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ABSTRACT

This narrative review aims to appraise the sensitivity and specificity of novel biomarkers
in identifying acute kidney injury (AKI) in children. Serum creatinine represents a poor
traditional biomarker for AKI due to some limitations. Although alternative reliable
biomarkers that would better identify individuals at high risk for developing AKI,
identify AKI early enough, monitor its progression and patients' recovery, as well as
identify those patients at higher risk for poor outcomes are not yet available in renal
care, the search-light has recently been focused on various novel biomarkers, some of
which could provide this information in time ahead. Several studies have established
their predictive value. However, none of them could solely fulfill all the criteria of the
ideal biomarker. Therefore, to increase their sensitivity and specificity and enhance the
diagnosis of AKI, constellations of different biomarkers with specific features are
probably required. In future, the diagnostic evaluation of AKI in intensive care units
will have to undergo a paradigm shift from serum creatinine as the traditional biomarker
to tissue-specific injury biomarkers. A panel of these novel biomarkers employed at the
bedside setting will ultimately revolutionize the diagnosis and prognostication of AKI in
children.
1. Introduction

Acute kidney injury (AKI) is defined as a sudden and rapid
decline in renal excretory function within hours to days,
accompanied by an accumulation of nitrogenous waste products
such as creatinine, urea and other clinically unmeasured prod-
ucts[1]. In routine clinical practice, serum creatinine is used to
estimate renal function and thus as a marker for the diagnosis
and staging of AKI[1,2]. The risk, injury, failure, loss of
function, end-stage renal disease (RIFLE), as well as the
Acute Kidney Injury Network criteria provide a consistent
definition for AKI and have become the standard criteria for
diagnosis[3–5].

Although serum creatinine is regarded as a traditional
biomarker for AKI, it is essentially a renal performance indicator
rather than a pathology indicator because its level changes only
when renal function is reduced by about 50%[6]. Besides, it
varies with muscle size, chronologic age, gender, drugs and
state of hydration[7]. A sudden reduction in renal function may
not be evidenced by an elevation in serum creatinine until
after 24–48 h. Secondly, it provides scanty information about
the underlying cause and nature of renal injury and is less
accurate for patients with small muscle mass and unusual
diets. These limitations have led to the search for alternative
biomarkers. Unfortunately, reliable biomarkers that would
better identify individuals at high risk for developing AKI,
identify AKI early enough, monitor its progression and
patients' recovery, and identify those patients at higher risk for
poor outcomes are not yet available in renal care.
Investigations have recently focused on several new
biomarkers, some of which could provide this information in
future. Proteomic biomarkers hold prospects for improving the
management of patients with kidney diseases by enabling
more accurate and earlier detection of renal disease than is
possible with currently available biomarkers such as serum
creatinine and urinary albumin[8]. Biomarkers under
investigation include neutrophil gelatinase-associated lipocalin
(NGAL), kidney injury molecule-1 (KIM-1), interleukin-18
(IL-18), and cystatin C[9–12]. Others include hepatocyte growth
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factor (HGF), N-acetyl-b-D-glucosaminidase (NAG), vascular
endothelial growth factor (VEGF), chemokine interferon-
inducible protein 10 and total protein[13].

Despite the dearth of global data on the incidence of hospital
or community-acquired AKI, reports indicate that mortality rates
range from 10% in uncomplicated cases[14] to as high as 80% in
complicated cases that require renal replacement therapy
(RRT)[15]. AKI has indeed been shown to be an independent
risk factor for mortality especially in intensive care settings[16–
18]. AKI used to be considered as an acute disease, from which
the pediatric patient generally recovers, but it has now been
reported to be a major risk factor for the occurrence and
exacerbation of chronic kidney disease (CKD). Moreover,
once a patient develops AKI, the therapeutic options are
limited since RRT is the main stay of treatment. Remarkably,
RRT remains inaccessible and unaffordable for the majority of
pediatric patients in resource-poor countries[19,20]. For these
reasons, highly sensitive and specific diagnostic tests for AKI
remain a priority in the management algorithm of the acutely
ill child since this will help to improve survival outcomes.
Early recognition and treatment of AKI will obviously reduce
mortality rates. Any delay in diagnosis means a missed
opportunity to minimize renal injury. The patient incurs more
severe AKI with subsequent greater risk of developing CKD
and the attendant cardiovascular sequels such as myocardial
infarction and stroke. Thus, a paradigm shift from the old to
the new biomarkers may improve the management of AKI
through enhanced diagnosis.

This narrative review aims to appraise the sensitivity and
specificity of these novel biomarkers in identifying AKI in
children.

2. AKI and the novel biomarkers: pathophysiological
mechanisms

The common triggers of AKI include ischemia, nephrotoxins,
radiocontrast and bacterial endotoxins[7]. Although community-
acquired pediatric AKI is common in developing countries,
hospital-acquired AKI frequently occurs in children managed in
the intensive care unit (ICU) or those who have undergone
cardiac surgery. For the identification of more biomarkers of
renal injury, the typical features of an ideal biomarker include
elaboration by the injured cells and organ specificity, concen-
tration equivalent to the degree of injury, early expression after a
potentially reversible organ injury, prompt post-injury reduction
in concentration to enable its utilization as a monitoring
parameter for treatment and lastly, its quick and reliable
measurability[21]. Generally, there are two major types of
biomarkers: biomarkers of renal function and biomarkers of
renal injury. Irrespective of the type of renal injury and the
clinical scenario, an inflammatory response appears to play a
prominent role in the genesis of AKI[7]. The triggers of AKI
(ischemia, nephrotoxins, and bacterial endotoxins) stimulate
the release of inflammatory mediators from renal endothelial
and tubular cells. Early in the post-injury period, inflammatory
cells migrate and marginate along the peritubular capillary wall
and indeed, data from animal models support the concept that
cardiogenic pulmonary edema (from volume overload) and non-
cardiogenic pulmonary edema (from endothelial injury due to
inflammation and apoptosis) can occur in AKI[22]. Endothelial
inflammatory injury makes the vessels more permeable which
in turn helps to bring about the migration of neutrophils into
the renal interstitium and the luminal space of the tubules
within a 24-h period. The subsequent tubular response to AKI
is characterized by a disruption of the cytoskeletal architecture
resulting in shedding of living cells, as well as apoptosis and
necrosis[23]. The proposed mechanisms for the reduced
glomerular filtration rate (GFR) in AKI include tubular
blockage from shed cells, renal vasoconstriction induced by
vasoactive mediators, and direct action on the glomerulus[7].
During the evolution of AKI, a number of etiologic factors
result in the accumulation of biomarkers in plasma and urine
and possibly indicate varied pathophysiological events during
the process of renal damage and repair. For instance,
biomarkers accumulate in urine due to an induced tubular
epithelial synthesis in different parts of the nephron (NGAL,
IL-18, NAG, KIM-1) and as a sequel of diminished reabsorp-
tion of the filtered load in the proximal tubule (NGAL, cystatin
C)[7]. Again, production of biomarkers from transmigrated,
activated immune cells into the tubular lumen may also be
contributory (NGAL, IL-18), while increased production of
some biomarkers in other tissues has been demonstrated, thereby
raising concerns about their diagnostic value in AKI (NGAL, IL-
18)[24]. This extra-renal synthesis will definitely increase circu-
lating biomarker levels and a reduction in GFR will aggravate
this elevation.

3. The novel biomarkers: how sensitive and specific?

The paucity of reliable biomarkers has significantly hindered
the evolution of treatment strategies aimed at improving the
prognosis of AKI. A single biomarker may not be sufficient
enough to establish AKI given the intrinsic structural diversity of
the kidney and the different settings which renal injury occurs[8].
Interestingly, one study has demonstrated the comparative value
of multiple biomarkers in the diagnosis and prognosis of AKI[13].
In a cross-sectional comparative study of 204 patients with AKI
and their non-AKI controls, the investigators specifically eval-
uated the diagnostic value of nine urinary biomarkers, namely,
KIM-1, NGAL, IL-18, HGF, cystatin C, NAG, VEGF, chemo-
kine interferon-inducible protein 10 and total protein. The major
finding of this study was that the median urinary concentrations
of each biomarker in patients with AKI was significantly higher
than that in their non-AKI controls[13]. Using the logistic
regression analysis, the researchers noted that the four best
performers independently and in combination were KIM-1,
NGAL, HGF, and total protein[13]. The study represents an
important milestone in the authentication of these biomarkers
as it has demonstrated that clearly defined AKI can be
differentiated from non-AKI controls. Furthermore, a recent
review has highlighted in detail the subclasses and additional
examples of the biomarkers[25]. These include functional markers
(serum cystatin C, urine albumin and NGAL), up-regulated
proteins (KIM-1, liver-type fatty-acid binding protein, IL-18,
b-trace protein and asymmetric dimethylarginine), low-
molecular weight proteins [urine cystatin C, NAG, glutathione
S-transferase, g-glutamyl-transpeptidase (gGT)] and enzymes
(alanine amino-peptidase and lactate dehydrogenase).

The sensitivity of these biomarkers refers to their ability to
correctly detect patients who have AKI (i.e. the proportion of the
patients who test positive for AKI among those who have the
disease) while their specificity relates to their ability to correctly
detect patients without AKI (i.e. the proportion of healthy
children known not to have AKI who will test negative for it).
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For instance, KIM-1 (a transmembrane tubular glycoprotein
which is up-regulated approximately 50–100 fold in the kidney)
is shed into the urine following proximal tubular injury and
urinary KIM-1 constitutes a promising biomarker for early
detection of AKI with considerable predictive value[26]. In
addition, KIM-1 and its soluble ectodomain in urine (90 kDa)
are thought to be involved in the regeneration processes after
epithelial damage. It is thus highly predictive of tubular injury as
it may be the most useful in combination with other biomarkers,
including NGAL, to show not only the kidney injury and predict
who may develop it, but also the most prominent location of the
injury. Nevertheless, a drug-safety study indicates that KIM-1
may also be useful in determining drug toxicity[27]. In
comparison to other biomarkers used as indicators of drug
toxicity, KIM-1 significantly outperformed serum creatinine
and blood urea nitrogen at detecting renal tubular injury in rats
and it was actually the first injury biomarker of renal toxicity
approved by the US Food and Drug Administration for pre-
clinical toxicity testing and drug development[27].

Furthermore, a combination of some urinary biomarkers
(liver-type fatty acid-binding protein and NGAL) may allow for
the early detection of AKI after cardiac surgery before an
elevation in serum creatinine[28]. Similarly, NGAL has been
shown to be a sensitive, specific, and highly predictive early
biomarker of AKI superimposed on CKD following cardiac
surgery, albeit in adult subjects[29]. This biomarker is a
universal iron-carrying protein expressed in the tubular epithe-
lium of the distal nephron and released into the blood and urine
following tubular damage. It was first identified as a 25 kDa
protein in the secondary granules of human neutrophils which is
released into the bloodstream in response to bacterial infection
and its elevated level in urine may be diagnostic of AKI using
the Acute Kidney Injury Network criteria though the predictive
value was reported to be only moderate[30,31]. Nevertheless, the
novel biomarkers of AKI, NGAL were identified as the most
speedily induced proteins in rat models of ischemic and toxic
AKI and their levels were raised in multiple folds in both
serum and urine within hours of the insult[11]. Another
biomarker of kidney injury worthy of mention is NAG, a large
(>130 kDa) lysosomal enzyme which is located in several
human cells including the renal tubules[7]. Its size makes
glomerular filtration impossible, and increased urinary levels
are therefore presumed to emanate from the tubules. The
elevated NAG levels indicate tubular injury, but probably
result from increased lysosomal activity without cell damage
as well. Notably, urinary NAG activity has been shown to be
high during active renal disease[32]. In a prospective study of
61 patients over a 1-year period, the authors comparatively
evaluated the accuracy of several biomarkers (urinary tubular
enzymes such as gGT, alkaline phosphatase, and urinary
lactate dehydrogenase and urinary NGAL) on predicting AKI
episode after liver transplantation[33]. From the findings, it was
concluded that the absolute value of urinary gGT evaluated at
the end of liver transplantation was the most accurate
parameter to predict AKI in the study cohort. Urinary NGAL
was conclusively found to be less accurate.

Some of the biomarkers are non-specific for AKI as they
have also been discovered to be useful for the diagnosis of CKD
and for monitoring its progression including NGAL, and KIM-1.
NGAL has diagnostic and prognostic value for CKD as well as
other renal diseases such as acute pyelonephritis[34,35]. According
to one study conducted among 3386 CKD patients, urine NGAL
was an independent risk factor of CKD progression though it did
not substantially improve the prediction of outcome events[26].
Furthermore, specific novel biomarkers are significantly
elevated during kidney allograft rejection while urinary levels
of VEGF, cytokines, chemokines and cell adhesion molecules
are raised in diabetic nephropathy as VEGF is known to drive
the associated increased angiogenesis, underscoring their non-
specificity for AKI diagnosis[36–40]. This equally applies to
urinary cystatin C. Although it is used as a biomarker for
AKI, its level is elevated when the re-absorptive capacity of
the cells of the proximal tubules is diminished and thus, the level
has been found to be high in subjects with known tubulop-
athy[41]. This finding can be explained by the fact that cystatin C
is a low-molecular weight protein produced by all nucleated
cells in the body at a constant rate, freely filtered by the
glomeruli but completely reabsorbed and catabolized by the
renal tubules[42]. In one report, urinary cystatin C correctly
predicted that ICU patients with established AKI would
require dialysis[43]. Furthermore, in another study that aimed to
determine if early cystatin C levels could predict AKI in
pediatric patients undergoing cardiac surgery, as well as
predict pediatric-modified RIFLE grouping and kidney injury
as determined by estimated GFR, the researchers reported that
the biomarker was not only an early predictor of AKI in children
after cardiopulmonary bypass but also a good predictor of pe-
diatric RIFLE classification and decreased estimated GFR after
the same surgical procedure[44]. Finally, in a similar prospective
study which evaluated the use of serum cystatin C for the early
and accurate diagnosis of AKI in patients hospitalized from the
emergency setting, the investigators concluded that serum
cystatin C estimated on admission, either alone or in
combination with serum creatinine and estimated GFR, could
be considered a reliable armamentarium for the prediction of
AKI in patients at the emergency department[45]. They also
established that serial assessment of serum cystatin C did not
rank higher than serum creatinine and estimated GFR in
discriminating AKI from non-AKI subjects.

4. Conclusions

The discriminative and predictive abilities of these novel
biomarkers of AKI have been evaluated by several studies and
are currently still being evaluated. Given the characteristics of an
ideal biomarker, it is difficult to find one marker which can
solely fulfill all the criteria. Rather, constellations of different
biomarkers with specific features are probably required to in-
crease their sensitivity and specificity in order to enhance the
diagnosis of AKI. In future, the diagnostic evaluation of AKI in
ICU will have to undergo a paradigm shift from serum creatinine
as the traditional biomarker to tissue-specific injury bio-
markers[7]. A panel of these novel biomarkers employed at the
bedside setting will ultimately revolutionize the diagnosis and
prognostication of AKI in children.
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