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ABSTRACT

Inflammation mediators, prostaglandins are causing inflammation, pain and pyrexia in the
body. Synthesis of these mediators can be effectively blocked by administering the non-
steroidal anti-inflammatory drugs (NSAIDs). The NSAIDs had age-old history in medi-
cine due to their therapeutic potentials and thus they occupy the major share in clinical
practice as well as in commercial market. Mostly the NSAID moieties are chemically
composed of carboxylic functional groups and this could be a potential reason for the
damage of mucosal lining. Moderate and chronic oral use of these NSAIDs leads to
ulcerogenicity, abdominal cramps, intestinal bleeding, mucosal haemorrhage and
gastritis. Therapeutic handling of above side-effects is becoming ever challenge for the
researchers. In research of surmounting side-effects caused by NSAID, prodrug approach
was proven to be effective and successful. Over the time, prodrug concept becomes big
boom in the arena of inflammation and its clinical treatment. In last few decades, many
researchers have been attempted to synthesize the NSAID prodrugs successively. With
this background of information, this article was composed and aimed to provide needful
information on NSAID prodrugs such as background history, rationale, mechanism of
action, principles involved and their therapeutic outcomes. The successful prodrugs were
listed and their molecular structures were also demonstrated here.
1. Introduction

1.1. Prodrugs

They are bioreversible derivatives of pharmacologically
active agents that must undergo an enzymatic and/or chemical
transformation in vivo to release the parent drug, which can then
elicit its desired pharmacological effect[1,2]. The schematic
representation of prodrug was shown in Figure 1.

“Bioprecursors” are prodrugs which lack promoiety but result
from a molecular modification of the active drug itself in vivo.
Co-drugs are prodrugs which contain two pharmacologically
active drugs that are combined together in a single molecule, so
that each drug acts as a carrier for the other[3].

1.1.1. Rationale of prodrugs
Drug discovery is expanding rapidly in the 21st century by

employing various techniques like combinatorial chemistry,
high throughput screening and receptor-based drug design.
By using these technologies, new molecular moieties were
identified but their physicochemical and biopharmaceutical as-
pects were ignored. This eventually led to poor drug-like
properties and high failure rate in drug development despite
its high demand[4]. Thus, prodrug process was initiated with
major objective of optimization of absorption, distribution,
metabolism, excretion and toxicity properties which are
expected to increase the efficacies. Prodrug is an exciting area
of research that can be applied to all drug moieties whose
pharmacological response is limited. This resulted in the
increased number of approved prodrugs in the market[1,5,6].
article under the CC BY-NC-ND license (http://

http://dx.doi.org/10.1016/j.joad.2016.08.002
mailto:jayapeesa@gmail.com
www.sciencedirect.com/science/journal/22216189
http://www.jadweb.org
http://dx.doi.org/10.1016/j.joad.2016.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Schematic representation of prodrug and its metabolism.
Figure 5. Metabolism of paracetamol.
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1.1.2. History of prodrugs
The term prodrug was first coined in the year 1958 by Albert

to describe compounds which undergo biotransformation prior
to their pharmacological response[7]. Simultaneously in the same
year Harper introduced the term drug latentiation.

Methenamine, the first prodrug was introduced in the year
1899 by Schering as site-activated prodrug because of its con-
version to formaldehyde at the acidic urine pH (Figure 2).

In the same year, aspirin was introduced which hydrolyses to
salicylic acid and acetate. Acetate ion causes irreversible inac-
tivation of cyclooxygenase (COX) by binding to the serine
residue on the active site of COX enzyme and results in the
suppression of production of prostaglandins and thromboxane is
displayed in Figure 3[8]. Prontosil, an anti-inflammatory agent
was the prodrug of sulphanilamide (first sulpha drug) (Figure 4).
Figure 2. Metabolism of methenamine.

Figure 3. Metabolism of acetylsalicylic acid (aspirin).

Figure 4. Metabolism of prontosil.
Very popular non-steroidal anti-inflammatory drug (NSAID)
prodrug is paracetamol which metabolises to p-aminophenol. p-
Aminophenol reacts with arachidonic acid and forms N-arach-
idonoyl-phenolamine thus eliciting its analgesic effect. The
unintentional prodrugs of paracetamol: acetanilide (1886) and
phenacetin (1887) were the first aniline derivatives but their
therapeutic efficacy was discovered later, via the common
metabolite of paracetamol (Figure 5)[9].

Prodrug approach is the best approach to circumvent the
problems associated with formulation, administration, absorp-
tion, distribution, metabolism, excretion, toxicity and life cycle
management[10].
The article is embodied with various numbers of prodrugs of
NSAID category, promoieties used in their preparation, sche-
matic evaluation with preclinical and clinical outcomes. This
review article also emphasizes on the current status of prodrugs
of above said category with their retrospective aspects as
follows.

1.2. NSAIDs

In ancient Asia, China and Egypt, several plants containing
salicylic acid and its constituents were used to treat fever and to
relieve the pain of rheumatism and child birth. In 1763, Edward
Stone published the use of willow bark to reduce fever. Later in
1860, salicylic acid was synthesized in the laboratory to treat
rheumatism, and as antipyretic and external antiseptic agent. It
was surprised that salicylic acid had extraordinary bitterness
which limited the patient's compliance. To make it palatable,
Flex synthesized acetylsalicylic acid or aspirin in 1899 and
suggested that aspirin liberates salicylic acid to elicit its anti-
inflammatory action. So aspirin acts as a prodrug. Progres-
sively, several drugs which share the same action of aspirin
were discovered such as phenacetin, antipyrine, phenylbuta-
zone, acetaminophen, indomethacin, naproxen and ibuprofen
and they are known as “aspirin-like drugs”. Over time, these
drugs were noted as “NSAIDs” as they were distinct from
glucocorticosteroids[11].

Prostaglandins produced via COX pathway, which are major
physiological and pathological mediators in inflammation, pain,
pyrexia, cancer and neurological diseases (Figure 6). Bio-
membrane bound arachidonate is converted to free arachidonic
acid by phospholipase A2. In this COX pathway, the two known
COX isoforms: COX-1 and COX-2 convert the arachidonic acid
to prostaglandin G2 which further undergoes reduction in the
presence of peroxidase to form PGH2. This PGH2 is converted to
PGD2, PGE2, PGI2, PGF2 and thromboxane A2. COX-1 is
expressed in most tissues and the prostanoids produced by this
isoform mediate functions such as regulation of renal blood
flow, cytoprotection of the gastric mucosa and platelet aggre-
gation. COX-2 is expressed in brain, spinal cord and kidneys. It
is an immediate early response gene highly restricted under basal
conditions but highly inducible in response to inflammatory
stimuli, including endotoxin, cytokines, hormones and tumour
promoters.

Blocking the COX enzyme results in the reduction of syn-
thesis of prostaglandins, which leads to decrease in inflamma-
tion (due to decrease of PGE2 and PGI2), pain and fever. The
inhibition of prostaglandins leads to wide range of side effects,
which includes gastrointestinal (GI) irritation, cardiovascular
effects, renal toxicity, exacerbation of hypertension and fluid
retention. Non-selective NSAIDs cause GI ulceration and



Figure 6. Mechanism of action of NSAIDs.
PGG2: Prostaglandin G2; PGH2: Prostaglandin H2; PGD2: Prostaglandin
D2; PGE2: Prostaglandin E2; PGI2: Prostaglandin I2; TXA2: Thromboxane
A2; PGF2: Prostaglandin F2.
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potentially upper GI perforation and bleeding because they
inhibit not only COX-2 but also COX-1. GI mucosal injury
produced by NSAIDs is caused by two mechanisms. The first
mechanism involves direct contact which leads to local irritation
by carboxylic group of NSAIDs and local inhibition of pros-
taglandin synthesis in the GI tract. The other principle was
due to an ion trapping mechanism of NSAIDs from the lumen
into the mucosa. The development of COX-2 selective in-
hibitors offered same efficacy without GI toxicity but caused
greater risk of increased serum potassium levels and potential
liver toxicity[12,13].

NSAIDs show undesirable physicochemical properties as
explained above and their therapeutic efficacy can be improved
by prodrug approach. NSAIDs were converted to ester or amide
mutual prodrugs which prevent direct contact of the parent drug
with the gastric mucosal lining in the GI tract, with improved
physicochemical properties and enhanced bioavailability.

Below listed NSAID moieties have scrupulously designed
into effective and potential prodrugs for clinical use, explained
chronologically here.

1.3. Aceclofenac

Aceclofenac exerts pharmacological effect by predominantly
suppressing the proinflammatory cytokine synthesis[14]. Thus, it
becomes a potential candidate in class of NSAID category.
But, its chronic oral use leads to severe ulcerogenicity. In
circumventing of ulcerogenicity, one of the approaches was the
synthesis of aceclofenac prodrugs. Aceclofenac was conjugated
with macromolecules such as dextran 10000 and 20000. Resulted
prodrugs were reported with increased anti-inflammatory effi-
cacieswithout ulcerogenicity[15]. On other hand, amino acids such as
alanine, leucine, valine and proline were used to conjugate the
aceclofenac with expected outcome of increased solubility,
stability at acidic pH and hydrolysis at pH 7.4[16]. To overcome the
pharmaceutical problem, aceclofenac was conjugated with
phenylalanine using N, N0-dicyclohexylcarbodiimide which
resulted in enhanced solubility and lipophilicity[17]. The mutual
prodrugs of aceclofenac was synthesized by coupling method
using various natural antioxidants such as menthol, thymol,
eugenol, guaiacol and vanillin which showed improved
pharmacological activity[18]. The molecular structures of
aceclofenac prodrugs were displayed in Figure 7.

1.4. 5-Amino salicylic acid (ASA)

ASA is widely used in the treatment of ulcerative colitis.
ASA is an active scavenger of released free oxygen radicals and
inhibits prostaglandin synthesis[19]. Since it inhibits the
prostaglandin synthesis, it can lead to damage of gastric
mucosal layer. In order to overcome this problem, colon
specific drug delivery of ASA was proposed. In this process,
ASA was converted to mutual azo prodrug by coupling with
L-tyrosine[20], azo dextran polymeric conjugate using p-amino
benzoic acid and benzoic acid as linkers[21], acrylic-type poly-
meric prodrugs using methacryloyloxyethyl 5-aminosalicylate
and N-methacryloylamidoethyl 5-aminosalicylamide[22] and
pro-prodrug of 5-amino salicylic acid using L-lysine contain-
ing trans-ferulic acid[23]. Chemical structures were given in
Figure 8.
1.5. Aspirin

Aspirin exerts its effects by the inhibition of COX by
the irreversible acetylation of serine functions with serious
outcomes such as gastric ulcers, renal failure and impaired
platelet function[24]. But still aspirin can be continued as an
effective NSAID with relative safety by modifying it into
prodrug. Aspirin prodrugs are reported in several research
outcomes e.g. 1,3-bis(alkanoyl)-2-(O-acetylsalicyloyl)glycer-
ides (aspirin triglycerides) were processed with reduced gastric
lesions[25]; 1,3-dialkanoyl-2-(2-methyl-4-oxo-1,3-benzodioxan-
2yl)glycerides (cyclic aspirin triglycerides) were also
synthesized with same objective[26]. Later on few novel activated
ester type prodrugs of aspirin such as methylthiomethyl,
methylsulfinylmethyl and methylsulfonylmethyl esters were
screened and among them methylsulfinylmethyl ester was
found as promising prodrug[27]. Aspirin prodrug process was
involved by complex kinetics and hydrolysis mechanisms viz.
methylthiomethyl esters hydrolysed via a unimolecular alkyl-
oxygen cleavage whereas methylsulfinylmethyl and (methyl-
sulfonyl)methyl 2-acetoxybenzoate undergo neutral hydroly-
sis[28]. A series of glycolamide, glycolate, (acloxy)methyl, alkyl
and aryl esters have exhibited solubility, lipophilicity and
shelf-life[29]. On other case, 2-(2,6-dimethoxybenzyloxy)-2-
methyl-4H-1,3-benzodioxin-4-one showed its promised pro-
drug activity[30]. Series of 2-substituted 2-methyl-4H-1,3-
benzodioxin-4-ones were synthesized for significant keratolytic
activity with pseudo first order[31]. A well stable isosorbide
diaspirate ester moiety had surprisingly hydrolysed in human
plasma[32]. Nitroaspirin also possessed aqueous stability and



Figure 7. Prodrugs of aceclofenac.
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superior percutaneous absorption[33]. Pursuant, isosorbide-2-
aspirinate-5-salicylate has portrayed plasma mediated hydroly-
sis with selective COX-1 inhibition devoid of gastric ulcers[34].
Potential antiplatelet activity was noticed from an ester linked
furoxan moiety which is devoid of gastric lesions due to its
differential ability in NO release[35]. Alkyl chains containing a
nitroxy group (benzoyloxy)methyl esters were found to be
stable in acidic pH environment but immediately metabolised
by esterase and inhibited collagen induced platelet aggregation
as well[36]. High pharmacokinetic profile of aspirin was
achieved in colon specific and sustained release with dextran
conjugation[37]. Increased permeation of methylsulfinylmethyl
2-acetoxybenzoate through depilated mice skin with simulta-
neous hydrolysis[38] was tabled. The structures of aspirin
prodrugs were shown in Figure 9.

1.6. Dexibuprofen

Oral administration of dexibuprofen has more patient
compliance which can effectively inhibit both COX-1 and
COX-2 enzymes in the treatment/management of inflammation
and pain. Chronic oral use otherwise leads to serious GI
complications and those can be minimised by macromolecular
prodrugs[24]. Prodrugs processed by conjugating with polymers
like dextran 10000 and 20000 and promising activity was
outreached[39]. Similar kind of research was carried out on
dexibuprofen conjugation with amino acids such as L-
tryptophan, L-phenylalanine, L-glycine and L-tyrosine[40].
Brain targeted delivery systems were successfully developed
with objective of enhanced distribution by ethanolamine
prodrugs[41]. The prodrugs were illustrated in Figure 10.

1.7. Diclofenac

Diclofenac inhibits the synthesis of substance P, a proin-
flammatory neuropeptide and nociceptive prostaglandins in
synovial tissue and blood. But its clinical use is restricted due to
GI haemorrhage[42]. In order to overcome GI haemorrhage,
diclofenac prodrugs were synthesized using iodomethyl pivalate,
1-iodomethyl isopropyl carbonate and 2-acetoxyethyl bromide as
conjugates which exhibited more lipophilicity with partition
coefficient 3 and showed reduced ulcerogenicity[43]. Similar
outcome resulted from diclofenac prodrug containing 1-(2,6-
dichlorophenyl)indolin-2-one as the promoiety with decreased



Figure 8. Prodrugs of ASA.
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PGE2 levels and COX-2 expression[44]. A series of prodrugs
containing methanol, diclofenac ester, glycol, glycerol and 1,3-
propylene glycol have displayed their potentials in transdermal de-
liverywith betterfluxes[45]. It was noticed that diclofenac constituted
as promising depot with long acting [2-(1-methyl-1H-imidazol-2-
yl)ethyl ester of diclofenac][46]. The prodrugs were demonstrated
in Figure 11.

1.8. Diflunisal

Diflunisal inhibits uncoupling oxidative phosphorylation
which inhibits mitochondrial ATP synthesis thereby inhibiting
prostaglandin synthesis[47]. Oral use causes peptic ulceration, GI
bleeding and perforation. Acetyldiflunisal (Figure 12), a human
serum albumin based prodrug has disclosed two fold weak
binding affinity i.e. more easily released into the circulation[48].

1.9. Etodolac

Etodolac is a potent anti-inflammatory agent, which acts
by inhibiting interleukin-1beta induced PGE2 biosynthesis in
chondrocytes, active oxygen generation and bradykinin forma-
tion[49]. This mechanism eventually ended up with ulcerogenicity,
which was surmounted by macromolecular prodrugs by
conjugating the drug with high molecular weight polymers such
as dextran 40000, 60000, 110000 and 200000[50] and with
dextran 10000 and 20000[51]. In another instance, mutual amide
prodrug of etodolac with glucosamine has shown synergistic
effect, increased solubility and sustained release profiles[52].
Figure 13 displays the prodrugs of etodolac.

1.10. Fenoprofen

Fenoprofen is a potent inhibitor of PGE2 synthesis[53]. It also
damages the epithelial lining of gastric mucosa in chronic oral
use. With this context, fenoprofen was designed into polymer
conjugated prodrug. The prodrugs differed in covalent bonding,
type and/or length of spacer and drug loading[54]. Poly
[alpha,beta-(N-2-hydroxyethyl-DL-aspartamide)] (PHEA)-feno-
profen prodrug was conjugated by covalently binding fenoprofen
to poly[a,b-(N-2-hydroxyethyl-DL-aspartamide)] and evaluated
for kinetics[55]. The prodrugs were drawn in Figure 14.

1.11. Flufenamic acid

The mechanism of action of flufenamic acid was the activation
of AMP-activated protein kinase through Ca2+/calmodulin-
dependent kinase–kinase pathway[56]. With above mechanism, the
drug candidate has emerged as a potent NSAID and also posed the
gastric complications. In order to lower the side-effects of oral use
of flufenamic acid, dextran conjugated prodrug was synthesized
with aim of colon specific delivery[57]. A breakthrough on
nanoprodrugs of flufenamic was coined recently[58]. Structures
of these prodrugs were represented with Figure 15.



Figure 9. Prodrugs of aspirin.
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1.12. Flurbiprofen

Flurbiprofen inhibits both COX enzymes effectively[59].
Prolonged oral use of this drug is adversely reported with
gastric lesions and inflammation at epithelial lining. In order to
circumvent above problems, sustained release of flurbiprofen
was racked up by amino acid ethyl esters using L-arginine, L-
lysine and L-phenylalanine[60]. Amide conjugates of flurbiprofen
with various amino acid methyl esters synthesized by Schotten-
Baumann method showed increased aqueous solubility, signifi-
cant activity with reduced ulceration[61]; dextran prodrugs
by conjugating N-acyl imidazole derivative of flurbiprofen
and suprofen with dextran 40000, 60000 and 110000 also
displayed the same good results[62]. Increased hydrophilicity,
less ulcerotoxicity and colon specificity were achieved by
coupling flurbiprofen with L-glycine to form an amide
prodrug[63]. Flurbiprofen for transdermal delivery using
proniosomes as carrier was tabled in recent past[64]. Novel
emulsion of flurbiprofen axetil was prepared by high pressure
homogenization using Tween 80 as an emulsifier and the
results proved that it was a promising formulation for
ophthalmic anti-inflammatory activity[65]. Lipid nanocarriers
containing ester prodrugs of flurbiprofen using pegylated
nanostructured lipid carriers were processed for parenteral
administration[66]. The prodrugs were elucidated in Figure 16.

1.13. Ibuprofen

Ibuprofen, a racemate undergoes unidirectionalmetabolic chiral
inversion of the R-enantiomer to the S-form which inhibits both
COX-1 and 2[24,51]. Thus, it causes gastric erosions. Ibuprofen was
esterified with glycolamide along with unsubstituted carriers such
as N,N-dimethyl and N,N-diethyl in order to address the above
gastric repercussions of ibuprofen oral use[67]. Reduction of GI
disturbances was evidently accomplished by ibuprofen and
diclofenac with glucosamine as mutual prodrug[68], glyceride
prodrugs of ibuprofen with 1,2,3-trihydroxy propane 1,3-
dipalmitate/stearate[69], glucopyranoside–ibuprofen conjugates
using a-methyl, ethyl and propyl glucopyranoside[70], conjugating
ibuprofen with dextran 10000 and 20000[71]. Controlled release
was substantiated by a novel acrylic type polymer, metha-
cryloyloxy(2-hydroxy)propyl-4-isobutyl-a-methylphenyl ace-
tate[72]. Anhydride prodrug of ibuprofen used polyacrylic acid
based polymers[73]; polyethylene glycol conjugates have
proven their chemical stability in aqueous buffer[74]. A novel
series of rhein NSAID prodrugs containing anthraquinone by
linking rhein through glycol ester to ibuprofen, aspirin,
naproxen, indomethacin and diclofenac[75] were synthesized.
Ibuprofen-polyethylene glycol (PEG) derivatives synthesized
by esterification of substituted PEGs such as hydroxy ethyl ester,
hydroxy ethylamide and hydroxy ethyl, were susceptible to-
wards hydrolysis[22]. Novel ibuprofen prodrug for parenteral
administration was successfully designed with 3-hydroxy
butyric acid oligomers[76]. Later on, xylan based ibuprofen
nanoparticles as prodrugs attained superiority due to its
reduced size and stability towards hydrolysis[77,78]. Important
chemical structures of ibuprofen prodrugs were given in
Figure 17.

1.14. Indomethacin

Indomethacin has time dependent tight binding effect
on COX-1 and 2[77,78]. Thus, it causes ulcerations at GI mucosa.
Potential ulcerotoxicity of indomethacin was successfully
addressed by prodrugs of indomethacin such as mono-, bis-
and tris [1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetyl]
glycerides and 1,3-dialkanoyl-2-[1-(p-chlorobenzoyl)-5-methoxy-
2-methylindole-3-acetyl]glycerides. These prodrugs also exhibited
anti-oedema effects. Similar successes were continued with
apyramide, an ester of indomethacin and acetaminophen[79] and
also with 3-(N,N-diethylamino)propylindomethacin HCl[80].
Prodrugs were conjugated with triethylene glycol ether linkage
with aim of rapid hydrolysis whereas amide conjugates aimed
for pH independent stability[81]. Later on a peroral controlled



Figure 11. Prodrugs of diclofenac.

Figure 10. Prodrugs of dexibuprofen.
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release of indomethacin–lecithin conjugate was figured out[82]

and sequentially interfacial deposition model was adopted to
prepare indomethacin ethyl ester-loaded nanocapsules[83].
Further, prodrug moieties synthesized by linking 1-iodomethyl
pivalate, 1-iodoethyl isopropyl carbonate, 2-bromoethyl acetate
and 4-chloromethyl-5-methyl-1,3-dioxol-2-one through esteri-
fication to address the ulcer toxicities[84]. Structures of designed
prodrugs were provided in Figure 18.

1.15. Ketoprofen

Ketoprofen has the ability to activate serotonergic mecha-
nism and release 5-hydroxytryptamine along with inhibition of
prostaglandins at the central level[85]. Thus, it has supremacy
over other NSAIDs. But it is known to have a severe side-
effect on GI mucosal lining. Prodrug approach was figured out
to address the potential side-effect. In doing so, it was attempted
on 1-alkylazacycloalkan-2-one esters[86] and ketoprofen-PEG by
esterification and by conjugating niacin and ketoprofen with bile
acid chenodeoxycholic acid using lysine as a linker[87]. Resulted
prodrug had lipophilicity and demonstrated sustained release
from topical administration. They were reported with their
chemical structures in Figure 19.



Figure 14. Prodrugs of fenoprofen.

Figure 12. Prodrug of diflunisal.

Figure 13. Prodrugs of etodolac.
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1.16. Ketorolac

Ketorolac inhibits prostaglandin synthesis and also activates
NO-cyclic GMP-ATP-sensitive K+ channel pathway which re-
sults in peripheral antinociceptive effect[88]. It was reported to
have gastric ulcerations upon administration and instability
over topical administration due to enzymatic effects. These
issues were addressed with ketorolac amide prodrugs[89]. Fatty
esters such as decenoate, dodecanoate and palmitoleate were
used to conjugate ketorolac for more enzymatic stability in
skin during permeation[90]. In this advancement, piperazinyl
alkyl esters possessed higher permeation at various pH
conditions[91]. Prodrugs with tertiary butyl and benzyl esters
demonstrated higher fluxes; ester prodrugs with heptyl and
diketorolac heptyl exhibited sustained release with selective
absorption and greater follicular uptake[92]. Pharmacokinetics of
pentyl ester[93], 6-aminoethyl and amino butyl esters of ketor-
olac containing 1-methyl piperazine, N-acetyl piperazine and
morphine[94] followed pseudo first-order. Gastric toxicities were
addressed by macromolecular prodrugs with dextran 40000,
60000, 110000 and 200000[95]. Principle of reversible
conjugation to D-galactose[96] and ethyl esters of amino acids
glycine, phenylalanine, tryptophan, L-valine, isoleucine, L-
alanine, leucine, glutamic acid, aspartic acid and b-alanine
were applied for sustained release purpose and to address the



Figure 16. Prodrugs of flurbiprofen.

Figure 15. Prodrugs of flufenamic acid.
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Figure 17. Prodrugs of ibuprofen.
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Figure 18. Prodrugs of indomethacin.
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Figure 19. Prodrugs of ketoprofen.

Figure 20. Prodrugs of ketorolac.
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above problem[97]. The prodrugs obtained were structurally listed
in Figure 20.

1.17. Loxoprofen

Loxoprofen is a non-selective cyclooxygenase inhibitor and
reduces the prostaglandin synthesis. Fluoro-loxoprofen pre-
sented in Figure 21, exhibited higher plasma concentration with
limited gastric lesions[98].

1.18. Mefenamic acid

Mefenamic acid effectively inhibits the prostaglandin syn-
thesis[99]. It has similar degree of ulcerotoxicity. In addressing
this issue, with assistance of computational method, a series of
ester prodrugs which were multidrug resistance-associated pro-
tein inhibitors were synthesized and they exhibited efflux
mechanism[100]. Reduced ulcerogenicity was reported with
mefenamic acid prodrugs which are linked with L-glycine and
L-tyrosine by Schotten–Baumann method[101]. Similar effect
was recorded with mefenamic acid-paracetamol mutual pro-
drug[102]. The fabricated prodrugs with their structure were given
in Figure 22.



Figure 21. Prodrugs of loxoprofen.
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1.19. Naproxen

Carboxylate moiety of naproxen interacts with Arg-120 of
COX-2 via hydrogen bonding[103]. Its oral use is limited due to its
low absorption and high gastric toxicity. Earlier naproxen dextran
prodrugs were synthesized for colon specific delivery[104].
Prodrugs as safe alternative to naproxen with reduced gastric
ulceration were bagged by ester and amide prodrugs[105] and
naproxen–propyphenazone mutual prodrug[106]. Later on many
reports were tabled on naproxen prodrug process. In that
process, series of N-substituted glycolamides[107], naproxen and
ibuprofen bioconjugate prodrugs i.e. DL-ibuprofen amino acid
conjugates, ibuprofen and naproxen stigmasterol and estronyl
ester prodrugs, ibuprofen and naproxen prodrugs with protected
sugars[108], naproxen glycine conjugate[109] and naproxen 1-
(nitrooxy)ethyl esters[110] were outreached. On other hand,
improved skin permeation was trapped by morpholinyl and
piperazinyl alkyl esters of naproxen[111]. This successful process
was uninterruptedly continued to synthesize prodrugs using N-
Figure 22. Prodrugs of mefenamic acid.
and S-nitroxypivaloyl cysteine derivatives to have weak activity
against COX-1[112]. Controlled release was recorded by
naproxen, ketoprofen and ibuprofen using vinyl ether type
polymer as conjugate[113]. N,N-dimethyl glycolamide ester
prodrugs[114] and naproxen-polymer conjugates using PEG had
shown their stability against acidic hydrolysis[115]. Naproxen-
dendritic L-Asp and L-Glu peptide conjugates synthesized by
convergent approach paved a new pathway for new bone tar-
geting systems[116]. Brain specific delivery was achieved by
glucosyl thiamine disulfide-naproxen prodrugs by coupling re-
action[117] and also with prodrugs containing dihydropyridine-
ascorbic acid[118]. Figure 23 describes the structures of prodrugs.

1.20. Nimesulide

Nimesulide acts as a potent NSAID by preferentially inhibiting
COX-2, release of histamine from mast cells and basophils, hy-
droxyl radicals, superoxide radicals and the production of hypo-
chlorous acid by activated polymorphonuclear neutrophil
leucocytes. Thus, inhibition of leukotrienes, proinflammatory
cytokines, neutrophil adherence and expression of receptors
resulted[119]. Due to above mechanism, nimesulide is probably less
prone to GI bleeding compared to other NSAIDs. Nimesulide
prodrugs as shown in Figure 24, were processed with PEG by
ester and amide linkages for reduced ulcer index[120].

1.21. Others

Drugs containing carboxylic acid group mostly have their
decreased therapeutic effectiveness due to unfavourable physi-
cochemical and biopharmaceutical issues. In such cases, prob-
lems were addressed by conjugating moieties like naproxen,
diclofenac, valproic acid, probenecid, clofibric acid, penicillin
G, dicloxacillin and ibuprofen with tertiary amido methyl ester
by aminomethylation method[121]. Other mutual ester prodrugs of
ibuprofen, naproxen and mefenamic acid were conjugated with



Figure 23. Prodrugs of naproxen.
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Figure 24. Prodrugs of nimesulide.

Figure 25. Prodrugs of carboxylic acids.
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chlorzoxazone[122], 4-biphenylacetic acid and quercetin tetra
methyl ether[123] successfully. The prodrugs were structurally
summarized in Figure 25.

2. Conclusion

Prodrug approach is one of the potential approaches to
formulate NSAID moieties with ulcerogenicity and poor
permeation. The NSAID-prodrugs, have shown a substantial
improvement in the reduction of ulceration, intestinal bleeding,
mucosal haemorrhage upon their oral administration. With this
context, this article focused and explained clearly about NSAID-
prodrugs on their history, rationale, various types, mechanisms,
principles, methods employed in certain cases and therapeutic
outcomes of currently used drug candidates in clinical practice
with retrospective approach. The prodrug approach was suc-
cessful to enhance the stability of potent NSAID moieties as
well. In comparison to parent drugs, prodrug moieties are ad-
vantageous in terms of solubility and lipophilicity. Overall, acute
and chronic inflammations and pains can be managed effectively
with the prodrugs of NSAID category without any ulcerotoxicity
and other GI complications which becomes lesser burden from
the pharmacoeconomic point of view.
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