Health Related Problems and Computer use Among Students

Lalita Kumari

Senior Research Fellow Guru Nanak Dev University, Distt-Amritsar, Punjab

Abstract

This study is an attempt to estimate prevalence of computer related health problems/musculoskeletal discomforts among college students and to investigate association of health problems/musculoskeletal discomforts with duration of computing. 300 college students were studied from Punjab state of India using computer and laptops. Majority of respondents were female, graduate and fall in 20-25 years age group, use desktop and work on computer 2-4 hours and take at least once an hour break during working on computer. Chi Square test and 'T' test was used to test the hypothesis. There is association between musculoskeletal problems due to Computer Usage and years of working on computer and between musculoskeletal problems due to Computer Usage and hours of working on computer. Health related problems/Musculoskeletal discomforts are independent of Gender except lower back pain which is more in females. There is no difference in Health related problems/Musculoskeletal discomforts between desktop users and Laptop users.

Keywords: Health, Computer, Musculoskeletal discomforts

Introduction

Computer use among college students has increased dramatically in the last few years. Most academic programs now require a computer and computer literacy for enrollment. In every field, one cannot think without computer work. It has decreased work load in offices, college, school and business sector. Computer has become a connecting and communicating media these days.

Computer work involves repetitive moment of upper limbs, adapted postures using laptops in bed and using desktop sitting on a chair. There are changes in musculoskeletal structures causing tightness, fatigue, neck ache other joint symptoms.

Studies done by different researchers have found that up to 80% people experience physical discomfort during or after computer work.

Need of the Study

There is insufficient data on musculoskeletal related to computer use among Indian population. Concentrating the differences in academic schedule in college program and duration of computing, there is need to evaluate Health related and musculoskeletal complaints (MSK) related to computer use among student.

Table 1: Empirical Literature on Computer Related Health Problems.

D	Table 1: Empirical Literature on Computer Related Health Problems.					
Author	Country	study design &	Instrument	Methodology	Results of the study	
(Year)		Sample Size	Used			
(Year) Karen Jacob (2002)	New England	cross-sectional study and 6th and 7th grade students in three middle schools	used survey used in the study to determine the prevalence of computer- related musculoskeletal discomfort/pain was adapted from one used by Katz, Amick, Carroll, Hollis, Fossel, & Coley (2000) in their research on	Percentage and Chi- Square test	Musculoskeletal (MSC) discomfort/pain associated with computer use in adults may be prevalent throughout middle school aged students. 40% of those participants with computer-related MSC discomfort/pain reported taking a break from using the computer once an hour. This finding suggests that they may be aware of the MSC discomfort/pain and take a break to relieve this discomfort. Despite 95.3% of	
			the prevalence of upper extremity musculoskeletal disorders in college students.		the students reporting spending 0-6 hours/day using a computer, the amount of time spent using the computer was not associated with musculoskeletal discomfort/pain.	
Sotoyama el al.(2002)	USA	Cross Sectional Study and 100 ele-mentary. junior high, and high schools	questionnaires	Percentage	Concluded that most schools are slow in developing instructive programs about environment and ergonomics in relation to the computer workspace. Although children currently were not experiencing musculoskeletal problems, a concern for future problems with the prospected rise in use of computers in the classroom was expressed. This rise in computer use can lead to physical problems if measures are not taken to improve ergonomic positioning.	
Ketola et al.(2002)	USA	Cross Sectional Study and 124 subjects	questionnaires	Percentage	More use of computer is the major cause of musculoskeletal and ergonomics education	

					helped reduce discomfort;
					however, the best results were
					achieved by cooperative plan-
					ning in which both workers and
					practitioners were involved
		cross-sectional	survey	Percentage,	The most frequently reported
Shari McMahan	California	study and 512		MANOVA and	disorders were related to
and <u>Rafer</u> Lutz		college students		Regression	eyestrain affecting nearly 85%,
(2003)					and upper back and neck pain
					affecting 70% of computer
					users. This study confirmed the
					effectiveness of training in
					workstation design considering
					that these two
					recommendations are among
					the most recommended
					strategies in the workstation
					design literature
Eric et al. (2004)	California	cross-sectional	304 graduate	Chi-Square statistic	Approximately 60% of
		study and 206	students	and Univariate	respondents reported upper
		Electrical	randomly	logistic regression	extremity or neck pain
		Engineering and	selected, 206		attributed to computer use and
		Computer	completed the		reported a mean pain severity
		Science (EECS)	questionnaire		score of 4.5 (_2.2; scale 0-10).
		graduate students	(67%		In a final logistic regression
			participation		model, female gender, years of
			rate) with		computer use, and hours of
			69% completing		computer use per week were
			the		significantly associated with
			questionnaire		pain. The high prevalence of
			online, and 31%		upper extremity pain reported
			by		by graduate students suggests a
			telephone.		public health need to identify
					interventions that will reduce
					symptom severity and prevent
					impairment.
Moras et al. (2007)	USA	random-cross	survey	Percentage	Assess levels of discomfort,
		sectional study of			previous laptop use, major and
		361			non-musculoskeletal problems
		undergraduate			such as eye pain and
		students			headaches. Neck pain was the
					most common complaint,
					followed by upper and lower
					back.

Shyam Sundar	India(Bangalore)	Cross sectional	questionnaire	T-test and Chi-	Prevalence of computer related
Prasad Shah		study and 500	method and	square test	musculoskeletal complaints
Dr.M.V.Shetty		college students	interview		among college students were
(2007)		reporting			very common and there was
		computer use			association of musculoskeletal
		-			complaints with adverse tissue
					tension and duration of
					computing.
Muthunarayanan	India	cross-sectional	structured	Percentage and	Out of 416 students studied.
(2013)	(Chennai)	study and 416	questionnaire	Multiple Logistic	58% of them viewed computer
<u> </u>	, ,	private university	1	Regression	at a distance of 20 to 40 inches,
		students			61 % viewed
		comprising of			the computer screen at the
		final year			same level, 42.8% placed the
		Medical and			reference material between
		Engineering			monitor and key board, 24.5%
		(Computer			tilted screen backward and
		science and			75.7% took frequent breaks to
		Information			prevent CVS. Students who
		technology)			viewed the computer at a
		students studied			distance of less than 20 inches,
					viewed upwards or downwards
					to see the computer, who did
					not avoid glare and did
					not took frequent breaks were
					at higher risk of developing
					CVS. Students who did not
					used adjustable chair, height
					adjustable keyboard were at
					higher risk of developing neck
					and shoulder pain.
					The students who were not
					practicing ergonomics
					principle and did not check
					posture and make
					ergonomic alteration were at
					higher risk of developing CVS.
Venkatesan et	Malaysia	A cross-sectional	Questionnaire	Percentage and	About 88% (149/170) of the
al.(2012)		study was		Correlation analysis	respondents reported
		performed			musculoskeletal complaints in
		among 200			the two weeks prior to
		college students			completing the survey. The
		aged 19-27 years			prevalence of musculoskeletal
		using random			pain was higher in female 90%

		sampling, two			than in male students 76%.
		surveys			Although there was no
					statistically significant
					association between the type of
					computer and musculoskeletal
					pain, the prevalence of
					musculoskeletal pain was
					higher for students using laptop
					(90%) when compared to
					those using both desktop and
					laptop and desktop only (87
					and 86%) respectively. There
					was no statistically significant
					correlation for musculoskeletal
					pain with hours of computer
					use per day, type of computer
					used and level of physical
					activity.
Chavda et al.	India (Gujarat)	cross-sectional	Self-reporting	Percentage	Current practice of laptop's
(2013)		study and	Questionnaire		usage was ergonomically
		100 students			improper. Prolonged usage
					in improper posture has
					created various
					musculoskeletal problems
					among medical students
	India	cross sectional	an interviewer-	Percentage	prevalence of the symptoms
Bansal et al.(2013)	(SURAT)	study of 290	administered		like watering in eyes, eye
		selected students	questionnaire		strain, back pain, shoulder
		of information			pain, neck pain and many other
		technology in			problems which were common
		various college			among the students and
					become more persistent with
					the increase in hours of work
					and study also examined
					gender variations
Peter et al. (2014)	College of	convenience	questionnaire	paired t-test for	Results showed that subjects
	Health	sample and 260		equality of means	demonstrated a statistically
	Professions,	graduate		including an	significant im-provement in
	Medical	students		independent	ergonomics knowledge after
	University of			samples test and	they completed the ergonomic
	South Carolina,			analysis using	educational session. Some
	Charleston, USA			ANOVA	participants reported making
					adaptations to laptop
					positioning and equipment use
					fol-lowing the educational
					session. Thus, partici-pating in
					ergonomic education can
					positively influence awareness
					of body mechanics relative to
1	I		I	l	
					laptop workstation design

Source: Compiled from various studies

Objectives of Study

- 1. To estimate prevalence of computer related health problems/musculoskeletal discomforts among college students
- 2. To identify nature and distribution of problems associated with computer usage
- 3. To investigate association of health problems/musculoskeletal discomforts with duration of computing.

Hypothesis

There is no association between Health related problems/Musculoskeletal discomforts and hours of use of desktop/laptop in a day.

There is no association between Health related problems/Musculoskeletal discomforts and years of desktop/laptop use.

Perception of respondents regarding Health related problems/Musculoskeletal discomforts is independent of Gender

There is no difference in Health related problems/Musculoskeletal discomforts between desktop users and Laptop users.

Materials and Methodology

Source of Data: 300 College students of Punjab state.

Definition of Study Subjects: College students using computer (laptop and desktop).

Inclusion and Exclusion Criteria

Inclusion Criteria

College student in the age group to >15 to 35 years.

Students of both genders reporting use of computer.

Exclusion Criteria:

Uncooperative students.

Structural deformities of spine or upper limb.

Study Sampling Design, Method and Size:

Sample Design: Sample of convenience

Method Of Collection Data: Survey by questionnaire method.

Sample – Size: 300 college and universities students reporting computer use.

Parameters used for comparison and statistical analysis used: The collected data is analyzed by Percentage, chi—square test and t—test.

Duration of study: one week (March to June, 2015)

Methodology

Survey was done in different colleges conducting computer related courses. Questionnaire was distributed among students to measure computer related health problems/musculoskeletal discomforts. Student reporting computer related healthproblems/musculoskeletal discomforts were asked questions in survey to obtain details in nature, distribution, duration and other contributing factors.

Data Analysis

Sample characteristics

Table 2: Demographic Profile of Respondents

Demographic Variables		No. of
		Respondents (%)
Gender	Male	138(46)
	Female	162(54)
	15-20 Years	72 (24)
	20-25 years	126(42)
Age (Yrs)	25-30 Years	66(22)
	30 -35 Years	36(12)
	Under Graduate	84 (28)
Education Level	Graduate	114(38)
	Post Graduate	54(18)
	Research Schloar	48(16)

As far as the demographic profile of the respondents is concerned, the sample comprised of variety of respondents belonging to different educational background. The demographic background of the sampled respondents is presented in Table no. 2. Table reveals that majority of respondents were female. The table also shows that the majority of the respondents (42%) belonged to the age group of 20-25 years of age. The next largest category comprised

of respondents between 15-20 years of age (27%). The next category of respondents was of the age group of 25-30 years (22%), while those falling in the age category of 30-35 formed just 12% of the sample. It brings out that 38% of the respondents were graduates followed by under graduates (28%). The next category comprised of respondents who were post graduates (18%). While 16 % of the respondents' perusing doctoral degree.

Table: 3 Type of Computer Used for browsing/typing/downloading

Computer Used for browsing/typing/downloading	Frequency	Percentage
Desktop	180	60
Laptop	120	40
Total	3000	100

Table 3 indicates that 60 per cent of respondents were used desktop and 40 percent were used Laptop for

browsing/typing/downloading.

Table 4: Years of Working on Desktop/Laptop

Years of Working on Desktop/Laptop	Frequency	Percentage
<3 Years	72	24
3-6 Years	126	42
6-9 Years	60	20
9-12 Years	18	6
12-15 Years	24	8
>15 Years	0	0
Total	300	100

Table 4 indicates that majority of respondents were working on desktop/Laptop for 3 -6 years, followed by <3

years, followed by 6-9 years, 12-15 years and 9-12 years.

Table 5 Hours of work on Computer/Laptop per day

Frequency	Percentage
54	18
138	46
66	22
30	10
12	4
300	100
	54 138 66 30 12

Table 5 indicates majority (46 per cent) of respondents were work 2-4 hours per day on computer, followed by 4-

6 hours, 0-2 hours and 6-8 hours. While just 4 per cent work more than 8 hours.

Table 6 Frequency of taking breaks from working on the computer

Frequency of taking breaks from working on the computer		
	Frequency	Percent
More than once an hour	24	8
Only after 2 hours work	18	6
Once every 1-2 hours	60	20
At least once an hour	126	42
Never	72	24

Table 6 indicates majority (42 per cent) of respondents took break at least once an hour, followed by never (24 per cent)

Once every 1-2 hours (20 per cent), More than once an hour (8 per cent), Only after 2 hours work (6 per cent).

Table: 7 Position of computer screen

Position of computer screen	Frequency	Percentage
At same level	150	50
Upward	102	34
Downward	48	16

Table 7 indicates majority 50 per cent keep their computer screen at same level. While 16 per cent keep computer

screen downward.

Table: 8 Place of reference material while typing

Place of reference material while typing	Frequency	Percentage
Between Monitor/screen and Keyboard	10	20
Above the Monitor/screen	17	34
Sides of the Monitor/screen	23	46

Table 8 indicates the place of reference material while typing on computer. Majority (46 per cent) respond they kept it sides of the monitor/screen, 34 per cent kept Above

the Monitor/screen and 20 per cent kept Between Monitor/screen and Keyboard.

Table 9 Body Posture during using desktop/Laptop

Posture	Yes (%)	No (%)	Total
Thigh horizontal	192(64)	108(36)	300
Feet on floor or on foot rest	192(64)	108(36)	300
Lower leg kept vertical	198(66)	102(34)	300
Arms and forearms at right angle	192(64)	108(36)	300
Wrist rest on keyboard	210(70)	90(30)	300

Table 9 reveals that body posture during using desktop/laptop. Majority of respondents respond that they kept Thigh horizontal, Feet on floor or on foot rest, Lower

leg kept vertical, Arms and forearms at right angle and wrist rest on keyboard.

Chi-Square test

Table 10 Association between suffered /suffering from any musculoskeletal problems due to Computer Usage and years of working on Desktop/Laptop

		3-6 Years	6-9 Years	9-12 Years	12-15 Years	>15 Years	
suffered/suffering from	Yes	18	36	42	78	108	282
any musculoskeletal	No						
problems due to		6	12	0	0	0	18
Computer Usage							
Total	24	48	42	78	108	300	

Table 11 indicates the relationship between the existence of computer-related health/musculoskeletal discomfort/pain and years spent using a computer was made on the basis of student's report of Desktop/Laptop use from "Years of working on Computer/Laptop). Chi-square analysis (Contingency Coefficient=.499) showed that the correlation

between health related/ musculoskeletal discomfort/pain and the reported years of working on computer was significant (p>.05). Therefore, there is association between musculoskeletal problems due to Computer Usage and years of working on computer.

Table II Association between suffered/suffering from any musculoskeletal problems due to Computer Usage and years of working on Desktop/Laptop

		hours of work on Computer/Laptop					
		0-2 Hours	2-4 Hours	4-6 Hours	6-8 Hours	8+ Hours	Total
suffered/suffering from	Yes	18	78	60	24	30	228
any musculoskeletal problems due to Computer Usage	No	42	30	0	0	0	72
Total		78	108	60	24	30	300

The relationship between the existence of computer-related musculoskeletal discomfort/pain and time spent using a computer was made based on student's report of Desktop/Laptop use in a "typical" day (0-2 hours/day, 2-4 hours/day, 4-6 hours/day, 6-8 hours/day or 8+ hours /day). Chi-square analysis (Contingency Coefficient=.014)

indicated that the correlation between health related/musculoskeletal problems and the reported number of hours per day of computer use was significant (p>.05). Therefore, there is association between problems due to computer usage and hours of work on computer.

Table 12 Independent Samples t-Test

				o c pen			5 1-16.51.				
			's Test								
		for Eq	uality								
		of Var	iances	t-test for Equality of Means							
									95% Cor	nfidence	
									Interva	lafthe	
						Sig. (2-	Mean	Std. Error	Differ	rence	
		F	Sig.	t l	df	tailed)	Difference	Difference	Lower	Upper	
Ciana and a second of the	le1	_	0.6.	,						Oppo.	
Finger pain, wrist &	l '				400		02564	22247	40000		
hand pain	variances	.027	.870	110	102	.913	02564	.23313	-,48806	.43677	
	assumed										
Shoulder, Flbow	Equal										
pain & arms pain	variances	.462	.498	.174	102	.862	.03846	.22053	39896	.47588	
	assumed										
Numbness/tingling	Equal										
over hand	variances	.476	.492	.851	102	.397	.17949	.21083	23869	.59767	
	assumed										
Neck pain	Equal										
	variances	.006	.939	51/	102	.606	11538	.22323	55816	.32/39	
	assumed										
Back pain	Equal										
	variances	.000	1.000	481	102	.632	11538	.24009	59161	.36084	
	assumed										
Lower backache	Equal	.215	.022	-2.438							
	variances				56.166	.012	44872	.17313	79552	10192	
	not assumed										
1											
Leg pain	Fqual										
	variances	1.132	.290	.652	102	.516	.14103	.21622	.28784	.56990	
	assumed										
Thigh pain	Equal										
	variances	.006	.940	064	102	.949	01282	.19908	40770	.38206	
	assumed										
Knee pain	Equal)	ı	
•	variances	.100	.753	937	102	.351	21795	.23259	67929	.24340	
	assumed										
Numbness/tingling	Equal										
over feet	variances	.000	.998	.220	102	.827	.05128	.23346	41179	.51435	
	assumed										
Burning feet	Equal										
	variances	1.181	.280	1.294	102	.199	.29487	.22789	15714	.74689	
	assumed										

Table 12 (i) Group Statistics

	Gender	N	Mean	Std. Deviation	Std. Error Mean
Lower backache	Male	138	1.5769	.70274	.13782
	Female	162	2.0256	.92546	.10479

Table 12 shows that H0 (3) is rejected partially in case of "Lower backache" significance value is less than 0.05(p<0.05). As table 12 (i) show mean value of female

respondents is more than male counterparts so it can be said female are suffering more from Lower backache as compared to their male counterpart respondents.

Table 13 Independent t –test

	e 13 independent i –test									
		Lever Test Equali Varian	for ty of	or t-test for Equality of Means						
		F	Sig.	ı	dſ	Sig. (2- tailed)	Mean Difference	Std. Frroi Difference	95% Con Interval Differ	of the ence
						Lower	Upper			
Shoulder, Elbow pain & arms pain	Equal variances assumed	1.213	.276	.402	18	.690	.20652	.51398	82689	1.23994
Numbness/tingling over hand	Equal variances assumed	.605	.440	723	18	.473	33696	.46627	-1.27445	.60053
	Equal variances assumed	2.301	.136	-,525	3.251	.633	33696	.64194	-2.29347	1.61956
Neck pain	Equal variances assumed	2.301	.136	.855	48	.397	.44565	.52123	60234	1.49365
Back pain	Fqual variances assumed	1.811	.185	399	48	.691	21739	.54427	-1.31172	.87694
Lower backache	Fqual variances assumed	.295	.589	323	48	.748	17391	.53790	-1.25544	.90761
Leg pain	Equal variances assumed	6.800	.312	.212	18	.833	.108/0	.51284	92243	1.13982
Thigh pain	Equal variances assumed	1.002	.322	1.298	48	.200	.67391	.51916	36992	1./1//5
Knee pain	Equal variances assumed	1.612	.436	1.489	18	.143	.79348	.53200	27799	1.86495
Numbness/tingling over feet	Equal variances assumed	.565	.456	.217	48	.806	.13043	.52786	93089	1.19176
Burning feet	Equal variances assumed	.313	.579	-,534	48	.596	27174	.50880	-1.29475	.75127

Table 13 indicates **that** p>0.05 so **H0 (4) is not rejected** therefore, **There is no difference** in Health related problems/Musculoskeletal discomforts between desktop users and Laptop users.

Discussion and Findings

- Majority of respondents were female, graduate and fall in 20-25 years age group, use desktop and work on computer 2-4 hours and take at least once a hour break during working on computer.
- There is association between musculoskeletal problems due to Computer Usage and years of working on computer.
- There is association between musculoskeletal problems due to Computer Usage and hours of working on computer.
- ➤ Health related problems/Musculoskeletal discomforts are independent of Gender except lower back pain which is more in females.
- ➤ There is no difference in Health related problems/Musculoskeletal discomforts between desktop users and Laptop users.

Recommended Ergonomics for Staying Comfortable At Computer

- Sit up tall.
- Sit close to your keyboard.
- Adjust the keyboard height.
- Adjust the tilt of your keyboard based on your sitting position.
- Position the source documents in front of you, and use an in-line copy stand.

> Take small breaks during your workday to release some muscle tension.

References

- Karen Jacobs (2002), "Middle School Children and Their Use of Interactive Media", The Proceeding of the XVI Annual International Occupational Ergonomics and Safety Conference '2002
- Sotoyama, M., Bergqvist, U., Jonai, H. and Saito, S. (2002), "An ergonomic questionnaire survey on the use of computers in schools" *Industrial Health*, 40, 35-141. http://dx.doi.org/10.2486/indhealth.40.135
- Ketola, R., Toivonen, R., Hakkanen, M., Luukkonen, R., Takala, E. and Viikari-Juntura, E. (2002) Effects of ergonomic intervention in work with video display units, *Scandinavian Journal of Work, Environment & Health*, **28**, 18-24. http:// dx. doi. org/ 10.5271/ sjweh.642
- S. McMahan & R. Lutz (2003), "Computer Use, Workstation Design Training and Cumulative Trauma Disorders in College Students", *Californian Journal of Health Promotion*, Volume 1, Issue 4, 38-46.
- Eric B. Schlossberg, Sandra Morrow, Augusto E. Llosa, Edward Mamary, MS, Peter Dietrich, and David M. Rempel, (2004), "Upper Extremity Pain and Computer Use Among Engineering Graduate Students", *American Journal Of Industrial Medicine* 46:297–303.