
Prediction of Elastic-Plastic Behaviour of Structures at
Notches

TANWEER HUSSAIN*, MUJEEBUDDIN MEMON**, AND ZEESHAN ALI MEMON***

RECEIVED ON 01.05.2012 ACCEPTED ON 21.06.2012

ABSTRACT

Under the condition of elastic-plastic deformation, aero engine casings experience local stress and
strain concentrations along with associated variations in load paths and stiffness. The accurate prediction
of such behaviour is clearly necessary for design optimisation, potentially leading to beneficial weight
savings. The present research seeks to tackle the objective of accurate characterisation of elastic-
plastic casing behaviour. The objective is to develop approximate techniques for predicting the elastic-
plastic behaviour, for both generalised load-displacement responses (i.e. for global response) and notch
stress-strain responses. Accurate prediction of the stress-strain distribution at a notch is difficult and
existing notch prediction techniques can only be used for small strains. This paper seeks to develop novel
techniques for predicting large elastic-plastic notch strain and associated stresses, with application to
aero engine casing notches. The repeated local joints at the spoke-shell casing are of particular interest
as they are the most likely sites for plastic deformation and possibly crack initiation. These local joints
incorporate realistic notch-type features and the load cases cover a range of loading combinations, to
develop insight and understanding of the elastic-plastic behaviour. This work analyse a double edge-
notched flat bar with semicircular notches and a representative case of actual aero engine casing-type
structures in a more simplified form. The investigation was carried out for structures for which stress
and total strain are related by a power law. The equivalent stress at a notch can be estimated, given the
value of n, by a linear interpolation between the stresses for a cases n=1 and n=0. The application of the
notch stress-strain prediction method is illustrated through use of examples of notch components. The
predictions are compared with results obtained using finite element analyses and approximate methods
proposed by Nueber and Glinka.
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1. INTRODUCTION

distribution at notches is difficult. Existing approximate
notch strains prediction techniques are generally based
on the use of elastic solutions, which are reasonably
accurate for predicting small plastic strain [3-13]. Some
methods [4-6] also use limit loads to assist in predicting
the notch strains.

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 3, July, 2012 [ISSN 0254-7821]
545

In mechanical structures notches are important
because these are the positions at which most failures
originate [1-2]. Therefore, it is highly desired to

predict stress-strain concentrations at notches during the
design of structures. Without the use of nonlinear finite
element analysis, the prediction of the stress-strain
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shortcomings of these approaches. Consequently, it was
decided to explore the applicability of a technique
proposed by Calladine [17] for predicting the maximum
stress in a component undergoing power-law creep
behaviour, i.e.

ε = Bσm (1)

where ε represents the secondary creep rate. B,m represents
the material properties at the appropriate temperature. The
Calladine approach is essentially an interpolation method
based on observed near-linearity of the variation of maximum
component stress with the inverse of stress exponent m for
power-law creep [20]. The advantage of the Calladine
method is that the interpolation can be achieved using (i) a
linear elastic solution (m=1) and (ii) an elastic-perfectly
plastic solution (m=∞), as shown in Fig. 1.

Based on the analogy between power-law creep (rate-
dependent) and power-law hardening (rate-independent),
it was anticipated that the same interpolation could be
employed to give more accurate notch stress, and thus
strain, predictions, than existing techniques, for the rate-
independent case.

The new method developed in order to predict maximum
notch stress and thus strains is based on a n-interpolation
scheme. The prediction of maximum notch stress for
appropriate values of n can be performed by linear
interpolation between elastic-stress (n=1) and perfectly
plastic stress (n =0). For the proposed method, the
material's uniaxial stress-strain curve (Fig. 2) specified
above yielding, i.e.

σ = Kεn (2)

FIG. 1. DEMONSTRATION OF INTERPOLATION SCHEME
FOR CREEP BEHAVIOUR

Elastic-plastic notch stresses and strains are used in
multiaxial fatigue life predictions, the equivalent stress
(strain) approach is the most commonly used method for
the evaluation of multiaxial fatigue life [14-16]. Therefore,
accurate prediction of elastic-plastic notch stress-strain
predictions, including large strains are clearly necessary
for design optimisation, potentially leading to beneficial
weight savings in structures such as those for aero engine
casings.

Elastic-plastic FE (Finite Element) programs, with large
strain facilities, exist and can be used to determine the
stresses and strains in structures. However, in practice,
the number of the elements required, in order to obtain
accurate elastic-plastic results for complex structures, e.g.
aeroengine casing structures, may be very large. Therefore,
the current research seeks to develop of techniques for
predicting the large elastic-plastic notch stress and strains
without the need for excessive finite element analyses.

Simple structures, made of material for which the creep
strain rate is a power law function of stress were studied
by Calladine [17], which shows that the greatest stress in
the structure varies linearly with the reciprocal of the
power law exponent . The linear interpolation method is
for structures made of materials where stress is related to
total strain as power law. The notch stress for an
appropriate value of n can be obtained by simple linear
interpolation between elastic-stress (n=1) and perfectly
plastic stress ( =0).

Based on the linear interpolation method [18-19], local
elastic-plastic stress and strain components, under
monotonic load conditions, are predicted, for simple notched
components, i.e. plane strain, plane stress, notched bars.
Future publications include the behaviour of more complex
casing-type structures. It was found that the predicted local
elastic-plastic stress and strain components correlate well
with Finite Element Analysis results.

2. PROPOSED NEW NOTCH STRAIN
PREDICTION TECHNIQUE

Previous investigations on the performance of existing
notch strain prediction techniques revealed some
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where σn,y and E are the yield stress and Young's modulus
of the power-hardening material. K,n are material constants.

Next step is determination of notch maximum equivalent
stress σeq for given power-hardening material and applied
load S. The elastic-plastic notch equivalent stress σeq can
be estimated by simple linear interpolation between n=1,
n=0 cases, as shown in Fig. 3.

The elastic-plastic notch equivalent stress, σeq, can be
expressed as:

σeq = σpp + n(σel-σpp) (σeq > σn,y) (3)

where σel, σpp, are elastic stress and perfectly plastic-stress
respectively. The elastic stress σel for a applied load, S.

 σel = KtqS (4)

The equivalent stress concentration factor Ktq can be
defined as the ratio of the maximum elastic-equivalent
Mises stress in the structure to applied load. The Ktq can
be obtained by considering equilibrium and compatibility
equations or performing an elastic FE analysis. The
perfectly-plastic stress σpp(n=0 ) is defined for given applied
load, S.

σ
σγ

pp C
S

Sp
= (5)

where Sp is the plastic limit load level of the structure, for
the elastic-perfectly-plastic material with the yield stress
σy. The limit load of the structure can be estimated by
equilibrium considerations, i.e, upper bound/lower bound
theorems or performing single elastic-perfectly-plastic, FE
analysis.

By rearranging Equation (3)
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Subsequently, equivalent notch strain is calculated by
using Equation and σeq. The notch equivalent strain can
be written as:
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The elastic equivalent notch strains, below yielding, can
be calculated by consideration of Hooke's law, i.e.
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FIG. 2. GRAPHICAL REPRESENTATION OF MATERIAL
CURVE

FIG. 3. SCHEMATIC DIAGRAM OF INTERPOLATION CURVE
FOR GIVEN n AND APPLIED LOAD 'S'



3. NEUBER, GLINKA APPROXIMATION
FORMULAS FOR THE MULTIAXIAL
NOTCH STRESSES AND STRAINS,
FOR THE POWER HARDENING
MATERIAL

3.1 Neuber's Rule

Neuber's rule is probably the best-known approximate
method for notch strain prediction and has been
traditionally employed with cyclic stress-strain curves
for low-cycle fatigue life prediction. Neuber established
that:

(9)

for longitudinal notches in prismatic members under
torsion, where Kt, Kε and Kσ are the elastic stress
concentration factor, the local strain concentration factor
and the local stress concentration factor, respectively. This
relationship permits a hyperbolic expression to be
developed between the applied load, S, the equivalent
stress concentration factor, the elastic modulus and the
equivalent notch stress σeq and strain, εq

(10)

Note that, Neuber's rule presented here  doesn't taken
into account behaviour of non-linear net section. For the
material with power-hardening property after yielding a
closed form solution for the elastic-plastic stresses and
strains can be obtained. Using Equation (2) and Equation
(10), the notch equivalent notch stress σeq, and notch
strains εq can be derived as:

(11)

(12)

Below the yielding point, Hooke's law can be used to
calculate notch strain as shown in Fig. 4.

3.2 Glinka Method

The Glinka method is based on the assumption that the
strain energy density at a notch root does not change
significantly if the localised plasticity is surrounded by
predominantly elastic material. The Glinka method is
therefore based on equivalence of the elastic energy (We)
and elastic-plastic notch strain energy (Wp) densities and
can be used to predict local stresses and strains at notch
roots, again based on elastic results. The Glinka method
can be written as:

Wp = We (13)

(14)

(15)

For a power-law material, beyond the point of yielding,
the following expression can be easily derived from
Equations (2,13-15) to estimate the notch strain (Fig. 5).

(16)

FIG. 4. GRAPHICAL REPRESENTATION OF NUEBER'S RULE FOR
APPLIED LOAD 'S'
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4. FE MODELLING OF SIMPLE
NOTCH STRUCTURE

Application of the proposed method is illustrated by the
example of the notched structures such as:

Double edge-notched flat bar (3D models with
10mm thickness).

Local joints of casing structure (multiaxial-
condition).

Fig. 6 shows the geometry of the 10mm thick, double edge-
notched flat bar with semicircular notches under applied
axial load S. Only one quarter of the geometry is modelled
due to the geometrical and loading symmetry and 20-node,
reduced integration, brick elements that are employed.

The mesh of the local shell-to-outer casing connection
model (local joint) is shown in Fig. 7. For the present work,
the local joint incorporates realistic notch features, i.e.
9mm-notch radius. The loading modes considered is axial
loading and reduced integration, twenty node solid
elements are employed.

In order to calculate the values of Ktq, Sp of the structures,
FE elastic-perfectly plastic analyses were carried out using

ABAQUS (CAD tool for FE analysis) [21]. It was assumed
to be made of an elastic-perfectly-plastic material with a
Young's modulus of 71.2 GPa, a Poisson's ratio of 0.3 and
a yield stress of 250 MPa. The results obtained from FE
elastic-perfectly plastic analyses, presented in Table 1.

5. THE APPLICATION OF PROPOSED
METHOD

Application of the proposed procedures is illustrated by
the example of the 3D model with 10mm thickness as shown
in Fig. 6. The linear interpolation solution follows the
scheme outlined.

The assumed material stress-strain law according the
equation Equation (2).

FIG. 5. GRAPHICAL REPRESENTATION OF GLINKA
METHOD FOR APPLIED LOAD 'S'

FIG. 6. GEOMETRY AND MESH OF 3D FE MODEL

TABLE 1. THE VALUES OF KTQ, SP,  FROM FE ANALYSES

Structure Yield Stress SCF Limit Load Sp
σy(MPa) (Ktq) (Mpa)

3D Notched
Flat Bar 250 2.978 196

Local Joint 250 25.45 30.5

FIG. 7. FE MESH OF LOCAL JOINT
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σ = 1800*ε0.6 (σ > σn,Y)

FE solution for Ktq and Sp from elastic-perfectly plastic
analysis with yield stress 250 MPa .

Elatic-equivalent stress concentration factor
Ktq=2.978.

Limit-load Sp=196 MPa for yield stress σy=250
MPa.

The equivalent elastic-plastic, notch stresses calculated,
according to the linear-interpolation scheme with
Equation (6).

σeq = 2.297S (S > 21.76MPa)

The equivalent notch strains calculated, according to
Equation  (7).

εeq = 1.5x10-05 S1.667 (S  > 21.76MPa)

The elastic equivalent notch strains, below the yielding,
using Equation (8).

εeq = 1.51938x10-04 S

6. APPLICATION OF NUEBER'S RULE

Using Nueber's rule and the materials properties E, Ktq,
K,n, the elastic-plastic notch equivalent stress-strains are
calculated with Equations (11-12).

σeq = 6.03xS0.75 (S > 16.789MPa)

εeq = 7.502x10-05 S1.25 (S > 16.789MPa)

The elastic notch strains:

εeq = 1.51938x10-04 x S (S < 16.78MPa)

7. APPLICATION OF GLINKA
METHOD

Using Glinka method and the materials properties E, Ktq,
K,n, the elastic-plastic notch equivalent stress-strains are
calculated with Equations (16-17).

σeq = 5.5469xS0.75 (S > 16.789MPa)

εeq = 6.5257x10-05 S1.25 (S > 16.789MPa)

The elastic notch strains:

εeq = 1.51938x10-04 x S (S < 16.78MPa)

8. RESULTS AND DISCUSSION

The elastic-plastic FE analysis was carried out for the
assumed power-law material as shown in Fig. 8. For
different values of applied load of S, the equivalent notch
stresses-strains are calculated by the FE, linear
interpolation method (proposed method), Nuber's rule and
Glinka method. The applied load S versus equivalent notch
stresses-strains (up to 2% total strains) curve is depicted
in Fig. 9. The Neuber, Glinka solutions show a reasonably
good agreement (up to 1% total strains) with FE results.
However, discrepancies occur for the large notch stresses-
strains and Nueber, Glinka methods tend to underestimate.
For large notch stresses and strains, i.e. 10 % total strains,
values obtained by the new method shows the good
correlation with FE results, as shown in Figs. 10-11.

9. CONCLUSION

A new method is developed to predict large elastic-plastic
notch stress and strains, for materials with power-
hardening law. As a first step, the proposed method is
implemented within simple structures with combination
limit load Sp and elastic stress concentration factor Ktq.
The predicted results using the new method show good
correlation with FE results. Furthermore, Nueber's rule
while considering general yielding (Neuber-2), also shows
good correlation with FE results. Glinka, Neuber-1, based
on elastic solution Ktq, works better for small notch stress/
strains and shows significant under estimation with
increasing applied stress 'S'.

FIG. 8. THE STRESS-STRAIN CURVE OF ASSUMED POWER-
LAW MATERIAL
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FIG. 9. EQUIVALENT NOTCH STRAINS AND STRESSES CALCULATED BY THE FE, LINEAR INTERPOLATION, NEUBER AND GLINKA
METHOD, FOR SMALL STRAINS-STRESSES

FIG. 10. FOR FLAT BAR, THE EQUIVALENT NOTCH STRAINS AND STRESSES CALCULATED BY THE FE, LINEAR INTERPOLATION,
NEUBER AND GLINKA METHOD, FOR LARGE STRAINS-STRESSES
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