2)
Trimetoprim-sulfamethoxazole 83 (74.1) 0 (0.0) 29 (25.9)

R: Resistant; I: Intermediate; S: Sensitive.
3.2. Antimicrobial resistance profile

The result of antimicrobial susceptibility test of 120
A. baumannii clinical isolates showed that the majority of iso-
lates were resistant to imipenem (99.1%), ceftriaxone (92.8%),
ciprofloxacin (89.3%) and amikacin (80.3%). The lowest levels
of resistance were found to be related to netilmicin (39.3%). All
the isolates were susceptible to colistin and polymixin B.
In vitro susceptibility of the A. baumannii isolates to 17 anti-
biotics was tested. The ranges of MIC50 and MIC90 are sum-
marized in Table 1. Antibiogram showed that 90% of the
isolates were inhibited by 1 mg/mL of colistin. The data showed
that 50% of the isolates were inhibited by 0.5 mg/mL of poly-
mixin B. One hundred (83.3%) isolates were inhibited by con-
centration of polymixin B that did not exceed 1 mg/mL. All the
isolates were MDR while, out of 120 isolates tested, 75 (62.5%)
were extensive drug-resistant. Resistance profile pattern showed
that 10 isolates (8.3%) were resistant to 15 antibiotics, 15 iso-
lates (12.5%) were resistant to 14 antibiotics, 11 isolates (9.2%)
were resistant to 13 antibiotics, 21 isolates (17.5%) were resis-
tant to 12 antibiotics, 17 isolates (14.2%) were resistant to 10
antibiotics, 8 isolates (6.7%) were resistant to 8 antibiotics, 15
isolates (12.5%) were resistant to 7 antibiotics, 13 isolates
(10.8%) were resistant to 6 antibiotics, and 10 isolates (8.3%)
were resistant to 5 antibiotics. The predominant multiple resis-
tance profile among the isolates studied was resistance to 12
antibiotics (amikacin, cefepime, cefotaxim, ceftazidime, ceftri-
axone, ciprofloxacin, gentamicin, imipenem, meropenem,
netilmicin, tetracyclin, and tobramycin) which were common
among 16 (13.3%) isolates.

3.3. Integron assessment and sequencing of cassette
arrays

The results of the study showed that integrons were widely
distributed among A. baumannii clinical isolates (93.3%). Class
1 integrons were detected in 89 (74.1%) of the 120 isolates while
class 2 integrons were detected only in 15 (12.5%) isolates.
Class 3 integron was not detected among the isolates. Among
lated from hospitalized patients in ICU.

Inetgron negative (n = 8) MIC (mg/mL)

R [n (%)] I [n (%)] S [n (%)] Range 50% 90%

3 (37.5) 0 (0.0) 5 (62.5) 4.000–512.000 326.0 642
5 (62.5) 1 (12.5) 2 (25.0) 4.000–256.000 128.0 256
4 (50.0) 2 (25.0) 2 (25.0) 1.000–128.000 64.0 64
7 (87.5) 0 (0.0) 1 (12.5) 0.500–256.000 128.0 128
3 (37.5) 2 (25.0) 3 (37.5) 0.250–128.000 32.0 64
6 (75.0) 1 (12.5) 1 (12.5) 2.000–256.000 64.0 128
1 (12.5) 0 (0.0) 7 (87.5) 0.125–256.000 32.0 64
5 (62.5) 2 (25.0) 1 (12.5) 0.125–128.000 16.0 32
6 (75.0) 0 (0.0) 2 (25.0) 0.250–64.000 32.0 64
0 (0.0) 3 (37.5) 5 (62.5) 0.500–256.000 64.0 64
4 (50.0) 0 (0.0) 4 (50.0) 0.500–64.000 32.0 32
4 (50.0) 2 (25.0) 2 (25.0) 0.500–64.000 16.0 32
2 (25.0) 1 (12.5) 5 (62.5) 0.500–64.000 32.0 64
0 (0.0) 0 (0.0) 8 (100.0) 0.125–8.000 0.5 1
0 (0.0) 0 (0.0) 8 (100.0) 0.125–4.000 1.0 1
5 (62.5) 0 (0.0) 3 (37.5) 0.125–32.000 16.0 32
5 (62.5) 0 (0.0) 3 (37.5) 2.000–128.000 76.0 152

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://integrall.bio.ua.pt/
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the 120 investigated isolates, 8 isolates (6.7%) were found to
simultaneously carry class 1 and 2 integrons. The frequency of
the integron among 120 A. baumannii isolated from ICU wards
is presented in Table 1. In 89 class 1 integron-carrying isolates,
seven different gene cassettes were observed. The seven types of
class 1 integron cassettes included ampC, aacA4-catB8, ISAba1-
blaOXA-23-GES-14, aadA2-cm1A6-GES-14-qacF, VIM-25-GES-
24-qacF, dfrA5-ISAba1-blaOXA-51-blaOXA-40, and aadA2-GES-
11-IMP-1. Three gene cassettes (IMP-4, VIM-2-VEB-aacA4 and
dfrA2-sat-2-aadA4) were detected in 15 (12.5%) class 2
integron-bearing A. baumannii strains. Out of 89 isolates car-
rying class 1 integrons, 66 (74.2%) were located on chromosome
and 23 (25.8%) on plasmid. Out of 15 isolates carrying class 2
integrons, 12 (80%) were located on plasmid and 3 (20%) on
chromosome. Information about gene cassette arrays found in
integron positive isolates is shown in Table 2. The numbers of
cassette genes in class 2 integrons were much more limited
compared with those of class 1 integrons. The most prevalent
type of gene cassette in class 1 integron-bearing A. baumannii
isolates was aacA4-catB8 cassette, accounting for 27% of class 1
integron cassettes. In isolates harboring both class 1 and 2
integrons simultaneously, gene cassettes GES-11-IMP-4-VIM-2
and dfrA11-aacA4-blaOXA were detected.
Table 2

Various cassette arrays found in class 1 and class 2 integrons.

Integron class Frequency (%) Gene cassette arrays [n (%)] Location

Class 1 integron 89 (74.1) ampC [22 (24.7)] Chromosome
aacA4-catB8 [24 (27)] Chromosome
ISAba1-blaOXA-23-GES-14 [8 (9)] Chromosome
aadA2-cm1A6-GES-14-qacF [10 (11.2)] Chromosome
VIM-25-GES-24-qacF [9 (10.1)] Plasmid
dfrA5-ISAba1-blaOXA-51-blaOXA-40 [2 (2.2)] Chromosome
aadB-GES-11-IMP-1 [14 (15.8)] Plasmid

Class 2 integron 15 (12.5) IMP-4 [7 (46.7)] Plasmid
VIM-2-VEB-aacA4 [5 (33.3)] Plasmid
dfrA2-sat2-aadA4 [3 (20)] Chromosome

Class 1 and 2 integron 8 (6.7) GES-11-IMP-4-VIM-2 [1 (12.5)] Plasmid
dfrA11 [2 (25)] Chromosome
aacA4-blaOXA-58 [5 (62.5)] Chromosome

Class 3 integron 0 (0.0)
Without integron 8 (6.7)
Total 120 (100.0)
3.4. Nucleotide sequence accession numbers

The nucleotide sequences of cassette arrays obtained in this
study are available in the DNA data bank of Japan
under accession numbers LC107421, LC107422, LC107423,
LC107424, LC107425, LC107426 and LC107606.

4. Discussion

During the recent years, high incidence of multidrug resistant
A. baumannii has become a serious threat worldwide[1]. High
resistance to different classes of antimicrobial agents in
A. baumannii clinical isolates contributes to its persistence in the
hospitals and health care settings[1,9]. Dissemination of the
antimicrobial resistance genes through integrons in A. baumannii
is now a worrying evolution[3]. The most predominant
mechanism in the distribution of antimicrobial resistance among
microbial populations is horizontal gene transfer; indeed during
the past decade, it has received the most attention among all the
multidrug resistant A. baumannii strains[2,3,9]. Also, the role of
integrons as a vital system in horizontal transfer of antibiotic
resistance has been well documented[11,12]. As previously
mentioned, integrons are linked to MDR and subsequently
constrict the therapeutic options and worsen clinical outcomes.
In the present study, the main source of A. baumannii isolates
was respiratory specimen (35%). This is in accordance with the
data presented by other studies[13]. Overall, the resistance rates
were high to most antimicrobial drugs. Since carbapenems have
been used as a drug of choice for the treatment of serious
nosocomial infections caused by Acinetobacter, carbapenem-
resistant A. baumannii strains have been reported worldwide[14].
The present study demonstrated high level of resistance to
carbapenems (imipenem 99.1% and meropenem 62.5%). The
resistance rate to imipenem in the present survey was higher
than that reported for Turkey (80%)[15], Iran (53%)[16], Nepal
(36%)[17], Russia (45%)[18], Poland (41%)[19], China (72.2%)[20]

and Taiwan (36.6%)[21]. The high resistance rate to imipenem in
our study could be attributed to the improper prescription of this
antibiotic in clinics, extensive misuse of carbapenems, and
production of class D carbapenem hydrolyzing enzymes
OXA-b-lactamases and class B metallo b lactamases
(MBLs) as important contributors to carbapenem resistance in
A. baumannii. In the present study, colistin and polymyxin B
exhibited a potent activity against A. baumannii isolates, which
is in accordance with the findings reported in the recent studies
in China[22], Iran[23], and USA[24]. High susceptibility rate to these
antibiotics could be attributed to limited use of these antibiotics
in life threatening conditions due to its serious side effects. The
data obtained in the present study revealed an increase (> 50%)
of resistance in A. baumannii isolates to beta lactams. This
finding is consistent with those reported in the recent studies
from Iran[25], China[20], Turkey[15] and Poland[19]. Production of b-
lactamases, changes in penicillin-binding proteins, alterations in
the structure of porin proteins and efflux pumps are the main
mechanisms of resistance to beta lactams[14,24]. Comparison of the
findings with those of the other studies reveals that resistance to
ciprofloxacin among A. baumannii isolates is increasing[19–21].
However, this finding is in contrast to a recent report by Zhu
et al. from China[22]. Among A. baumannii strains, the lowest
resistance rate (with the exception of polymixin B and colistin)
was noted for netilmicin. Overall, the findings of the current
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study are consistent with those reported in the recent studies from
Poland demonstrating the lowest resistance rate to netilmicin in
comparison with the other tested antibiotics[19]. Screening for
MDR frequency among A. baumannii isolates showed an
alarming trend of resistance increase to multiple antibiotics.
Several studies have also shown emergence of MDR strains and
it is likely due to improper use of antimicrobial agents, which
limits therapeutic protocols[1,15]. The MDR frequency among
tested isolates is similar to that stated previously in Poland
(100%)[19] and China (93.5%)[13], and is considerably higher than
those reported in other recent reports from Thailand (21.1%)[26]

and China (61.3%)[27].
The high prevalence of class 1 integrons among multidrug

resistant A. baumannii clinical isolates has been confirmed
worldwide[19]. The results obtained in the present study indicated
that class 1 integron was widely disseminated among MDR
isolates (74.1%). The frequency of integron in the present
study was considerably higher than those reported in United
Kingdom (60%)[28], Poland (63.5%)[19], Turkey (6.4%)[15] and
Taiwan (71.4%)[29]. It is documented that class 1 integrons are
associated with a variety of resistance gene cassettes[19,20].
Given the previous investigations and integron database
INTEGRALL (http://integrall.bio.ua.pt/), aadA gene cassette
confers resistance to streptomycin and spectinomycin; aadB
gene cassette confers resistance to gentamicin, tobramycin,
kanamycin, dibekacin, and sisomicin; blaoxa gene cassette
confers resistance to beta-lactam antibiotics; aacA gene
cassette confers resistance to amikacin, dibekacin, isepamicin,
netilmicin, sisomicin and tobramycin; cmlA6 gene cassette
confers resistance to chloramphenicol; sat2 gene cassette confers
resistance to streptothricin; and VIM, GES, IMP gene cassettes
confer resistance to beta-lactam antibiotics.

In the current study, aacA4-catB8 and aadA2-GES-11-IMP-1
were observed to be the most prevalent integron cassettes
located on chromosome and plasmid, respectively. Recently,
different studies revealed that aacA4-catB8 is the main cassette
of class 1 integron[22,30,31]. In the study conducted by Sung
et al.[31] in Korea, on 56 MDR Acinetobacter spp., it was
observed that class 1 integrons were the most prevalent
(89.3%). On the basis of the gene cassette nucleotide
sequence, Sung et al. reported four unique types of gene
cassettes from which type A (aacA4-catB8-aadA1) was the
most prevalent[31]. In 1996–2004 in Taiwan, 283 multidrug
resistant A. baumannii bloodstream isolates were studied.
Class 1 integron was detected in 202 (71.4%) isolates. Neither
class 2 nor class 3 integron was detected among these isolates.
Among class 1 integron-carrying isolates, seven different types
of gene cassettes were identified and aacA4, catB8, and aadA1
were the most prevalent (71.7%) gene cassette types[29]. In
another study conducted by Koczura et al.[19], in order to
investigate the presence of integrons and associated gene
cassette in clinical isolates of the Acinetobacter calcoaceticus-
baumannii complex, sixty-three clinical Acinetobacter calcoa-
ceticus-baumannii complex isolates were investigated. The
result revealed that none of the isolates harbored class 2 or class
3 integrons. Koczura et al. demonstrated that class 1 integrons
were detected in 63.5% of isolates and the most common
observed gene cassette array was aacC1-orfA-orfB-aadA1[19].
The results obtained in the present study indicated that class 2
and class 3 integrons are not the major resistant determinants
in multidrug resistant A. baumannii isolates, which is in
accordance with the previous reports[16,32].
In the current survey, integrons detected contained 1–4 gene
cassettes. This finding is consistent with that reported by Gil-
lings et al.[33] who stated that class 1 integrons are not typically
able to carry more than 6 gene cassettes. As previously
mentioned, in the present study, aacA gene cassette confers
markedly high resistance to aminoglycosides, suggesting a
close relationship between high-level resistance rate to amino-
glycosides and this gene cassette among the A. baumannii
isolates.

The most common mechanism of resistance of A. baumannii
to b-lactam antibiotics is attributed to the presence of a chro-
mosomal cephalosporinase encoding gene[14]. ampC (24.7%)
gene cassette which confers resistance to cephalosporins was
the second most common gene cassette identified in the current
study. These findings are consistent with those discussed in the
previous studies[24]. Based on literature, carbapenem resistance
in A. baumannii is most often linked to class D b-lactamases
and MBLs. In the current study, the most frequent carbapenem
hydrolyzing b-lactamase in class 1 integron-bearing strains
were blaOXA-23 (9%), blaOXA-51 (2.2%), and blaOXA-40 (2.2%).
The finding is in concordance with those stated in other
studies[14,34]. Among OXA b-lactamases, OXA-23 was dominant
OXA type and consistent with the reports on other areas in the
world[35,36]. The dissemination of MBLs in A. baumannii is a
threatening incidence. These b-lactamases are able to hydrolyze
carbapenems and even every other betalactam antibiotic with
the exception of aztreonam[37]. VIM and IMP are the most
frequent MBLs among A. baumannii strains. In the present
study, gene cassettes encoding IMP-1 and VIM-25 were
detected among 14 and 9 isolates, respectively. VIM and IMP
have mostly been reported sporadically in some parts of the
world[37]. Recently it is documented that GES b-lactamase, as a
common Ambler class A b-lactamase in A. baumannii, can
confer high level resistance to carbapenems. According to
results of the present study, GES-11 and GES-14 were detected
in 15.8% and 11.2% of strains, respectively. These findings are
in agreement with those reported in the previous investigations
in Turkey and Saudi Arabia[34,38]. GES-11 prevalence is also
reported in Turkey, Egypt, Kuwait, Gaza and France[20,39].

Many reports clarified the presence of intI 2 among
A. baumannii strains. The results obtained in the current survey
indicate that 12.5% of the isolates seemed to harbor this class of
integrons. Three different cassette arrays were identified in class 2
integrons among A. baumannii. In contrast with the previous
studies[40], which reported that IMPs were usually detected as part
of class 1 integron, in the present investigation, IMP-4 was the
most predominant gene cassette in class 1 and 2 integrons which
were located on plasmid. In a study conducted in Taiwan, Liu
et al.[40] investigated 188 A. baumannii clinical isolates. They
reported that the blaIMP-1 gene was identified in the gene
cassette of class 1 integron in two isolates, which was located on
the large plasmids. VIM-2-VEB-aacA4 was the second most
common gene cassette identified in class 2 intergron located on
plasmid in the present study. The same gene cassette array was
in A. baumannii in Poland[41]. dfrA2-sat2-aadA4 was the third
common gene cassette identified in class 2 intergron. The gene
cassettes that confer resistance to aminoglycosides among
multidrug resistant A. baumannii clinical strains have globally
been confirmed[19,29]. This finding is consistent with that reported
in a study carried out on multidrug resistant A. baumannii in
Brazil detecting class 2 integrons in 23% of isolates[42], which
also carried the main cassette array (dfrA1-sat2-aadA4) found in
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the present study. Out of 120 multidrug resistant strains, 8 (6.7%)
carried class 1 and class 2 integrons simultaneously. To the best of
our knowledge, this is the first documentation about existence of
gene cassettes in class 1 and 2 integron-bearing A. baumannii
clinical isolates simultaneously.

To summarize, the present study revealed a high level of
A. baumannii strains harboring integrons in our hospitals, which
may lead to dissemination of multiple antibiotic resistance. The
different types of gene cassette arrays in the current study
emphasize the key role of geographical features in multidrug
resistant isolates distribution which could be attributed to
different patterns of antibiotic consumption in distinct areas.
Therefore, in order to understand the prevalence and epidemi-
ology of integrons in different molecular types of A. baumannii,
further studies are required.
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