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1. Introduction

   Carotenoids are the substances with very special and 
remarkable properties that no other groups of substances 
possess and these form the basis of their many varied 
functions in all kinds of living cells. Traditionally often 
thought of as plant pigments, carotenoids have a much 
wider distribution and occur extensively in animals and 
microorganisms. The natural functions and actions of 
carotenoids obviously are determined by the physical 
and chemical properties arising from their molecular 
structures. First of all their overall molecular geometry 
(size, shape, and presence of functional groups) is vital 
for ensuring their fitness into cellular and sub cellular 
structures (correct location and orientation) allowing them 
to function efficiently. Secondly, their conjugated double 
bond system determines the photochemical and chemical 
properties underlying their physiological functions. In 
addition, their specific interactions with other molecules in 
their immediate vicinity are crucial for their appropriate 

functioning. Carotenoids are known as biologically 
important micronutrients with many functions. Of all 
known carotenoids, about 50 display provitamin A activity. 
Carotenoids are also precursors of retinoids. More than 600 
naturally occurring carotenoids have been identified and 毬
-carotene is one of them[1].
  Carotenoid supplementation has been further used 
for prevention and treatment of diseases with oxidative 
stress, such as cancer, UV-mediated skin diseases, 
neurodegenerative diseases, and cystic fibrosis. The 
majority of epidemiological studies have consistently 
shown that increased consumption of food rich in毬
-carotene is associated with a reduced risk of lung and 
other types of cancer[2]. For the studies of oxidative damage 
pathophysiology, erythrocyte membranes are often used (as 
a model system) because of their simplicity and availability. 
The form of oxygen radicals using oxidative stress may 
promote the oxidation of polyunsaturated fatty acids that 
are present in high concentrations within cell membranes. 
Lipid peroxidation causes polymerisation of the membrane 
components, their cross linking and/or fragmentation. This 
damage to the membrane leads to the alterations in the 
membrane fluidity and cell deformability[3].
  In the search for feasible new sources, algae and 
microalgae have been suggested as possible raw materials 
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for carotenoids. Numerous health benefits have been 
associated with their use. Algae and microalgae are 
potentially a great source of natural compounds that could 
be used as ingredients for preparing functional foods. 
Different compounds with antibacterial, antiviral and 
antifungal activity can be found in these types of organisms, 
along with compounds with antioxidant activity[4-6]. 
Therefore, the main target of the present study is to assess 
the effect of carotenoids from algae on membrane stability 
against the Benzo(a)pyrene [B(a)P] induced alterations.

2. Materials and methods

2.1. Algal source

  Fresh water, unicellular, nonmotile green algae Chlorococcum 
humicola (C. humicola) was obtained from the culture 
collected from the Department of Plant Biotechnology and 
Algal Biotechnology, Vivekantha College, Chennai, India.

2.2. Culture conditions

   Algal culturing was carried out with 100 mL Bold’s basal 
medium[7] supplemented with sterile compressed air and 
kept under fluorescent light (20 毺mol/m2/s) with 16 h light 
period and at (25 暲 2) 曟 temperature.

2.3. Carotenoid extraction

   Algal sample (1 g) was extracted with ethanol until all the 
pigments were removed, and then filtered through a sintered 
glass filter (porosity 3; pore size 20-30 毺m). An equal volume 
of diethyl ether was added to the combined ethanol extracts, 
followed by the addition of water droplets until two layers 
were formed. The ethereal epiphase, containing all the 
pigments, were washed free from ethanol with water, and the 
solvent was removed. The residue was then saponified with 
equal volume of 10% methanolic KOH and kept in overnight 
in the room temperature at dark, after which the carotenoid 
solution was washed with water to remove the alkali (pH= 
7.0) and dried over Na2SO4. The unsaponifiable residue was 
dissolved in a little ether and then in 10 mL of petroleum 
ether (b.p. 40-60 曟). This extraction was used for further 
analysis[8].  

2.4. Total carotenoid estimation

  The total caroteoids were estimated spectrophotometrically 
at 450 nm[9]. 

2.5. Animals experiments

2.5.1. Animals
   Swiss albino mice weighing 20-25 g used for the animal 
experiments were purchased from Mohamed Sathak AJ 
College of Pharmacy, Chennai, India. Animals were grouped 
and housed in polyacrylic cages (six animals per cage) and 
fed on standard pellet and given water ad libitum. Animals 
were acclimatized to laboratory conditions for 7 days before 
commencement of the experiment. All experiments were 
performed in accordance with the guidelines for research 
with experimental animals, and animal ethical clearance 
was obtained from the institutional ethical committee (Reg.
No.: 991/C/06/CPCSEA).

2.5.2. Assessment of the oral ED50 for total carotenoids  
   Preliminary investigation was carried out to calculate the 
median effective dose (ED50) for the carotenoids to albino 
mice. Six groups of mice, each of six individuals (n = 6) were 
used for each the specified dose. Doses were prepared with 
different concentration in corn oil. Oral dosing was done by 
a special syringe that has a needle equipped with a ball tip. 
Mortality counts of animals were recorded after fifteen days 
of treatment. The ED50 values were calculated according to 
the statistical method[10].

2.5.3. Animal treatment

   Group I (controls) were treated with corn oil given orally by 
gavages (0.1 mL). Group II were treated with B(a)P dissolved 
in corn oil (0.1 mL) and given by gavages in sixteen doses 
(1 mg per dose) twice per week for 8 weeks. Group III was 
orally administered with total carotenoid (TC) dissolved in 
corn oil for a period of 60 days. The mice belonging to the 
Group IV [B(a)P + TC] were treated the same way as mice 
in the second group. Food intake and body weight were 
monitored throughout the experimental period. At the end of 
treatment, animals were killed by cervical dislocation after 
deep anaesthesia with diethyl ether and the tissue samples 
of lung and liver were immediately dissected out, trimmed of 
excess fat and weighed. Blood samples were also collected.

2.6. Tissue preparation

   The tissue was homogenized in 10 volumes of ice-cold 
(0-4 曟) medium containing 50 mM Tris (hydroxymethyl) 
aminomethane-HCl (Tris-HCl), pH 7.4 and 300 mM sucrose, 
using an ice-chilled glass homogenizing vessel at 900 rpm 
(4-5 strokes). Then, the homogenate was centrifuged at 1 000 
暳 g for 10 min to remove nuclei and debris[11]. 

2.7. Preparation of erythrocyte ghost membrane

  Hb (Haemoglobin B)- free erythrocyte membrane 
preparation was prepared according to the method of 
Arduini et al[12]. The washed erythrocytes were subjected 
to hypotonic lysis in 40 volumes of 5 mM sodium phosphate 
buffer (pH = 8.0) and centrifuged at 6 000 暳 g for 20 minutes 
at 4 曟 in a refrigerated centrifuge. The supernatant was 
discarded and pellet was washed at least five times in 
the same buffer until a colorless pellet was obtained. The 
erythrocyte ghosts were suspended in the same buffer and 
stored at -20 曟 for future use.

2.8. Lipid peroxidation

  The estimation of lipid peroxidation was done by the 
spectrophotometric method[13]. 0.1 mL of the tissue 
homogenate was incubated in the medium containing 150 
mM KCl (0.1 mL) at 37 曟 for one hour and at the end added 
1 mL of 20% TCA. After thorough mixing 2 mL of 0.67% 
TBA was added and placed in the boiling water bath for 15 
min, cooled. The absorbance of the clear supernatant was 
measured against reference blank at 535 nm. 

2.9. Determination of ATPases

  Adenosine triphosphatase (ATP phosphohydrolase; EC 
3.6.1.3) activity was measured as the release of inorganic 
phosphate from ATP using the procedure of Evans with 
slight modifications[14]. The assay mixture contained (in 1 
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mL) Tris/HCl buffer (pH = 8.0)- 100 mM; ATP- 5 mM, CaCl2- 
2 mM, MgCl2- 2 mM, NaCl- 60 mM, KCl-20 mM and enzyme 
protein. The tubes were incubated at 37 曟. After 30 min, 
the enzyme was inactivated by adding 1 mL of chilled 10% 
(w/v) trichloroacetic acid (TCA) and the tubes were kept 
in ice for 15 min. Precipitated proteins were removed by 
centrifugation. A control was run simultaneously, in which 
enzyme was added after TCA at the end of the incubation 
period. Inorganic phosphate was measured according to the 
procedure of Fiske and Subbarow[15]. Protein was estimated 
by the method of Lowry et al[16].

2.10. Statistical analysis

  All data were analyzed with SPSS 12 student software. 
Hypothesis testing methods included two way analysis of 
variance (ANOVA) followed by least significant difference 
(LSD) test. The values are expressed as Mean 暲 SEM. 
P-values of less than 0.05 were considered to indicate 
statistically significant.

3. Results 

3.1. Assessment of the oral ED50 for total carotenoids

   Results showed that, the oral ED50 value for total 
carotenoids was found to be 8 mg/kg body weight. 

3.2. Lipid peroxidation

  The lipid peroxidation, measured as malondialdehyde 
(MDA) in tissue and erythrocyte ghost of mice was 
shown in Figure 1. Tissue and erythrocyte MDA levels 
were significantly increased (P<0.001) following B(a)P 
administration. These adverse changes were significantly 
reverted to normal level on carotenoid administration 

when compared to its vehicle control and to some extent in 
combination with B(a)P treated mice.

3.3. Total ATPases

  A significant increase (P<0.001) of total ATPase activity was 
observed in the lung, liver and erythrocyte samples on B(a)P 
administration. This increase was significantly reduced by 
carotenoid treatment depicted in Table 1.  
   
3.4. Ca2+/ Mg2+/ Na+ K+ ATPases

  Effect of carotenoid on Ca2+/ Mg2+/ Na+ K+ ATPases in the 
tissues and in erythrocytes are presented in Table 1 and it  
was found to be significantly increased in B(a)P treatment 
and the activity was decreased on carotenoid treatment 
alone and to some extent in combination treatment (Table 1).
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Figure 1. Levels of lipid peroxidation in various membranes on 
carotenoid treatment alone and in combination with B(a)P. 
*P<0.001 compared with B(a)P. Values are Mean暲SEM of six animals. 
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Table 1 
Levels of membrane bound ATPases of lung, liver and RBC (Mean 暲 SEM). 

Parameters Treatment
Control B(a)P TC B(a)P+ TC

Total ATPases Lung 0.210 暲 0.030 0.287 暲 0.050** 0.237 暲 0.030 0.255 暲 0.040*

Liver 0.233 暲 0.010  0.296 暲 0.020*** 0.238 暲 0.010 0.255 暲 0.020*

RBC 0.168 暲 0.010  0.221 暲 0.020*** 0.170 暲 0.010 0.181 暲 0.020*

 Ca2+ ATPases Lung 0.022 暲 0.020 0.045 暲 0.040** 0.022 暲 0.020 0.032 暲 0.030*

Liver 0.027 暲 0.020 0.054 暲 0.090** 0.025 暲 0.010 0.034 暲 0.070*

RBC 0.030 暲 0.020 0.053 暲 0.090** 0.028 暲 0.010  0.039 暲 0.070*

Mg2+ TPases Lung 0.174 暲 0.010 0.192 暲 0.030** 0.173 暲 0.010  0.182 暲 0.020*

Liver 0.192 暲 0.010 0.215 暲 0.020**  0.188 暲 0.010  0.191 暲 0.010*

RBC 0.132 暲 0.010 0.166 暲 0.020**  0.132 暲 0.010  0.148 暲 0.010*

  Na+K+ATPases Lung 0.017 暲 0.010   0.030 暲 0.020***  0.014 暲 0.010  0.023 暲 0.020*

Liver 0.021 暲 0.010   0.034 暲 0.030***  0.023 暲 0.020    0.027 暲 0.010**

RBC 0.015 暲 0.010   0.030 暲 0.030***  0.016 暲 0.020    0.024 暲 0.010**

ATPases were expressed as 毺g of phosphorus min/ mg protein. As compared with control, statistical significance was observed in B(a)P treated 
group alone and in combination with carotenoid. No significant difference was found in carotenoid fed group with control. *P<0.05, **P<0.01, 
***P<0.001.
4. Discussion

   There are clear links between human cancers and diet, 
dietary risk factors rank higher than tobacco usage and 
much higher than pollution or occupational hazards in their 
association with cancer deaths. In addition to avoidance 
of carcinogenic agents, regular intake of chemopreventive 

compounds is a promising approach for reducing cancer 
incidence. A number of substances naturally occurring in 
foodstuffs, particularly antioxidant compounds in plant 
products, have shown promise as potential chemopreventive 
agents[17]. Among these phytonutrients, the yellow, orange 
and red carotenoid pigments have recently sparked much 
interest. In epidemiological studies, vegetable and fruit 
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consumption has consistently been associated with reduced 
incidence of various cancers, and dietary carotenoid intake 
from these sources has similarly been correlated with 
reduced cancer risk[18]. However, several recent large-scale 
intervention trials failed to find the beneficial effect of long-
term supplementation with毬-carotene, the most abundant 
dietary carotenoid. Several naturally occurring carotenoids 
other than 毬-carotene have exhibited anticancer 
activity, and are being considered further as potential 
chemopreventive agents[19].
   B(a)P the polycyclic aromatic hydrocarbon (PAH) is 
an environmental carcinogen which promotes the lipid 
peroxidation and Reactive oxygen species (ROS) production, 
through that it causes the cellular dysfunction[20]. The active 
metabolites of B(a)P are 3-OH-B(a)P, 6-quinone B(a)P, 
9-OH-B(a)P, B(a)P-1, 6-quinone, trace amounts of B(a)P-4, 
5-dihydrodiol, and B(a)P-7, 8-dihydrodiol are primarily 
produced in liver and then bio transformed into various 
organs and causes cellular toxicity[21,22].
   In the present investigation it was proved that, an increase 
in lipid peroxidation indicates serious damage to cell 
membranes, inhibition of several enzymes and cellular 
dysfunction. A number of ROS are generated during normal 
aerobic metabolism, such as superoxide, hydrogen peroxide 
and the hydroxyl radical. In addition, singlet oxygen can 
be generated through photochemical events, and lipid 
peroxidation can lead to peroxyl radical formation[23,24]. 
These oxidants collectively contribute to aging and 
degenerative diseases such as cancer through oxidation of 
DNA, proteins and lipids[25].
  It was well documented that during cancer development 
the ROS were generated and the increased levels of ROS 
can cause increased lipid peroxidation markers. In the 
present study, the elevated levels of MDA in tissues and 
erythrocyte membrane are consistent with earlier reports[26]. 
Treatment with carotenoids reduced the levels of MDA to 
near normal, which could be associated with its protective 
role. ROS contribute towards increased transendothelial and 
transepithelial permeability. The increase of transepithelial 
permeability allows toxins to permeate through the barrier, 
which leads to inflammation. ROS produced by the B(a)P 
induction may possibly cause the above events, leading to 
the B(a)P induced tissue damage. Carotenoids significantly 
reduced the membrane lipid peroxides and ROS production 
in toxicity induced animals. Antioxidant compounds can 
decrease those effects, and thus carcinogenesis, both by 
decreasing oxidative damage to DNA and by decreasing 
oxidant stimulated cell division[27]. 
  The correlation between lipid peroxidation, fluidity and 
membrane function has been documented in several 
studies. Free radical induced change in membrane structure 
may have very specific effects on membrane proteins as 
documented by selective modification of different active 
sites in tissues. Although the plasma membrane is thought 
to be a critical site of free radical reaction, membranes of 
intracellular organelles could also be an important site of 
free radical attack. Recently, it is showed that free oxygen 
radicals alter net Ca2+ uptake in rabbit brain endoplasmic 
reticulum. Because the decrease in Ca2+ uptake preceded 
inhibition of Ca2+-ATPase activity and it can be concluded 
that membrane lipid peroxidation occurs as an early 
consequence of free radical attack and leads to an increase 
in passive Ca2+ leak. In the present study the carotenoids 
maintains the membrane Ca2+  ATPaes against the potent 
carcinogenic enzyme inhibitor[28].
  Mg2+-ATPase is widely believed to be responsible for 

the control of membrane permeability. Since action of 
carcinogen in the erythrocytes involves distortion of the 
membrane, there is the tendency for impaired permeability 
to be increased and in an attempt by carotenoids to regulate 
the permeability. It is suggested that affects ion fluxes 
across the membranes in the brain, liver and kidney tissues 
which may lead to disruption of the cation balance with the 
attendant consequences in the affected organs. Moreover, 
the role of Mg2+-ATPase is to maintain intracellular Mg2+, 
changes of which can control rates of protein synthesis and 
cell growth[29]. 
  The alteration in the activities of the liver Ca2+, Mg2+ ATPase 
kidney cells that are reported along with Na+ K+-ATPases 
suggests an altered biosynthesis during infection. In the 
Na+K+-ATPase, the Na+ and K+ ions across cell membranes 
act as a link with metabolism during an epithelial transport 
of sugars and amino acids. Furthermore it serves to restore 
resting membrane potential in excitable tissues. The changes 
in the activity of the Na+K+-ATPase would also result in 
a disturbance of the transport across the membrane. This 
would probably produce the favourable condition for the 
existence of the carcinogen within the cell[30]. 
  Hepatic Na+/K+-ATPase is known to be responsible for 
the Na+ gradient and consequently for the bile acids/Na+ 
secondary active transport across the plasma membrane[29]. 
Increased activity of Na+/K+-ATPase has been implicated 
in the development of complications and adaptive changes. 
However, in this study with mice, higher Na+K+-ATPase 
activity in the erythrocyte membrane of carcinogen treated 
mice was observed compared with the control. Carcinogenic 
effect results depolarization of the membrane at a higher rate 
than before, efflux of Na+ ion will be less in the cancerous 
condition relative to the normal mice[31].
  Antioxidants (e.g. 毬-carotene) can counteract the changes 
in ATPase activity and the increase in oxidative stress that 
are induced by carcinogenic chemicals. Many epidemiologic 
studies have associated high carotenoid intake with a 
decrease in the incidence of chronic disease. Multiple 
possibilities exist - certain carotenoids, can be converted 
to retinoids, can modulate the enzymatic activities of 
lipoxygenases, can have antioxidant properties which are 
seen with vitamin A, can activate the expression of genes 
which encode the message for production of a protein, which 
is an integral component of the gap junctions required for 
cell to cell communication. Such gene activation is not 
associated with antioxidant capacity and is independent 
of pro-vitamin A activity[32]. Carotenoids also serve as 
precursors for retinoids. Some carotenoids also appear to 
have effects on cell communication and proliferation in 
animals. Because animals cannot synthesize carotenoids de 
novo, they must obtain them from dietary sources[33]. 
  The present study concludes that the free radical effects 
on fluidity of membranes are consistent with those reported 
for various kinds of membranes from different tissues and 
erythrocytes. Alteration in membrane fluidity as a result of 
lipid peroxidation can affect membrane properties since 
permeability and function of membrane-bound proteins are 
known to be intimately associated with the dynamic state of 
the membrane lipids. Carotenoids significantly reduced the 
membrane lipid peroxides, ROS production and improved 
the blood and cellular membrane potential by acting against 
the toxicity. Carotenoids, the most abundant dietary source 
from C. humicola can be considered further as potential 
bioactive compound.
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