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ABSTRACT

Objective: To examine the effects of Tribulus terrestris L. (T. terrestris) extract on the
modulation of calcium channels to evaluate its use in topical agents for treatment of
atopic dermatitis.
Methods: The 70% methanol extract of T. terrestris was prepared. Human HEK293T
cells with over-expressed calcium release-activated calcium channel protein 1 (Orai1),
transient receptor potential vanilloid 1, or transient receptor potential vanilloid 3 (TRPV3)
were treated with T. terrestris extract. Modulation of ion channels was measured using a
conventional whole-cell patch-clamp technique.
Results: T. terrestris extract (100 mg/mL) significantly inhibited Orai1 activity in Orai1-
stromal interaction molecule 1 co-overexpressed HEK293T cells. In addition, T. terrestris
extract significantly increased the TRPV3 activity compared with 2-Aminoethyl diphe-
nylborinate (100 mmol/L), which induces the full activation of TRPV3.
Conclusions: Our results suggest that T. terrestris extract may have a therapeutic po-
tential for recovery of abnormal skin barrier pathologies in atopic dermatitis through
modulating the activities of calcium ion channels, Orai1 and TRPV3. This is the first
study to report the modulatory effect of a medicinal plant on the function of ion channels
in skin barrier.
1. Introduction

Atopic dermatitis (AD) is an allergic disease characterized by
dry skin, intense itching, and recurrent skin inflammation [1]. The
primary drivers of AD are still controversial; however, it seems
clear that there is close interaction between impaired skin
barrier functionality and an inappropriate immune response that
induces cutaneous inflammation [2,3]. They are mutually
reinforcing processes; disruption of the cutaneous barrier causes
activation of keratinocytes, which release pro-inflammatory cy-
tokines that attract T cells, particularly CD4+ cells such as T-
helper-2 (Th2) cells, and Th17 cells, ultimately leading to cuta-
neous inflammation [4,5]. Therefore, the therapeutic strategy is
focused on a combination of skin barrier maintenance with
emollients, and immune suppression therapy with topical
corticosteroids or calcineurin inhibitors [1]. Although these
therapeutic agents have greatly improved patient outcomes, the
current treatment for allergic diseases including allergic rhinitis
and asthma is still not ideal, and novel therapeutic strategies are
required in the search for better drugs with safety and efficacy.
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Recently, three ion channels, calcium release-activated
calcium channel protein 1 (Orai1), transient receptor poten-
tial vanilloid 1 (TRPV1), and transient receptor potential
vanilloid 3 (TRPV3), have shed new light on potential targets
in the treatment of inflammatory skin diseases. These ion
channels have been shown to directly modulate epidermal
proliferation, differentiation, barrier homeostasis, and inflam-
mation [6–8]. Ca2+ influx through these channels eventually
generates intracellular Ca2+ signaling that results in different
outcomes dependent on the individual Ca2+ channel type;
for example, lymphocyte activation through Orai1 [9],
epidermal barrier formation and keratinocyte differentiation
through TRPV3 [10,11], and itch generation through TRPV1
[12]. Therefore, a specific agonist/antagonist for each calcium
channel is required for maintenance of skin barrier
homeostasis and for treatment of dermatological diseases
including AD.

Recently, increasing interest in various medicinal plants and
their bioactive compounds has led to increased attention to
their safety and efficacy in the treatment of allergic diseases. The
fruits of Tribulus terrestris L. (T. terrestris) belonging to
Leguminose are used traditionally in treatment of problems
with the eye, cutaneous pruritus, edema, inflammation, and
tracheitis, as well as to promote blood circulation and eliminate
stasis [13,14]. T. terrestris fruit is also used as a tonic,
aphrodisiac, analgesic, astringent, stomachic, antihypertensive,
diuretic, lithontriptic, and urinary anti-infective agent [15–21].
T. terrestris fruit extract is used mainly for kidney disorders,
as the fruit can remove gravel from the urine and treat
kidney stones in the bladder [18]. In modern pharmacological
studies, this plant has been reported to have a variety of
protective effects on tacrine-induced liver toxicity [10],
cisplatin-induced renal damage [19], cadmium intoxication-
induced liver and kidney damage [20], oxalate-induced oxida-
tive stress [21], and streptozotocin-induced diabetes [22]. This
plant contains antifungal saponins [23], anthelmintic saponin
[24], cytoprotective lignanamides [25], and anti-inflammatory N-
trans-r caffeoyl tyramine [26].

Therefore, as a part of our ongoing research to find ion
channel-modulating agents from natural sources [27,28], we
examined the effect of T. terrestris fruit extract on the
activities of ion channels Orai-1, TRPV1, and TRPV3, which
are known to contribute to skin homeostasis [7]. To the best of
our knowledge, this is the first electrophysiological study on
whether a medicinal plant extract can modulate ion channel
activity.
2. Materials and methods

2.1. Chemicals

All chemicals used in this study were purchased from Sigma–
Aldrich (St. Louis, MO), unless otherwise stated. 3,5-bis(tri-
fluoromethyl) pyrazole (BTP2) and 2-aminoethoxydiphenyl
borate (2-APB, > 98% purity) were purchased from Tocris
(Bristol, UK). Inositol 1,4,5,-triphosphate (InsP3) was purchased
from Merck Millipore (Billerica, MA, USA). Stock solutions of
capsaicin (10 mmol/L), 2-APB (50 mmol/L), BTP2 (10 mmol/L),
allyl isothiocyanate (3 mmol/L), and 4-(3-chloro-2-pyridinyl)-N-
(4-[1,1-dimethylethyl]phenyl)-1-piperazinecarboxamide (BCTC,
10 mmol/L) were prepared in dimethyl sulfoxide. A stock
solution of InsP3 (20 mmol/L) was prepared in distilled H2O. All
stock solutions were stored at −20 �C.

2.2. Preparation of T. terrestris fruit extract

Dried fruits of T. terrestriswere purchased from theMedicinal
Materials Company (KwangmyungdangMedicinal Herbs, Ulsan,
Republic of Korea). The fruits (200 g) were extracted with
methanol for 3 h and filtered through Whatman No.1 paper. The
resulting product was freeze-dried (yield = 26%, T. terrestris fruit
extract).

2.3. Cell culture

HEK-293T cells were purchased from American Type Cell
Culture (Manassas, VA, USA). Cells were grown in Dulbecco's
modified Eagle's medium (Life Technologies, Grand Island, NY,
USA) in a humidified incubator at 37 �C with 10% CO2/20%
O2. All media contained 10% fetal bovine serum (WelGENE,
Daegu, South Korea), 100 IU/mL penicillin, and 100 g/mL
streptomycin (Life Technologies).

2.4. DNA constructs

Human TRPV1 (hTRPV1) plasmid (pcDNA5/FRT) was
kindly provided by Dr. Sung Joon Kim (Seoul National Uni-
versity). Human Orai1 (hOrai1) and human stromal interaction
molecule 1 (hSTIM1) were purchased from Origene Technolo-
gies (Rockville, MD, USA). hSTIM1 and hOrai1 cDNA was
subcloned into pcDNA3.1 (Life Technologies). Human TRPV3
(pReceiver-M02) was purchased from Genecopoeia (Rockville,
MD, USA). All constructs were confirmed by sequencing before
transfection.

2.5. Transfection

For the whole-cell patch-clamp studies, hTRPV1 and
hTRPV3 were transiently transfected into HEK293T cells us-
ing the Lipofectamine Plus reagent (Life Technologies) as
described [27]. The hOrai1 gene was co-transfected with
STIM1 at a ratio of 1:1. Measurements were performed 24 h
following transfection.

2.6. Electrophysiology

Electrophysiological recordings were performed using
conventional whole-cell patch-clamp recordings. Experimental
data were recorded using an Axopatch 200B amplifier (Mo-
lecular Devices, Sunnyvale, CA, USA) and digitalized using
Digidata 1440A (Molecular Devices) at 10 kHz. To reduce
electrical noise, the data were further filtered by a low-pass
filter at 5 kHz using pCLAMP 10.4 software (Molecular De-
vices). Micro electrodes (patch pipette) were fabricated with
thin-wall borosilicate glass capillaries (World Precision In-
struments, Sarasota, FL, USA) in four stages using a pro-
grammable horizontal puller (Model P-97, Shutter
Instruments, Novato, CA, USA). Pulled patch pipettes were
fire-polished to exhibit a resistance of 2.5–3.0 MU when
immersed in extracellular solution. The transfected cells were
transferred to a perfusion chamber (Warner Instruments,
Hamden, CT, USA) mounted on the stage of an inverted
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microscope (Nikon, Tokyo). Extracellular solutions were
perfused to the bath chamber at 3 mL/min by gravity feed.
Liquid junction potentials were nullified to zero before giga-
seal formation. Pipette capacitances were compensated elec-
tronically after gigaseal formation. After confirming the
whole-cell configuration, cell membrane capacitance was
measured and then nullified using an Axopatch 200B ampli-
fier. For measurement of TRPV1 and TRPV3 currents, voltage
clamp protocols were applied every 20 s from −100 mV to
100 mV over 100 ms. Holding potential was applied for each
current measurement to −10 mV for TRPV1 and 0 mV for
TRPV3. For the hORAI1 current, ramp-like pulses from −130
to 70 mV over 100 ms were applied every 30 s at a holding
potential of −10 mV to obtain the current–voltage (I–V)
relationship. All voltage and current trace data were saved on a
desktop computer and analyzed using Clampfit software 10.4,
Prism 6.0 (GraphPad, La Jolla, CA, USA), and Origin 8.0
(Microcal, Northampton, MA, USA). All experiments were
performed at room temperature.

2.7. Experimental solution for whole-cell patch clamp

Individual solutions were used for measurement of TRPV1,
TRPV3, and Orai1 currents: (i) pipette solutions [140 mmol/L
CsCl, 10 mmol/L NaCl, 5 mmol/L ethylene glycol tetraacetic
acid (EGTA), 3 mmol/L adenosine 50-triphosphate magnesium
salt (MgATP), and 10 mmol/L 4-(2-Hydroxyethyl)piperazine-
1-ethanesulfonic acid (HEPES) adjusted to pH 7.2] for current
of TRPV1 (ITRPV1) measurements; (ii) pipette solutions
(140 mmol/L CsCl, 10 mmol/L EGTA, 4.85 mmol/L CaCl2,
3 mmol/L MgATP, and 10 mmol/L HEPES adjusted to pH
7.2) for current of TRPV3 (ITRPV3) measurements; (iii) pipette
solutions (130 mmol/L Cs-glutamate, 20 mmol/L 1,2-bis(o-
aminophenoxy)ethane-N,N,N0,N0-tetraacetic acid, 1 mmol/L
MgCl2, 3 mmol/L MgATP, 0.002 mmol/L sodium pyruvate,
and 20 mmol/L HEPES adjusted to pH 7.2) for current of
Orai1 (IOrai1) measurements; (iv) bath solutions for ITRPV1
measurements (140 mmol/L NaCl, 4 mmol/L KCl, 1 mmol/L
MgCl2, 1 mmol/L EGTA, 5 mmol/L D-glucose, and 10 mmol/
L HEPES adjusted to pH 7.4 with NaOH). Capsaicin-evoked
activity was observed by capsaicin (1 mmol/L) in the
external solution after adding the basal current; (v) bath so-
lutions (139 mmol/L NaCl, 5 mmol/L KCl, 10 mmol/L
HEPES, 3 mmol/L BaCl2, 2 mmol/L MgCl2, 1 mmol/L EGTA,
and 10 mmol/L glucose adjusted to pH 7.4 with NaOH) for
ITRPV3 measurement; (vi) bath solutions (135 mmol/L NaCl,
3.6 mmol/L KCl, 1 mmol/L MgCl2, 10 mmol/L CaCl2,
5 mmol/L D-glucose, and 10 mmol/L HEPES adjusted to pH
7.4) for IOrai1 measurements. For activation of TPRV1 and
TRPV3 currents, 1 mmol/L capsaicin (for hTRPV1) and
100 mmol/L 2-APB (for hTRPV3) was applied to each ion
channel-transfected HEK293T cell. For activation of the
hOrai-1 currents, 20 mmol/L InsP3 was added to the internal
solution immediately before experimentation. The InsP3-
containing pipette solution was kept on an ice block.
2.8. Statistical analysis

Data were analyzed by One-way ANOVA with Bonferroni's
post hoc comparison. Results were expressed as mean ± SEM. P
values less than 0.05 were considered significant.
3. Results

3.1. The effect of T. terrestris fruit extract on activation
of ITRPV3

In this study, to examine whether T. terrestris fruit extract can
modulate the activity of TRPV3 ion channel, whole-cell patch
clamp assaywas performed in hTRPV3-overexpressedHEK293T
cells (Figure 1). After confirming no basal current (Figure 1A,
black arrow), T. terrestris fruit extract was added at 100 mg/mL to
the bath solution, or 2-APB, TRPV3 agonist as a reference at the
end of each experiment to confirm the full activation of ITPRV3. A
representative chart tract recording of ITRPV3 and related I–V
relationship curve revealing the point peak of ITRPV3 generation
and 2-APB induced peak current is shown in Figure 1A,B. Ac-
cording to the result, treatment of T. terrestris fruit extract at
100mg/mL significantly (P< 0.01) increased the ITRPV3 activation
with the level of (73.54 ± 8.92)% (−100 mV) compared to
maximum current which was induced by 2-APB (I2APB). Treat-
ment of 2-APB also significantly increased its activity compared
to control (Figure 1C). These results indicate that T. terrestris fruit
extract can improve an impairment of skin barrier through acti-
vation of the TRPV3 ion channel.

3.2. The effect of T. terrestris fruit extract on ITRPV1

In this study, we examined whether T. terrestris fruit extract
can inhibit the activation of TRPV1 ion channels in hTRPV1-
overexpressed HEK293T cells by whole-cell patch clamp assay.
A typical chart trace record and its I–V curve are shown in
Figure 2A,B. For activation of ITRPV1, hTRPV1-overexpressed
HEK293T cells were treated with 1 mmol/L of capsaicin, a spe-
cific agonist for TRPV1. After confirming the steady state current
of TRPV1 (Figure 2A,B), T. terrestris fruit extract at 100 mg/mL
was added to 1 mmol/L capsaicin solution, and then added to the
bath chamber. However, treatment with T. terrestris fruit extract
resulted in slight activation of the outward current of TRPV1. We
also evaluated the effects of T. terrestris fruit extract on the in-
hibition rates of ITRPV1 at −60 mV. As a result, the inward part of
ITRPV1 was not significantly inhibited by T. terrestris fruit extract
(Figure 2C). From these results, T. terrestris fruit extract cannot
inhibit the activation of TRPV1 ion channels.

3.3. The effect of T. terrestris fruit extract on the
inhibition of IOrai1

We next assessed the inhibitory effects of T. terrestris
fruit extract on the activation of IOrai1 in hOrai1-STIM1-over-
expressed HEK293T cells. As mentioned above, endoplasmic
reticulum Ca2+ store depletion leads to activation of IOrai1 [9].
Therefore, endoplasmic reticulum Ca2+ depletion was induced
by addition of 20 mmol/L 1,2-bis(o-aminophenoxy)ethane-
N,N,N0,N0-tetraacetic acid, a strong Ca2+ chelator, and 20 mmol/
L inositol trisphosphate. Under this condition, the inward
rectifying current, IOrai1, was slowly generated in the cells
(Figure 3A,B). After confirming the steady state of IOrai1, bath
solutions were treated with T. terrestris fruit extract to determine
the inhibitory effect. Treatment of 100 mg/mL T. terrestris fruit
extract resulted in significantly inhibited activation of IOrai1 with
levels of (37.90 ± 10.77)% compared to control (Figure 3C). At
the end of the experiment, BTP2 was also added to confirm the
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basal current. From these results, T. terrestris fruit extract can
inhibit the activation of Orai1 ion channels.

4. Discussion

The prevalence of AD ranges from 10% to 20% in developed
countries, and in the case of many developing countries, it is
currently lower, but successively increases every year [9,29]. AD is
a common chronic inflammatory skin disease involved the
multiple factors including genetic factors, immune system
dysregulation, and skin barrier dysfunction. Although several
conventional medications include topical agents and oral
antiallergic drugs have been applied for the treatment of AD,
current therapies are still rather limited and novel therapeutic
strategies are required. Recently, some traditional medicines are
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toxicity, and renal damage based on the herbological properties
have been reported [19–21], little is known about its effects on
inflammatory skin diseases including AD. In this study, we
investigated the modulatory effects of T. terrestris fruit extract
on activities of the ion channels, Orai-1, TRPV1, and TRPV3,
which are known to contribute to skin homeostasis [7].

Traditionally, ADwas thought to be a disorderwith skin barrier
dysfunction which purely involves keratinocytes. In the past 20
years, many researchers have proposed a more complex view of
AD that arises from a complex interplay between immunological
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cells and keratinocytes [1]. Therefore, many of the current
researches focus on the direct or indirect interplay between
keratinocyte-derived proinflammatory mediators, such as thymic
stromal lymphopoietin, and Th2 or Th17 T-cell derived cytokines
[interleukin 4 (IL-4), IL-5, IL-13, and IL-17], which are closely
related to epidermal barrier dysfunction and chronic inflammation
[1,2]. Also, the studies on the underlying mechanism of T-cell
activation and keratinocyte differentiation revealed that complex
signaling pathways in AD pathogenesis are usually involved in
increase of the intracellular calcium concentration as a key step [7].

Three Ca2+ ion channels, Orai-1, TRPV1, and TRPV3 are
involved in T-cell activation [9], histamine-dependent itch devel-
opment [12], and keratinocyte differentiation [11,30]. Orai-1 is a
pore-forming subunit for Ca2+ release-activated Ca2+ channels,
which is crucial for immune cell activation [9]. Mutation of the
Orai-1 channel causes a severe immunodeficiency-like disease
and autoimmunity [30]. TRPV1 channels are usually expressed in
dorsal root ganglion neurons, which are activated at temperatures
exceeding 43 �C, and also mediate nociception [31]. Moreover, it
was recently revealed that IL-31, a Th2 cell-derived cytokine,
directly binds to the IL-31 receptor expressed in dorsal root gan-
glion neurons. It promotes an itch sensation via TRPV1 activation,
which is a form of direct neuro-immune crosstalk between T cells
and sensory nerves [9]. TRPV3 was also originally reported to be a
thermosensitive non-selective cation channel with high Ca2+

permeability that is activated at 33–40 �C, which mediates the
sensing of warmth [32]. Recently, it was reported that the TRPV3
channel also participates in non-sensory functions, such as skin-
barrier formation or wound healing [11,30]. Therefore, we
investigated whether T. terrestris fruit extract can modulate Ca2+

ion channels such as Orai-1, TRPV1, and TRPV3 which are
involved inADpathogenesis. In our study,T. terrestris fruit extract
(100 mg/mL) significantly inhibited the activation of Orai1 ion
channel on IOrai1 in STIM1 and Orai-1 co-transfected HEK293T
cells, and strongly increased the activation of ITRPV3 in TRPV3-
overexpressed cells. However, T. terrestris fruit extract did not
inhibit capsaicin-induced ITRPV1 in TRPV1-overexpressed
HEK293T cells. These results indicate that T. terrestris fruit
extract can modulate the activation of ion channels of Orai-1 and
TRPV3 in immune cells such as T cells, and keratinocytes. Taken
together, our finding implies that the topical application of
T. terrestris fruit extract may be useful for the treatment of
inflammation and for enhancing skin-barrier formation in AD.

In conclusion, our results suggest that T. terrestris fruit
extract may be of therapeutic value for managing AD-associated
pathogenesis with abnormal skin barrier function via modulation
of the ion channels of Orai-1 and TRPV3. To our knowledge,
this is the first electrophysiological study to evaluate the role of
an herbal medicine in the modulation of ion channel activity.
The findings will be helpful in the search for new therapeutic
agents for the treatment of AD.
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