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ABSTRACT

EPs (Extracting Frequent Patterns) from the continuous transactional data streams is a challenging and
critical task in some of the applications, such as web mining, data analysis and retail market, prediction
and network monitoring, or analysis of stock market exchange data. Many algorithms have been developed
previously for mining FPs (Frequent Patterns) from a data stream. Such algorithms are currently highly
required to develop new solutions and approaches to the precise handling of data streams. New techniques,
solutions, or approaches are developed to address unbounded, ordered, and continuous sequences of data
and for the generation of data at a rapid speed from data streams. Hence, extracting FPs using fresh or
recent data involves the high-level analysis of data streams. We have suggested an efficient technique for
the window sliding model; this technique extracts new and fresh FPs from high-speed data streams. In
this study, a CPILT (Compacted Tree Compact Pattern Tree) is developed to capture the latest contents in
the stream and to efficiently remove outdated contents from the data stream. The main concept introduced
in this work on CPILT is the dynamic restructuring of a tree, which is helpful in producing a compacted
tree and the frequency descending structure of a tree on runtime. With the help of the mining technique
of FP growth, a complete list of new and fresh FPs is obtained from a CPILT using an existing window. The
memory usage and time complexity of the latest FPs in high-speed data streams can efficiently be
determined through proper experimentation and analysis.
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constantly and continuously engendered in a stream, the
memory usage for stream mining should be limited [3].
Stream mining must ensure that a new data stream be
available immediately whenever a request is made for such
stream [4]. This requirement makes the task more
challenging in some applications, such as knowledge
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1. INTRODUCTION

Data streams are realtime, continuous, possibly
infinite, fast, changing, and ordered, with a
huge amount of sequences of items [1,2]. A data

stream rapidly changes with time, so that acquiring all the
elements in it is impossible. Each element in it is examined
once for a time. Given that new data elements are
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discovery, fraud detection, and business improvement.
FPs (Frequent Patterns) have been extracted from large
data sets by many researchers using different techniques.
Many aspects maybe related to discovering FPs from
large data sets. However, the major aspects that are
relevant to recurrent pattern finding are storage and run
time. Hence, researchers focus on finding FPs that take
less time and storage. In the present study, various
algorithms for finding FPs in large data sets are discussed
[4]. Sequential patterns are basically found from
continuous data streams and from transitional and normal
data sets. The execution times of different algorithms for
FP mining (FPM) are compared in this work. Based on
speed, the performances of different FP algorithms are
also compared. FPs are also found in real time to show
the difference from an ordinary system[4].

The data collected from various sources, such as sensor
data and weather or satellite data, are basically huge
and inexact. Database sizes are growing rapidly, and
such databases may be used for knowledge discovery
that requires les storage and time. Different objects may
have various relationships with one another, which may
lead to association rules in diverse databases. Different
patterns of objects are discovered through such types
of relationships among these objects. Such type of
pattern matching can be utilized indifferent applications
of decision support and weather forecasting.
Association rules [5] may contain FPM as sub-problem
and can be utilized to search out the frequent items from
the large databases. Association rules are induced from
the concept of market basket analysis, which is mostly
used in identifying customer behavior with respect to
purchasing different products from the market. For
example, if a child purchases a book, then the child is
most likely to purchase a pen also. When FPs become
exponentially large, a major problem arises in FPM.
Finding interesting patterns in exponentially large FPs
become a problem, and pruning unimportant patterns

from large patterns becomes important in FPM. Thus,
finding interesting FPs from data streams is the end result
of FPM. Data streaming is characterized by continuous,
unbound, and high-speed data. Data stream sources are
several distributed areas from which data streams
emerge.  Hence, active storage is insufficient to store all
stream-related data. Stream-related data arrive newly with
the advancement of time. For such data, scanning is
necessary only once, thereby consuming limited storage
type and responding in real time. Finding frequent item
sets in several applications is becoming important
because of the significant increase in data streams. At
present, the data stream mining field is becoming a
challenge in some applications, such as fraud detection,
KKD, online transaction mining, trend learning,
estimation and transaction prediction, and analyzing
different item sets. Moreover, given the continuous,
high-speed, and unbounded features, data stream mining
has become difficult. In algorithm [1], FPM is likely to be
close to the proposed system, which is generally used
to extract FPs using a specific data stream. In FPM, a
SW (Sliding Window) mechanism is used, based on
which the parts of the window are made by dividing the
windows into parts of equal size in fixed numbers that
contain transactions with non-overlapping batches. The
prefix tree structure [6] for canonical order is mostly
used to store information in the current window. For
every batch, every node of most trees maintains a list
that stores the frequency count. Tree traversal can be
avoided to extract information from a tree in an old batch.
Therefore, the tracks of the last visited batches are
maintained via FPM, and an extra pointer is used for
every node to count the last restructured batch number.
Frequency list contents are changed for SW reflection
using nodes. The FP-growth technique is utilized for
mining when the information is captured using SW [7],
that is, the FPs from a complete information sets.
However, FPM has several limitations. First, information
or item sets are stored in the canonical order, and using



Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 4, October, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
627

FPM for structures related to a highly compacted tree
provides no guarantee, which is quite important in
manage data streaming to avoid the overhead related to
massive storage, decrease search space, and ultimately
hasten FP growth-based frequent pattern mining
operations. Secondly, the lists of frequency counts in
FPM [1] are used to store information for a batch that
considers each node; with the usage of such types of
lists, the tree size increases considerably. Third, another
issue in FPM is related to storage overhead, where for
every node, FPM uses extra batch pointers that indicate
the last visited batch related to such node. Fourth, during
tree updating, FPM cannot visit all the nodes related to
a tree, and FPM practically cannot perform process
related to shift frequency count lists for each node.
Hence, the updating process for a frequency list related
to specified nodes is not performed, given new incoming
batches that are not visited. For the current window,
FPM may leave some invalid nodes during updating.
Hence, for mining, FPM consumes more time than such
types of trees based on structures organized in such a
way that the frequency depends on the order of items.
Moreover, FPM construction is totally based on an
assumption that does not consider the limitations of the
main memory, which is unrealistic in considering or
processing huge amounts of data, such as a data stream.
By contrast, CPILT, the proposed tree in this study,
exactly provides similar information on data streams and
performs similarly to FPM, such action with the storage
only in an FP tree with a strong compact structure,
thereby presenting an efficient data structure for strong
storage. Most proficient FP growth-based mining
platforms are provided by a highly compacted tree
structure. Moreover, efficiency is achieved in a path
that presents a transaction by maintaining only the
frequency count list for the last node rather than
maintaining specific information for every node.
Furthermore, an extra patch pointer is not required by
CPILT for every node to maintain the last updated track.

CPILT is regularly updated with the mechanism by
extracting such type of transactions that expire after
every window slide. This feature guarantees that
garbage nodes do not exist in a tree and that a clear tree
status is ensured for mining.

Time and memory efficiency for FPM in a distributed
transactional data stream results in accuracy. Handling
the continuous flow of stream in data stream mining is
related to the issue of database management.
Traditional database management systems are
insufficient to handle such high data rates. Efficient
indexing and novel techniques of querying and storage
can be utilized to handle the problem of fluctuation in
the flow of streams containing information. Algorithms
of different sorts are proposed to tackle this issue.
Techniques designed for time and space efficiency
should be accompanied and complemented with
excellent accuracy in terms of results.

2. RELATED WORK

Data streams are realtime, continuous, possibly infinite,
fast changing, and ordered, with huge amounts of
sequence items [8]. A data stream rapidly changes with
time, so that acquiring all the elements it contains is
impossible [9]. As such, each element in a data stream is
examined individually [10]. Given that new data elements
are produced continuously via streaming, the memory
usage for stream mining should be limited [3]. In stream
mining, a new data stream should be guaranteed to be
available immediately whenever a request is made for such
stream. This requirement makes data streaming more
challenging in applications, such as knowledge discovery,
fraud detection, and business improvement [11]. To mine
frequent item sets, many authors have suggested different
techniques. Ran, et. al. [12] have suggested the “lossy
weight algorithm”, which is mostly used in finding frequent
item sets based on weight. The “SW” approach has also
been proposed [4,13] and is mostly used in data stream



Mehran University Research Journal of Engineering & Technology, Volume 35, No. 4, October, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
628

Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model

mining. This approach is subdivided in to two types: the
“transaction-sensitive” SW and the “time-sensitive” SW.
Jiayin, et. al. [14] proposed using this algorithm in mining
frequent item sets in SW; they effectively proposed a
new approach to extracting frequent item sets using the
SW technique.

In the past decades, static mining FP [6,12] and
incremental databases [15] have been addressed in an
excellent manner. A parallel a prior algorithm is used for
the FP algorithm [16] to find association rules [5] among
patterns. This technique is used to find FPs with k length
from a set of already created candidate patterns. The
main limitations of the performance of a priori-like
methodologies require multiple database scans for
favorable results, and many candidate patterns are
proven to be infrequent after database scanning. To
minimize this problem, Han et al. suggested an frequent
pattern tree and an FP-growth-based algorithm [7]. The
passes of database scan will be reduced in two pass by
using FP-growth tree used in [6], and the candidate
generation requirement can be eliminated. Introducing
such highly compact structure for an FP tree has
introduced in turn a new research method for mining
FPs with the structure of prefix tree [6]. General and
research issues related to mining frequent patterns in
data streams are revised [15,17]. The scope of the present
work focuses on data stream mining using the SW
mechanism [18], but the literature review here mainly
focuses on studies related to window-based methods.
Most studies focus on models of landmark window [17]
and SW [15], which are mainly used to find FPs in a data
stream. In [19] represents the first attempt to mine FP
from the entire history related to data streaming. Lossy
counting [8] and sticky sampling are single-pass
algorithms developed based on the anti-monotone
property. These two algorithms, which have some error
bound, deliver approximate results. In this paper the
[20] uses a lattice structure, which refers to a frequently

enumerated tree divided into several equal stored pattern
classes with the same transaction ID within a single
class. Another algorithm [21]was implemented to find
FPs using a landmarks window model. Each transactions
are divided into small k transactions inserted in the
summary data structure of an extended prefix tree called
the frequent item set forest. FP growth based tree called
FP stream mining was developed by Borgelt, et. al. [7] to
mine FPs using the tilted time window technique. As a
new batch of transactions arrives, the algorithm uses
the FP growth technique to process the data stream.
Such batch-by-batch processing technique has a major
limitation in handling the stream flow, given that an FP
stream requires constructing the FP tree to attain the
streaming items in every newest batch. The SW
technique in relation to mining FPs has also addressed
in the literature. The data stream mining methods for FP
are presented by Lin, et. al. [19], using time-sensitive
SW; that is, the window size is determined with a fixed
time period. Through this approach within the time period
of a window, the landing stream is divided into many
batches, and mining FPs is performed individually in
every batch. A discounting mechanism is used, and the
method removes old information using the approximate
table, which provide the approximated counts for the
expired and old informations. The SW technique [13] is
used to adaptively find FPs for online transactional data
stream. Such algorithm requires minimum threshold
support from every window and significant support to
adaptively maintain approximate FPs. Most of the above-
mentioned methods are used to approximately find FPs
[22] with some error bound or threshold for additional
pruning. Some techniques [23-26] are used to find the
exact set of FPs using the data stream. Through the
apriori-based MFI-Trans SW algorithm [27], a complete
set of FPs is found using the bit sequence that track the
incidence of all the item sets against the data
transactions related to the current fixe size SW. Left-
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shift bit-wise operation is performed against all bit

sequences to remove the old information and store the

newest one. The test methodology and candidate

generation with level-wise are applied through MFI-

Trans SW to find FPs using the current window. Thus,

this algorithm suffers from a priori limitation in creating

huge candidate patterns, especially mining such type

of data stream that contain many more and/or long FPs

and/or that have a low threshold support. Moreover,

the transaction-by-transaction updating mechanism

may hinder the performance of the algorithm as the

stream speed increases. Given thither bit sequence

information on all the window items is maintained

through this approach, efficiency in terms of memory

cannot be achieved, particularly when distinct items

and numerous transactions exist. MFI-Trans SW is

used to discover FPs from a datastream, but this

algorithm significantly differs from the suggested

technique in terms of both data processing and mining

approach strategies. FMP [1] is mostly close to the

proposed algorithm, which exactly finds FPs from a

data stream. The SW technique is used in FMP, and

the division of the window is formulated such that a

window consists of equalized and non-overlapping

fixed numbers of transaction batches. To store the

current window information, a prefix-tree structure in

canonical order is used. A list is maintained in each

tree node to explicitly store the frequency count

against each batch. At each node, FPM contains a track

for the last visited batch, and an additional pointer is

used for the last updated batch number. To reflect the

SW frequency list, the contents are shifted in the nodes.

When information is captured for a full window, the

request of the mining FP growth-based approach is

used to mine a complete set of recurrent patterns

through a tree.

3. MATERIALS AND METHOD

3.1 Compact Pattern Item List Tree

The definitions of the basic terminologies used to clarify
the FP idea in streams are presented in this section.
Suppose I= {i1; i2;...; in} is a set of items that are also
recognized as literals; in some application fields these
items are used as parts of the information. Set C={il; ... ;
ik} †”I,ld”k and l “ [1,n] is called an item set/patterns or
q-item sets, if the set consists ofq items. t = (tid) in
transactions ID, which is tuple, whereas D is used for the
patterns and (tid) is used for a transactions ID. Suppose
C †”D,t can be assumed to consist of C; therefore, C may
fall under t transaction. The item numbers in D suppose
the size of t (transaction t). Formally, a data stream DS can
be well-defined in the limitless arrangements of the
transactions, given the streaming of data items= [t1; t2; ...
; tm], where ti; i” [1; m] reaches ith transaction. Set for all
arrival transaction IDs among the ith and jth transaction
(where j>i) may be referred to as window W, and the
window size can be represented as |W| = j _ i, which
shows the total number of transactions between the ith

and jth arrival transaction. If window W consists of the
same size and equal number of non-overlapping bunches
of transactions, the it is termed as plates. Suppose window
W consists of the same size and equal numbers of plates.
Furthermore, let window W contain m and n transaction
and plates respectively (m mod n=0), then m/n
transactions are found in a plate; thus, the plate size would
become |m/n|. Suppose a window is slid plate by plate
,then each slides of window shows a newest plate, and
the existing old plate in the present window is removed.
Support (Sup)W(C) represents the C pattern support in
W window, which shows the transactions number in
window W that consists of C patterns. Hence, a pattern in
window W is an FP if support á is not less than the absolute
minimum á threshold min sup á as 0 d” á d” |W|, which is
supposed by a user. Given DS |W|, a min-sup and the
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complete set of patterns in window W reveal a support
count of not less than sup á value (i.e. minimal support).
The problem is to mine a precise set of regular current
patterns; the FW (Frequent Window) in the data streams;
thus, the SW mechanism is utilized.

3.2 Designing and Constructing CPILT

The mechanism of efficiently extracting plates is explained
using CPILT. Through the methods of dynamic tree
rearrangement, a tree structure for frequency descending
is utilized; performing this task shows how CPILT
periodically reorganizes itself. Here, mining performance
analysis is also noticed when CPILT achieves its goal
using its mechanism for dynamic tree rearrangement. Only
one scan for a database is required to mine FPs using the
CPILT structure. At the beginning, the transactions from
a data stream are placed in CPILT (in lexicographical order)
using a predefined order of items. A list is utilized to
maintain the order of the items in CPILT; such type of list
is called an F-list, and it contains the frequency count of
the items. When transactions from a data stream with
some numbers are placed and the order of the F-list
changes considerably compared with the existing
frequency-descending item order, the CPILT is readjusted
dynamically, considering that the existing frequency
descending item order and the order of the items are
updated in the F-list with respect to the current one. As
described earlier, CPILT is framed to mine FPs from a data
stream. SW can be divided into non-overlapping plates
with the same size, and one plate can be utilized for the
transactions of every batch in a data stream. Information
on the plates are maintained separately in CPILT. The
update process of a tree is performed with the removal of
the expired transactions of the plates when window slides
and transactions are simultaneously placed in a new
arriving plate.

A brief description of the CPILT structure is required
before elaborating the erection process of CPILT. CPILT

consists of one node as the root node, which is referred
to as the null node. The children of root node can be
labeled as item set of prefix sub-trees, and F-list is a
exclusive item set that has a relative frequency as
compared with F-lists and a pointer, that shows the first
node in the CPILT that has item sets. Similar to the FP
growth-based tree, CPILT tree structure also bears the
nodes that present an item set with the limited numbers
of badges (i.e. support and passes) for such sets of items
for the present window, which is root of the node in the
CPILT. A novel idea is used to form an F-list for a
transaction. For such purpose, information on the plate-
based supports count is considered only for tail items.
The tail item is explained below.

3.2.1 Definition-1: Tail Item

Let {i1; i2; ... ; in}; which is, DS data streaming transaction
contain item sets in the form of a pre explained, sorted
orders and in the organized manners. The item in, is to be
fined in the last of the transaction, and it is called the tail
item of the transaction. For example, when a transaction
is sorted lexicographically,{a,b,c} in this transaction c is
the tail item and when this transaction is reversed the
item a will become the tail item. Two kinds of nodes can
be maintained through CPILT.

3.2.2 Definition-2: Tail Node

Suppose t = {i1; i2; ... ; in} represents the arranged
transaction, and in is called the tail item. If the
lexicographically given transaction t {a; b; c} is insert
into the CPILT, then c node in the CPILT becomes the tail
node.

3.2.3 CPILT Organization

To maintaining the order of frequency in descending
way, CPILT is restructured by itself dynamically. The
CPILT construction process has two phases: insertion
and rearrangement. The stream contents are captured in
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the insertion phase in a tree with respect to an F-list
sorting order, and the current sorting order is the F-list
sorting order. The rearrangement phase is utilized to
restructure a tree in frequency descending order with
the help of already obtained information. During the
process of tree construction, both phases are executed
repeatedly many times. Given that the data stream has a
dynamic nature, the transition from the insertion to the
rearrangement phase can be executed when the plate
information is captured dynamically. CPILT formation
from a data stream can be explained through an example.
In Fig. 1, the step-by-step formation methodology of
CPILT is shown with the same data stream and related
transaction IDs.

Given the example under explanation, we assume that after
inserting each plate, the rearrangement of the tree is
performed. We discuss several types of rearrangement
criteria that may be useful for applications for data streams
with a dynamic nature. We also assume that tree formation
starts with the insertion of the first-plate transactions in
such type of items containing a predefined order, that is,
the lexicographical order of the items. CPILT is initially
empty (i.e. CPILT is initialized with a root node with a null
value), as shown in Fig 1. In our method, the FP-tree
construction methodology is adopted to insert the
transactions in a sorted order in the CPILT. Pointers for
the node traversal are not shown, but they persist in same
way as in FP growth tree. Symbolically, I sort is used for
the frequency descending F-list, and I is used for
frequency independent. The first phase consists of the
construction of the CPILT insertion. In the insertion

phase, the inserting process starts with insertion of the
1st {a,c,d,e} and 2nd {a,b,c,d} transactions in plate one in
the lexicographical order of the item sets. Exact formation
of CPILT and F-list after the insertion of plate 1is explained
in Fig.1. Regarding the two transactions for plate 1,e and
d are the two tail items by maintaining the lexicographical
order of the items. Hence, the two tail nodes “e:1;1,0”
and “d:1;1,0”maintain the plate counters and the
outstanding nodes, which are the ordinary nodes that
preserve total support count for the path.

Two plates exist in a window, and the plate counter
registers two count values in each plate and tail node. A
supporting value exists for the first fields of both plate
counters of plate 1, and the other fields relating to the
list start with 0. The total count is distinctly measured
by the tail node to the related path. Tree rearrangement
is performed after each plate; the insertion phase ends
here The rearrangement phase then starts, during which
the preliminary item sets are not introduced or placed in
order relating to the decending order of frequency. CPILT
becomes frequency autonomous, with a lexicographical
order of items. To obtain 1 sort, the tree formation is
reorganized. The item order relating to 1 is changed into
frequency descending order. The tree is then rearranged
with respect to 1 sort. The F-list with the changes and
rearranged CPILT after the first rearrangement phase
are shown in Fig. 1. The rearrangement operation may
change tail node into ordinary node and ordinary to tail
node. Variations may occur in the tree, but the node
status in CPILT does not affect any property relating to
the formation of CPILT.

FIG. 1. ORGANIZATION OF CPILT AT WINDOW-1
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During the construction of CPILT, two properties are
observed.

Property-1: The total count of the frequency in CPILT e”
summation of total count of frequency of the children.

Property-2: The total count of the frequency of tail nodes
in CPILT > summation of the total frequency of the children
at the end of the tree.

In window sliding, CPILT is modified with the exclusion
of old plate information and insertion of new plate
information.

3.2.4 Extraction of Old Information

To assemble a platform that is set to be mine, the
configuration of the CPILT is updated with precise
contents in the current window. When the windows are
made to slide, CPILT is modified by traversing the entire
tree. The plate counter for each tail node is updated to
delete old and expired information that contains CPILT.
Changes may be reflected if necessary at the remaining
nodes in the corresponding path, as the tail nodes maintain
the plate information. Fig. 2 shows the basic mechanism
of extracting old information from plates in CPILT and the
refreshing algorithm for such purpose. For each tail node,
when the update operation for the plate counter starts,
the refreshing operation for CPILT begins as well. This
operation starts when the lowest items exists in F-list.

The 1st value in the plate counters is removed relating to
each tail node of item. The oldest plate expiration is shown
by shifting the remaining values by one slot to the left in
the list. When the update is performed, any tail node
becomes an ordinary node, and zeroes exist in its plate
counter for all entries. When the total count for a node
becomes zero, the deletion operation for that node is
performed. In the same manner, the deletion operation for
any node can be performed from CPILT when the support
for any ordinary node becomes zero.

In the tree update process, no operation is performed in
CPILT for an ordinary node. The mechanism for handling
expired plate for CPILT is considered. For Window-1, the
stream data and CPILT construction in Fig. 2 are
considered. When the window sliding operation starts,
we suppose that the oldest plate (i.e. tid1 and tid2) expire
and that a newest plate (tid 5 and tid 6) become visible. A
list is utilized to facilitate the traversal of the fast tree and
minimization of the number of visited nodes; the bottom
of the list is used for the start. At the bottom of the F-list,
most “e” items are visited and processed one by one for
the tree update process. We admittance “e: 1; 1, 0,” which
is an accessible node in the CPILT and the tail nodes. The
value present in 1st slot of the plate counters of node (1) is
removed, and alike values related to the node decrease
with respect to the total count (1), thereby resulting in
zeroes in all the node records. As such, the deletion
operation is completed for the “e” node of the tree.

FIG. 2. EXTRACTING OLD PLATE INFORMATION FROM CPILT
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Same value is decremented from the support count value
related to every node that starts from this to root node.
The subsequent immediate node to root node in path,
that is,”c:1,” is further processed. The deletion operation
for this node is performed when the total support count
for this node is zero. For the outstanding nodes (i.e.
items”a” and “d”), the update procedure is executed
consequently. The F-list is updated by following every
update process, and the changes are saved. The update
operation for item “e” is terminated with the completion
of the adjustment for the F-list when no more nodes belong
to “e” in the tree. The subsequent CPILT is presented in
Fig. 5. “c” is the subsequent node in the tree containing
a particular node “c: 1; 1, 0,”which is also called the tail
node. Therefore, the same method accepted for the “e” in
tree is also accepted for the update process. “b: 1; 0, 1”
is the first node of “b” that contains the subsequent item
and is also a tail node. Fig. 2 shows that the first value of
the plate counter is zero. The transactions in the 1st plate
that are shown by such type of tail node do not appeared.
Hence, the total counts of the value in this node and
remaining nodes toward the root node in the path of the
update process is not needed.

The modifying method for the counters of the plates are
executed by shifting the corresponding values to left,
and a 0 is placed at end to store the upcoming plates for
the new information. The total count for the contents and
plate counter of node are1 and 1, 0, respectively, after the
process is completed, as shown in Fig. 2. The subsequent
node containing the item “b” is also a tail node that has
the same information as the previous one. Hence, the
same procedure is adopted. Item “a” consists of a single
node “a: 1,” which is the subsequent item in the tree and
is an ordinary node. An operation need not be performed
for such node. After skipping “a,” we achieve a single
ordinary node “d: 2” in the tree. Similar to the previous
item, the node is also skipped, and the update process for
CPILT is terminated because the F-list contains no

remaining items. The final CPILT in Fig. 2 is shown after
plate 1 extraction, and this tree is prepared similar to an
updated tree that is ready for capturing information on
the upcoming new plate according to the mechanism of
CPILT formation.

The formation of CPILT when new information on the
plate included is presented in Fig. 2 (tid 5 tid 6) are inserted
in the CPILT reorganization in Fig. 2. The tree is reorganized
after the insertion of new plate information infrequency
descending order, as shown in Fig. 2. Considering the
plate extraction methods and the construction of CPILT.

Depending on FPM and the process of CPILT formation,
the storage efficiency that CPILT can obtain is due to (1)
tree formation with high compactness, (2) conservation
of the plate counters based on the tail node (i.e. avoidance
of the “garbage” node), and (3) obtaining liberation for
pointers regarding the last plate of every node. The
frequency descending order of CPILT, which is
rearranged dynamically, allows as much as possible prefix
allocation in the concerning transactions in the current
window.

3.3 Mining Frequent Patterns FPs

A methodology of pattern growth can be utilized to
produce extremely dense CPILT that facilitates and
ensures frequent item sets. Similar to the FP growth [7]
mining approach, we mine CPILT repeatedly to produce
FPs through the PBs (Provisional Pattern Bases) and CTs
(Conditional Trees) for the further scanning of records.

The basic operations relating to FPM using CPILT are as
follows: (i) counting the length-1 of the  recurrent objects,
(ii) making the provisional PB for the each prearranged
object (iii) making the conditional patterns for each
provisional PB. The recurrent patterns at an occasion is
created using CT. Regularity-engendered FPs are checked
to find regular FPs.
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Property-2: The TID list keep the occurred data against
each node in CPILT alongside the route not less than for
the list traversal. Let X = {b1, b2,…,bn} represent a route
within CPILT and bn represent the tail node that carries
the TID list for the route. When the TID list is moved up
to the bn-1 node, the bn-1 node contains the incident
data against route X = {b1, b2,…,bn-1}.

Proof: According to property-2, the incident data of
route Z are kept by the node bn in the TID list
representing the minimum traversals that it covers. Thus,
traversing data identical to Z minus any failure can be
conserved precisely in the bn-1 node in a similar TID
list. The lowest extreme in the F-list can be used to create
a provisional PB. A small F-list for the entry is also
created at the time of creating a provisional PB. In our
explanation, “D” becomes the nethermost entry in the
F-list. Fig. 3(a) shows a conditional PB tree for “D.”
With respect to lemma 2, when the TID list for D is
strapped up in relation to its parent nodes A, C, and E,
each parent node of D is changed into a tail node. The
immediate FP for D is (D:1, 6, 7, 8, 9),that is, D occurs in
1,6,7,8, and 9 transactions, and its support is 5.Four
routes exist for CPILT: (A:1, D:1), (B, C, D:6, 9), (E, C,
D:7), and (E, D:8). The number after “:” shows every
occurring sub pattern tid. The conditional PB for D
{(A:1), (B, C:6,9), (E, C:7), and (E:8)} does not create
frequent items. The mining for D is terminated, and D is
the only1 FP. We then check the regularity for pattern D.
If we know the occurring transactions for D, then we
can easily calculate the regularity of D according to
definition 1 [25], that is, 2.54. According to this example,
the threshold value of the regularity is set
asmax_variance = 1.0. GivenReg (D) > 1.0, D does not
become a regular pattern. The immediate FP for Cis(C:
2, 4, 6, 7, 9), with tree routes of (B, E, A, C:2, 4), (B, C:6,
9), and (E, C:7). The conditional PB for C is {(B, E, A:2,
4), (B:6, 9), (E:7)}, as shown in Fig. 3(b). The CT for C

leads one branch (B: 2, 4, 6, 9), and the engendered
frequent patterns are (BC:2, 4, 6, 9) and (C:2, 4, 6, 7,
9).We calculate the regularity of BC and C using
definition 1, and the respective values of their regularities
are0.96 and 0.583. Given that {Reg (BC), Reg(C)} < 1.0,
BC and C become regular FPs. The immediate FP for
node A is (A:1, 2, 3, 4, 5), and its conditional PB is (B,
E:2, 3, 4, 5), as shown in Fig. 3(c). The CT for A leads
one branch (B, E:2, 3, 4, 5), and the engendered FPs
are(AB:2, 3, 4, 5), (AE:2, 3, 4, 5), (ABE:2, 3, 4, 5), and
(A:1, 2, 3, 4, 5). The respective values of the regularity
of the patterns are 1.36, 1.36, 1.36, and 1.25. With
{Reg(AB), Reg(AE), Reg(ABE), Reg(A)} > 1.0, such
patterns do not become regularly frequent. For node E,
(E:2, 3, 4, 5, 7, 8) is derived, and its conditional PB is
(B:2, 3, 4, 5). CT for E leads one branch (B:2, 3, 4, 5),
and the engendered FPs for it are (BE:2, 3, 4, 5) and
(E:2, 3, 4, 5, 7, 8). The corresponding regularity is1.23
and 0.204.WithReg (BE) > 1.0,E does not become
frequently frequent, but withReg(E) < 1.0, E becomes
frequently frequent patterns. Node B results in (B: 2, 3,
4, 5, 6, 9), and no conditionals PB exists for it. However,
the value of its regularity is 0.77, which is less than our
threshold value for regularity. Therefore, B becomes a
regular pattern. The conditional PB, CTs, engendered
recurrent patterns, and regular engendered FP are
summarized. From our example database, as shown in
Fig. 3, 10 FPs are obtained. Only four of them are regular
patterns.

The statistical formulas of the average and variance can
be utilized to calculate the regularity of pattern X.
Supposing that TxPx is a set for all periods of X, then
Px = {p1x, p2x,…, pnx}, where n shows total number of
periods for px. The value of the x for average period is as
follows:

n

P
X

x
kN

1k
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Variance for period of X pattern is as follows:

 
n

XP
σ

2x
kN

1k
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Example: Table 1 database shows that the patterns “BF”
happenes in tid = 2 and tid = 4.

Thus, TBF = {2, and 4}, and the PBF = {3, 2,and  4}. For
the pattern “BF,” the average period value = 9/3 = 3,
and the variance value = (3 - 3) 2 + (2 - 3) 2 + (4 - 3)
2 / 3 = 0.67. The max period for patterns “BF” is four (4).
When the user specifies the maximum period = 3, “BF” is
not a regular pattern according to existing method because
Reg(BF) > max Prd. When the user specifies the maximum
variance = 1.0, then BF becomes the usual patterns
because the variance interval for BF is 0.67, which shows
that Reg(BF) < max_variance.

3.4 Experimental Analysis and Results

In this section, the outcome of our complete examination
of the performance of CPILT for data streams against
artificial and actual sets of data is given in Table 2.
 Table 2 presents the statistical information on data sets,
which are used in the examination.

The 1st three main data sets are attained from [28]. Several
years’ POS data composed, BMS-POS, are the given
worth. Two data sets are achieved from two web locations
of e-commerce containing clicking stream data for several
months with worth. T40I10D100K is the synthetic data,
in which the most number of transactions is possibly
the greatest ordinary FPs, and D, I, and T are the
parameters used for the transition size of the average.
The strength of the entire dissimilar items is shown in
the last column of Table 2; they are mostly found in

TABLE 1. TRANSACTIONAL DATABASE

DI noitcasnarT DI noitcasnarT DI noitcasnarT

1 DA 4 FEBA 7 EDC

2 FEBA 5 ECBA 8 FED

3 ECBA 6 DCB 9 DCB

tesataD #noitcasnarT #smetI #LTxaM #LTgvA 001*)smetI/LTA(

SOP-SMB 895,515 8561 561 45.6 83.0

1weiVbeW-SMB 306,85 994 862 15.2 25.0

2weiVbeW-SMB 315,87 1433 261 10.6 51.0

K001D01I04T 000,001 349 87 26.83 12.4

FIG. 3. CONDITIONAL PB AND CT

TABLE 2. DATA SET CHARACTERISTICS
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every transaction of each data set. In our calculation,

we generally use transactions of average length because
the connections of the database may vary to some

extent. Either the data set is scanned or compressed.

When in a transaction, the data set is typically in a

manner in which it may be composed of a few items in 1;

however, when it is composed of numerous different

items, it is called sparse. The dense data set contains
numerous items in a transaction with different rare items.

When such type of data set has a comparatively small

value (e.g. <= 10.0), the data set is called infrequent;

otherwise, the data set is considered dense. Consistent

results for all the data sets are shown in Fig. 4 using

certain features of the data set with well-defined
measurements. For the writing program, Microsoft Visual

C++ 6.0 is used. The program is run on Windows 7 with

CPU of 2.66 GHz with 1 GB memory. CPU and I/Os are

quantified by runtime, which also contains the

rearrangement of the tree for only CPILT and tree

building. We mainly compare different requirements at
runtime, and we focus on FPM [1], MFI-Trans SW[27],

and our suggested CPILT. Various studies in the literature

[13,16] indicate that Apriori works well for such type of

data sets, when the item numbers are reduced, but it

does not work well when the patterns are extensive. FPs
may be large and/or insignificant maintenance
thresholds. The performance matter can be fixed in the
method based on the spreading growth of a tree with a
frequency descending arrangement [29]. Consequently,
straight collective mining patterns can be produced from
the static window of a fixed size using both MFI-Trans
SW and CPILT, which perform outclass in many
circumstances compared with FPM. In the case of plate-
based SW in case of MFI-Trans SW and CPILT, we
mostly ignore their associated runtime. When the
memory obligation of the window is not dependent on
the method of SW, the memory evaluation can be created
between them. FPM is quite parallel to our suggested
CPILT, as is mentioned in [6]. In this study, we relate
CPILT to FPM. The experimental analysis can be divided
into two parts. First, CPILT density is illustrated with
respect to the amount of nodes and memory. Second,
the act of FPM and CPILT is illustrated from the
perspective of runtime.

3.5 Runtime Competence

We match the total competency of the runtime of CPILT,

MFI-Tran SW, and FPM with the construction,

4. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON T40I10D100K DATASET WITH
TRANSACTION LIMIT 50 K
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restructure, and update of a tree when significant

changes occur in the size of the windows. Figs. 5-12  on

the four mentioned datasets with 50 and 100 K

transaction limits show the outcomes. The motive for

the enhancement of the efficiency of CPILT is explored.

The runtime distribution of CPILT, MFI-Tran SW, and

FPM is reported in Figs. 5-12 using different window

sizes, and dissimilar data sets are consumed. The Figs.

5-12 show the distribution of the runtime of tree building,

tree apprising (i.e. termination period for the window

removal in CPILT and removal period of the node of the

unwanted/garbage in the case of FPM and MFI-Tran

SW), tree reform, and the overall period. The cost of tree

reformation involves the cost of dynamic selection for a

suitable technique of tree reformation. The average

essential time for all the running and dynamic windows

is shown in the statistics and demonstration of the
column relation. During the tree construction phase,

restructure phase tests are performed using different

sizes of windows for different data sets, thereby

rationally preserving the constraints (i.e. w and p) at

great values. The performance of CPILT is also assessed

with the disparity of the magnitude of the windows (i.e.,
with changing values for w and p). The performances of

FPM and CPILT are mostly alike for great values of

windows using different data sets. The breach in the

efficiency during these processes may be amplified when

the values of the window are reduced. For most data

sets, a prolonged runtime for FPM and MFI-Tran SW
occur in the case of a shorter value for the windows or a

FIG. 5. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON BMS-POS DATASET WITH
TRANSACTION LIMIT 50 K

FIG. 6. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON BMS-WEB VIEW 1  DATASET WITH
TRANSACTION LIMIT 50 K
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greater strength of the frequent item sets. In both
circumstances, CPILT generates sensible results within
a reasonable time.

The consequences shown in Figs. 4-11 indicate that
CPILT outperforms FPM in terms of total runtime with
nuances in terms of degree during the tree construction

FIG. 7. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON BMS-WEB VIEW 2  DATASET WITH
TRANSACTION LIMIT 50 K

FIG. 8. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON T40I10D100K DATASET WITH
TRANSACTION LIMIT 100 K

9. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON BMS-POS DATASET WITH TRANSACTION LIMIT 100 K
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and tree updating process against all the data sets to be

evaluated. For example, in the case of the sparse data

sets, BMS POS,  BMS WebView 1, BMS-WebView-2,

and T40I10D100K, FPM and MFI-TranSW require

twofold to six fold longer time than CPILT does. Our

experimental results also show that CPILT outperforms

FPM and MFI-TranSW in terms of the high values of

the windows and small numbers of frequent item sets

against data sets with diverse features. For example,

against the data set T40I10D100K,whose windows have

values of 2, 4, 6, 8, CPILT presents an outclass

performance compared with FPM and MFI-TranSW. In

apprising a tree, FPM and MFI-TranSW need a long

time at every window.

3.6 Memory Adeptness

We prove the memory requirement against FPM, MFI-
Trans SW, and our suggested CPILT for dissimilar
datasets with varying window scope. We test the
memory requirement against the preliminary or primary
data structure using the SW methodology using a
window with a stable size. We also test the memory
requirement using windows of varying sizes for each
data set.

The tests are performed throughout the tree construction
and structure process, restructuring, and updating in
every window by altering the window values of all the
datasets, while the window restraint (windoe and plate)
are preserved at reasonably immense values. We also

FIG. 10. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON BMS-WEB VIEW 1 DATASET WITH
TRANSACTION LIMIT 100 K.

FIG. 11. CONSTRUCTION, RESTRUCTURE AND UPDATING OF TREE ON BMS-WEB VIEW 2  DATASET WITH
TRANSACTION LIMIT 100 K
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assess CPILT tree performance on the difference of
window importance( by altering the values of windows
and plates). Figs. 12-19 show the assessments for the
physical memory requirement reported for different
datasets; marks are displayed. The discrepancy in window
size in the form of the plates is shown in the x-axis of the
graph. We reserve a static proportion of plates against
each single data set. The effects for BMS-POS are shown
in Figs. 12-19, with static window sizes at 50 and 100 k
(=50 K × 2), corresponding transactions, considering the
respective event. For every batch size, we conclude the
typical memory requirement for all models of window
sliding. For example, using BMS-POS with window sizes
of 50 and 100 K (p = 50 K and w1 = 2) transactions, the
objects quantity is usually 1319 with respect to all models
of SW. With the use of identical data sets on the average,
the objects are 1573 with the completion of SW having a
static window size of 400 K (p = 50 K and w4 = 8)
transactions. In the case of FPM and MFI-Trans SW, we
calculate the memory against the windows in
consideration of complete objects with bit-arrangement
proportions in the windows, even though many
supplementary spaces are required by the process of
retaining added structures, such as the title and total
occurrence of each single object. In the case of BMS-
POS, when the window size is 100 K connections, the
memory requirements of MFI-Trans SW, FPM, and our
suggested CPILT are shown in Fig. 8. A comparison of
MFI-Trans SW and CPILT indicates that, when all types
of window model are used in maximum data sets, CPILT
requires a small amount of memory, especially in the case
of sparse data sets. When the data set is sparse,
considerable memory is required by CPILT. If the window
sizes and number of objects become large, then the
memory enhancement of CPILT becomes bulbous relative
to that of FPM and MFI Trans SW. Conversely, if the
number of discrete objects is small and/or sparse data set
is of low slung, then CPILT requires a relatively large
memory. The results for the two tree configurations
regarding changed data sets using a window with a static

size are obtainable as the sum of the nodes. Regular and
tail nodes are used for CPILT, whereas steady and garbage/
unwanted nodes are used for FPM and MFI-TranSW.
FPM and MFI-TranSW hold 16% to 25% garbage or
unwanted nodes, whereas CPILT is free from such
garbage nodes. The memory constraint for CPILT can
also be reduced by keeping a limited number of tail nodes
(i.e., nodes that keep information for the plate counter)
relative to the many numbers against regular nodes. When
the datasets of T40I10D100K are copied, the only 3%
nodes are the tail nodes out of the complete nodes. For
further data sets, the tail nodes have a trivial stretching
effect from 13% to 34%. Hence, in terms of the quantity of
the nodes, CPILT is more memory efficient than FPM and
MFI-TranSW for all categories of datasets. The results
indicate that the runtime efficiency of CPILT is improved
with respect to the organization of its condensed tree.

Fig. 20-23 shows the quality of our proposed algorithm
along the number of frequent items, with restoration errors
for real BMS-Web View 1, BMS-POS, and synthetic data
IBM. The curve in Fig. 20-23 shows that frequent items
need to be chosen. Fig. 24 shows that the quality devalued
with the number of dissimilar item sets in truncations.
The distribution of the data will be very dense when the
transaction length is small. May be some duplication
between the items and the transactions are exists with
low restoration error, displayed in the Fig. 24.

3.7 Restoration Error

We also count the restoration error for the frequent
patterns based on the probabilistic model [2]. A restoration
procedure for the set of item sets S is the function mapping
S to the values between the 0 -1:f: S-  [0,1]. The
restoration quality is measured by p-norm for the relative
errors[2]. We use the above model to minimize the
restoration error with respect to the frequent item sets.
The restoration error for different data sets with respect
to frequent item sets are presented in Figs. 20-24.
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FIG. 12. MEMORY CONSUMPTION ON DIFFERENT WINDOWS
WITH TRANSACTION LIMIT 50 K  ON T40I10D100K DATASET

FIG. 13. MEMORY CONSUMPTION ON DIFFERENT WINDOWS
WITH TRANSACTION LIMIT 50 K ON BMS_POS  DATASET

FIG. 14. MEMORY CONSUMPTION ON DIFFERENT WINDOWS
WITH TRANSACTION LIMIT 50 K ON BMS_WEB VIEW 1 DATASET

FIG. 15. MEMORY CONSUMPTION ON DIFFERENT WINDOWS
WITH TRANSACTION LIMIT 50 K ON BMS_WEB VIEW 2 DATASET

FIG. 16. MEMORY CONSUMPTION ON DIFFERENT WINDOWS
WITH TRANSACTION LIMIT 100 K ON T40I10D100K DATASET

FIG. 17. MEMORY CONSUMPTION ON DIFFERENT WINDOWS
WITH TRANSACTION LIMIT 100 K ON BMS_POS  DATASET

FIG. 18. MEMORY CONSUMPTION ON DIFFERENT WINDOWS WITH
TRANSACTION LIMIT 100 K ON BMS_WEB VIEW 1  DATASET

FIG. 19. MEMORY CONSUMPTION ON DIFFERENT WINDOWS WITH
TRANSACTZZZZION LIMIT 100 K ON BMS_WEB VIEW 2  DATASET.
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FIG. 20. NUMBER OF FREQUENT ITEMS ON  (A) BMS-POS DATA SET

FIG. 21. NUMBER OF FREQUENT ITEMS ON BMS-WEB VIEW 1

FIG. 22. NUMBER OF FREQUENT ITEMS ON BMS-WEB VIEW 2

FIG. 23. NUMBER OF FREQUENT ITEMS ON T40I10D100K
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4. CONCLUSION

In our paper, we presented the newest idea for the
mechanism of the dynamic restructure of tree to handle
continuous data streams. We proposed and developed a
structure for CPILT; this tree restructures itself to achieve
a frequency descending compact tree using a single pass.
CPILT decreases the runtime and memory capacity for
handling high-speed data streams. An effective
restructuring mechanism for the structure of CPILT was
also proposed and explained. For runtime and memory
efficiency, we compared our algorithm with FPM and MFI-
TranSW.The analysis of the results showed that our
proposed CPILT provides better results than FPM and
MFI-TranSW. The future work of our research is to
summarize frequent sets of items.
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