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ABSTRACT

Viscoelastic flow in channel havingtransient hydrodynamic behavior, filled with and without porous
medium isaddressed. Theboundary valueproblem isinvestigated thr ough analytical and numerical

solutions, for the gover ning system of partial differential equations, arisingin the study for flow of
viscoelastic fluids. Analytical solutionsin termsof velocity, normal stressand shear stressat different
valuesof time, viscosity and Dar cy'snumber areobtained for constant viscosity Oldr oyd-B constitutive

model. Liegroup techniqueisadopted to find solutionsthrough symmetry of differential equations,
whilst numerical solutionsarerealized by employing ND Solve, M athematica Solver. Liegroup technique
iscompared against numerical solutionsby employing ND Solve, M athematica Solver. Theanalytical

solutionsar e observed in good agr eement with thenumerical solutions.
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1. INTRODUCTION

iscoelastic fluid flow through porous channels

is termed as of practical interest in many

investigations, which during deformation
illustrate the mixture of both viscous and elastic
components[1-5]. Such materialsmay includetoothpaste,
paint, blood, oil, cookie dough, soap solutions, cosmetic
and etc.

Viscoelastic effects includes shear-thinning and
thickening, strain-softening and hardening, viscoelastic
stresses (normal and shear) and time-dependent
rheol ogical phenomena. The governing equation to model
the flow of viscoelastic fluids through porous media,
recently developed by Tan, et. a. [6-9], adaptsto Darcy-
Brinkman model.

LieGroup Method, Viscoe astic Flow, PorousM edia, Exact Solution.

Theinvestigation is addressed in terms of analytical and
numerical solutions of a boundary value problem for
governing system of partial differential equationsarising
inthe study of the flow of viscoel astic fluids through non
porous and porous medium obeying the constant viscosity
Oldroyd-B constitutive model. The analytical solutions
are obtained by applying Lie group techniques, while
numerical predictionsare made by ND- Solve determined
by Mathematica[10-11].

Symmetry group analysis based on the transformation
groups known as Lie groups is most important solution
technique for solving the differential equations and
symmetries can befound to ssimplify the problem. Liegroup
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approach is widely applied solving the PDEs, in various
fields of applied mathematics, mechanicsand engineering
science.

Symmetries of a differential equations form a one-
parameter group of transformationsin which parameter
is small and guide to the reduction of the number of
independent variables, has been initiated and devel oped
in [12]. A theory presented in [13] guide to the
developments in the Lie group method over previous
methods. Some important studies dealing with
development of the Lie group theory is made by anumber
of researchers[14-26].

2. PROBLEM FORMULATION

Consider theincompressible laminar flow of viscoelastic
fluidinachannel filled with porous medium. The system
of governing equations of flow comprises of the
conservation of mass and conservation of momentum
transport coupled with the Oldroyd-B constitutive model.
The flow of viscoelastic fluids through porous mediais
assumed to be isotropic and homogeneous. The
momentum equation can be modelled by using Darcy-
Brinkman model and in the absence of body force,
equations of continuity and momentum may bewrittenin
thefollowing form:

Au=0 @)
ou 1

P ZV([2upd]+7)-Vp- pu.vu-ry ©

g ot ¢ K

The Oldroyd-B constitutive equation describes the
viscoel astic stressesin theflow can be expressed asbelow:

ﬂ%:[Zylg]—’[—ﬂ,{U.VT—VU.T—(VU)T-T} (3)

In the above equations, u is the velocity vector field of
flow, 1 is the extra stress tensor, d is the rate-of-strain
tensor, A isthespatial differential operator, pistheisotropic
fluid pressure (per unit density) and tisthetime. The u,
and p, are respectively the viscoelastic solute and
Newtonian solvent viscosities, fluid density is denoted
by p, whereas ) is the relaxation time of the viscoelastic
fluid and K is the intrinsic permeability of the porous
medium. Total viscosity p of theviscoelastic flow is u=p,
+u, and is taken constant. The acceleration coefficient
tensor () in Equation (2) isassumed as porosity of porous
media

The equations are derived which govern the unsteady
unidirectional flow of viscoelastic fluid through porous
media adopting Oldroyd-B constitutive model. The
derivation of such equations by employing the momentum
transport equation of viscoelastic fluid and Oldroyd-B
constitutive equations assuming constant pressure
gradient and may be expressed in the absence of body
forceasfollows:

pov_Hpdv 10mp op
—_—— = -
g ot £ ayz e oy ox K
or.
_11 =21 T12 _Tll
ot @
O _ v
AT =TT
ot oy

Where v(y,t) isthe velocity component in axial direction
and t,,(y,t), 7,,(y,t) and 7,,(y,t) are the stress tensor
componentsin axial, shear and transversal direction. Asy
isinthetransversal direction where second normal stress
vanishes(t,,= 0).

The governing system of equations is written in the
dimensionless form by introducing the following non-
dimensional variables:
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v=v'V ,t=pVcr'/Ly=Yy'L,K=K"and t=t"L/V¢, along
withmaterial parameters: A=A'L/VC, w=pp,", b= uu,,
Re=pLVc/p.

Where v', t" and y* are dimensionless velocity, stress
tensor and transversal coordinates and t'and K* are the
non-dimensional time and the non-dimensional modified
permeability of the porous medium. Whilst, L is the
characteristic length taken as half width of the channel
and V cisthe characteristic vel ocity assumed asreference
axia velocity Vc=eL¥(-0p/ox)/, then after dropping asterisk
fromvariablesfor brevity, the non-dimensional equations
become:

ov oo 0ty 1
Re—= 1+y2—2+ -—V
ot oy oy Da
8711 ov
a v ©
61’12 6V
We—"= =1 —-1p5
ot oy

Where the dimensionless Re (Reynolds Number), We
(Weissenberg Number) and Da (Darcy's Number) are
defined as Re=pLVc /p, We=1"=AVc /L and Da=K/eL?
respectively.

To complete the well posed problem specification, it is
necessary to prescribe initial and boundary conditions.
Hereinitial conditionsaretakenfromresti.e.

v(0y)=0 wheny>0 ©)
and boundary conditions are taken as:

v(t,-1) =0and v(t,1) =0,

3. SOLUTION OF VISCOELASTIC
FLOW THROUGH CHANNEL
WITHOUT POROUSMEDIA

whent>0 )

As Da approaches to infinity, the last Darcy's term
vanishes, then the system Equation (5) written as:

2
ov v Ot
Re—=1+ Ho 2 + 12
ot oy oy
62’11 ov
We =2Wezr,, — -1
12 11
ot oy ®
ot ov
We 12

ot

:/L[ — —T.
16y 12

Subject to sameinitial and boundary conditionsasreferred
in Equations(6-7).

3.1  SymmetryAnalysis

Once symmetry Liealgebraof thedifferential equationis
known, it can be used in the investigation of
transformations that will reduce the equation to simpler
form and it is powerful method in obtaining analytical
solutions of differential equations. In this section,
symmetry conditions and method for finding the Lie point
symmetriesareintroduced.

The Operator:

o 0
X=¢{, Y,V, 791, 715) —+ E(, Y, V,791,799) —
10127 11' 712 oy

1 0. 2 0
+77 (t,y,V,Tll,le)E'i‘ﬂ (t,y,V,Tll,le)a_
1@
3 0
+1 (L YV Ty, T0) T
61'12

is the Lie point symmetry generator for the system of
Equation (8) if:

2
x| ](1+,u2 Vyy +r12y—Re Vi) ‘ 31) =0

1
X[ ](2We T1pVy — 711 -We 744 t)‘

=0
S (10)

[1] _
X7y vy —1p ~We 75 t)‘ 31) 0

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 3, July, 2012 [ISSN 0254-7821]

439



Analytical Solutions of Viscoelastic Flow through Porous Channels

Where first and second extended infinitesimal generator
of X are:

(U MU0 o 2 @

y
Vt va aTllt
2[] @ 3y @ 31 0 11
20, 3 o (1
oy 019 ¢ 0719y

x[2_xM, 2 @

OVyy (12
Inwhich
ﬂtl[ll = Dt'71—Vt Di¢ - vy Dis:
’71y[1] = Dyn'—; Dyg—vy Dyé
28 p? 110 Dtp- 712y D1
’732/[1] = Dy772 ~713t Dy# ~ 711y Dy¢ (13)
) = Dy - 712t Dt~ 70y Di&
773[1] = Dy”3 ~712t Py 715y Dys

1[2] I
My = Dy’7[y] ~Vty Dy¢—Vyy Dy¢

Where Dx; isthe total derivative operator given as:

b 0 y 0 0 0
=—+Vp—+T T+ T
= T, Tt ory; 12t dryy
+V, 0 + 9 + —+V 2 +
tt -ttt 12t ty
o 61'11 t 61’12 t 6Vy
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+ 9 + 2 +V 2 +

T T

11yy 12yy ty !
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Inthe operator X, according to Lie'stheory, the unknown
functions ¢, & and n are taken independent of the
derivatives of the primitive variables v, T and t,,. The
expansion of Equation (13) can be set into the symmetry
condition of Equation (10). After equating these equations

with the partial derivativesof v, 7, 7.,
the generators can be obtained after simplifying the over
determined system of linear PDEs, which isdescribed in
thefollowing form:

and their powers,

¢y:¢v:¢111:¢11220v

St=ov=¢ry =97, =0

771 :771 =0
11 T2

2 1
ﬂV :o!ﬂW :or
pt—2&y =0,
3 1
Re §t+r7v+2,u277yv:O
(15
1 3 1 1
—Reni+ny—pynyy—mny+28y =0

2 1 2 2
-n"+2We 745 ny -We nt + 714 77r11

2
+ 171 7]T12—T11¢t:0
3 1 2 2
1 3 3
TV, syt =0
1 3 3

1 3
- -&y+é =0,
v 771'12 Sy+o

3 1 3 3

3.1.1 Liepoint Symmetries

Solution of thelinear system (15) givesriseto the values
of thefunctionsp, £, nt, n?andn®are:

¢:c2,§:(:1,771:c3(v—t/Re)+c4,

) e 3 (16)
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Where ci are arbitrary constants and B(y) is an arbitrary
function of y. Thusthe symmetry Lie a gebraof the system
of Equation (8) is four-dimensional and defined by the
following generators:

Xyt xy =L,

oy at
X3 :(v—t/Re)iﬁ-Zrlliﬁ-rlzi,
ov 8111 8112

N
46v

17

3.2 Solutions

From given generator Equation (9), theinvariant solutions
corresponding to X, are obtained by solving the
characteristic system:

For solving the problem only those operators are used
which represent meaningful physical solutions of the
problem consisting with the governing Equation (8). This
method is used to reduce the problem of PDESs Equation
(8) to solvableform.

3.2.1 Invariant Solution Correspondingtothe

Operator X +tX,

0 0 0 0

t
X = X5 +1tX —(v—]+2r —— 4 Ty ——+t—
3 2 11 12
Re ) ov 6111 6112 ot

Theinvariant results admitted by the operator X aregiven
as

V(t,y) = —+ tg(y)
Re

711:t2¢2()’)

18
715 =tdg(y) 9

Substituting the above values into given Equation (8)
system represents ordinary differentials equations of

functions ¢,(y), ¢,(y) and ¢.(y).

Re

totf (y)+ doy) -~y (y)= 0

2VVet¢3(y)+ ¢|3(y)— (t + 2\Ne)¢2(y) =0

sty (v) - (t+Wega(y) = 0 (19)

Where prime standsfor derivatives of y, solving theabove
system of ODEs, the following solution is obtained:

#1.(¥) = Cosh/p y+.c, Snhy B y

2Weuy S 12
(t+We) (t + 2We)

#1\/Et

(t+We)

bo(y)= (c, Sy y+ ¢, Coshy/ 8 )2

(20)

$3(¥)= (cy S8 y+ ¢, Coshy/ 5 y)

where

__Re(t+We)
t(u t+y2We)

Substituting solutions Equation (20) into Equation (18),
the system of Equations (8) subject toinitial and boundary
conditions Equations (6-7) givesthefollowing solutions:

t Cosh
vy =L @ SNy,
Re Cosh\/ﬁ
4 2
2Weu, fB t Sinh
71 (ty) = - sy

Re® (t+We) (t+2We) Cosh’y/p

—#1\/2 t2 S’nh\/zy

Re (t +We) Cosh\/g

(2D)

712 ty)=

These solutions are plotted in Figs. 1-3 for several
parametersand at different timet.

Theresult of velocity profileisdisplayed in Fig. 1 that the
channel velocity v increases astime proceeds and reaches
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at highest value astime approachesto thevalue of 75time
unitsand vel ocity profiletendsto steady-state. Similarly,
the first normal stress component t,, is shown in Fig. 2
which illustrates that the normal stress t,, increases with
increasing timeand attain an upper limit at sametimelevel
in non-linear fashion. Whilst, the shear stress componen
1., IS displayed in Fig. 3 which exhibits linear trend in
decreases with increasein time asit shall be. Thereisno
further change in shear-stress as time reaches beyond the
vaue of t=75 units.

3.22 Invariant SolutionsRelated with X,

The invariant solution related with X, is given in the
following functions:

t=01, t=05, t=1, t=2, t=5, t=50, t=100

05— — __
—_— \\
oaf T — — ——
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FIG 1. ANALYTICAL SOLUTION OF THE VELOCITY v OF
EQUATION (21) WITH Re=1, 11,=8/9 AND We=1 AT
DIFFERENT TIME t

t=0.1, (=3, (=5, t=10, t=25, t=50, , =100
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FIG. 2. ANALYTICAL SOLUTION OF THE NORMAL STRESS
11 OF EQUATION (21) MITH Re=1, u,=1/9, 1,=8/9 AND We=1
AT DIFFERENT TIME t

vit.y) =y, ()
11 ty)= ‘//2(y)
Tll(t’ y) = V/3(y)

(2)

Substituting these functions into Equations (8) yields
ODESfor v, (y), w,(y) and (y).

1+ uowq(y)+y3(y)=0
2We y5(y) w1 (V) —wo(y)=0

()
1Y) —wg(y)=0
Subject to boundary conditions:
y,(-1) = 0and y,(1) = 0 (2
After integration above system result in:
1 1 o
vy =— (g y+cr—=Y")
y7, 2
ZWGIU 2
o (¥)=—52(c - Y)
H ()
7’
w3 (y)=—2(c-Y)
7]
0t:0.1, t=3, t=5, t=10, t=25, t=50, , t=100
<SS - -
~0.02 NS T — —
S —~ —
-0.04 \ < -
N O > -
20,06 S~
%\ \\ ~
-0.08 x>~ -
XS -
-0.1 T ]
02 0.4 0.6 08 1

FIG 3. ANALYTICAL SOLUTION OF THE SHEAR STRESS 1,
OF EQUATION (21) MITH Re=1, u,=1/9, 1,=8/9 AND We=1 AT
DIFFERENT TIME t
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Applying the boundary conditions of Equation (24) admit
the steady-state solutions

1
v(y) =— (1-y?)
2

U
2We p 2
m(N="g"y
H (26)
- p
710(Y) = —Ly
y7i

Steady-state solutions are plotted in Figs. 4-6 at different
values of p. The Figs. 4-5 illustrate that if with small
fluid viscosity u, then velocity profile and normal stress
component t,, has large values and if channels having
large viscosity v, then velocity profile and normal stress
component t,, decreases and has small values and the
Fig.6 show that in the steady-state, if channels having
small viscosity u, then shear stress component <, has
small values and if with large viscosity u, then shear
stress component 1, increases and also has large
values.

33 Numerical Solutions

For the system of Equation (8) subject to initial and
boundary conditions Equations (6-7), numerical solution

m=0.4, m=0.5, m=0.6, m=0.8, m=1, m=3, m=5, m=10

0.2 0.4 0.6 0.8 1
y

FIG 4. STEADY-STATE SOLUTION OF VELOCITY V OF
EQUATION (26) AT DIFFERENT VALUES OF .

is resolute adopting function NDSolve of Mathematica
solver. Solutionsareplotted inthe Figs. 7-9, withincreasing
timeto compare against above anal ytical solution obtained
by Lie Group technique and displayed in Figs. 1-3. Fig. 7
illustrates that as time proceeds from rest, the velocity
profileof theflow increasein parabolic fashion and reached
at maximum value of v=0.5 from transition to steady-state.
Similarly, in Fig. 8 the normal stress component t,, has
also similar trend of increase in non-linear style as time
increased frominitial stateand reached at amaximum value
of t,,=0.22. Whilst, in Fig. 9 the shear stress component
1,, demonstrate linear tendency of increase in negative
directionand attain at thevalueof t,,=-0.11. Thenumerical
results have very close agreement with analytical
solutions.

m=0.4, m—0.5, m=0.6, m—0.8, m=1, m=3, m=5, m=10

1.4
1.2}

5 0.8
0.61
0.4r
0.2

0.2 0.4 0.6 0.8 1
y

FIG. 5. STEADY-STATE SOLUTION OF THE NORMAL STRESS
COMPONENT 7, OF EQUATION (26) AT DIFFERENT

VALUES OF u
m=0.4, m=0.5, m=0.6, m—0.8, m=1, m=3, m=5, m=10

-0.05
-0.1
& -0.15
-0.2

-0.25¢

0.2 0.4 0.6 0.8 1
y

FIG. 6. STEADY-STATE SOLUTION OF THE SHEAR STRESS
COMPONENT 17,, OF EQUATION (26) AT DIFFERENT
VALUES OF u
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(0.1, t=0.2, 1=0.4, t=0.6, t=0.8, (1, t=5 ,t~10

0.5

0.4
. 03

02}

o \
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FIG 7. NUMERICAL SOLUTION OF THE VELOCITY V OF THE
SYSTEM OF EQUATION (8) SUBJECT TO INITIAL AND
BOUNDARY CONDITIONS OF EQUATIONS (6-7) WITH Re=1,
w,=1/9, 11,=8/9 AND We=1 AT DIFFERENT TIME t

1=0.1,t=0.5,t=1,t=1.5,t=2,t=2.5,1=3,t=6,t=10
0.25

0.2

0.15¢

0.2 0.4 0.6 0.8 1

y

FIG 8. NUMERICAL SOLUTION OF THE NORMAL STRESS
COMPONENT t,, OF THE SYSTEM OF EQUATION (8)
SUBJECT TO INITIAL AND BOUNDARY CONDITIONS OF
EQUATIONS (6-7) WITH Re=1, ,=1/9, 11,=8/9 AND We=1 AT
DIFFERENT TIME t

(=0.1,120.5,(=1,6=1.5,(=2,(=2.5,(=3,1=6,(=10

0.2 0.4 0.6 0.8 1
y
FIG. 9. NUMERICAL SOLUTION OF THE NORMAL STRESS
COMPONENT r,, OF THE SYSTEM OF EQUATION (8)
SUBJECT TO INITIAL AND BOUNDARY CONDITIONS OF
EQUATIONS (6-7) WITH Re=1,u,=1/9, 1,=8/9 AND We=1 AT
DIFFERENT TIME t

4. SOLUTION OF VISCOELASTIC
FLOW THROUGH CHANNEL
FILLEDWITH POROUSMEDIA

The system of Equation (5) represents the flow of
viscoelastic fluid in channels filled with porous media
adopting Oldroyd-B constitutive model, solved as:

4.1. Liepoint Symmetries

The problem of Equation (5) can beadmitted into Liegroup
transformationsif and only if:

2
x| ](1+y2 vyy+r12yfv/Da7Re ) ‘ 25) =0

1]
x| ](2We 71p Vy — 779 ~We 739 ) ‘ (25) = -

[ _
X7y vy —rp -We 75 ) ‘ 25) 0

Substituting the expansion of Equation (13) into the
symmetry conditions of Equation (27). Then equating and
separating them by the derivatives of v, t,, 7., and their
powerslead to the over determined system of linear partial
differential equationsand after solving the system of linear
PDEs, the result of the linear equating system givesrise
thevaluesof ¢, &, n*, n?andn®inthefollowing form:

and

-t
ReDa

¢=c1,§=02,771:03(v—Da)+c4 e
=
0% =2cqry,+ 1 (y) e

and

3
T =%,

(28)

wheref(y) isan arbitrary function of y.

In Equation (28), ci are arbitrary constants and symmetry
Lie algebra of system of partial differential of Equations
(5) is four-dimensional and spanned by the following
generators:
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NV )
1 at’Z 8y'

X4 =(v-Da) 0 2 0 0
g=lv=ba)~=+erg T2
ov 8711 8712

—t
ReDa i

Xa=e ov
(29
and
—t
X = 1 (y) e —
0tqq

4.2 Solutions

Here only those operators are used that related to solution
of physical problem of Equation (5) subject to initial and
boundary conditions of Equations (6-7). Method of
solutions depends on the applications of Lie group of
transformation related with one-parameter to the system
of partial differential of Equation (5).

4.2.1 Invariant Solution Correspondingto
X taX,

-t

0 0
X=X +aXy=—rae ot
at ov

The invariant solutions under the operator X +aX, is
given by:

-t
v(t,y) = ,Bl(y) —ReDaa eReDa
Tll(t’ y) = ,Bz(y)

715(ty) = B3(Y)

(30)

Substituting Equation (30) into the system of Equation
(5) yieldssystem of ODEsfor B,(y), B,(y) and B,(y).

1
" 1] o 1= 0
Ho B (Y) + B3(Y) Daﬂl(y)+

2We B3(y) B1(Y) = Bo(y)=0

, (31)
1Y) - B3(y)=0

In Equation (31), prime stands for derivatives of y. It can
be seen that this system of Equation (31) admit the
following solutions:

+<:2$]nh

y
W+Da

+¢, Cosh——=—)?
Da

JuDa 2

7
1 Cosh——

Py (y) = (c; Sth——+¢ Y,
3 A1 Da JuDa 2 A1 Da

y
= ¢, Cosh
ﬂl(y) C_]_ 0! \/ﬁ

By ()= 200 (o oY
2 uDa a 4 Da

Substituting the values of Equation (32) into Equation
(30) and applying conditions of Equations (6-7), then the
system of Equation (5) admit the following solutions:

-t Cosh
Da
V() = Da (1-e %) (1-—E=)
Cosh——=—=
uDa
2.y
- Snh
2Wey Da ReDa 2 \uDa
1t y) = ( ) 5 1
H Cosh
e (339
-t Snh
Da ReDa uDa
Tt Y) =—y |— (1- ) 1
# Cosh
JuDa

These solutions of Equation (33) are expressed in Figs.
10-12for several of parametersat different timet.

The time dependent effect on the axial velocity, normal
stress component and shear stress are displayed in Figs.
10-12 respectively. Fig. 10 illustrates that the channel
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velocity increases as the time increases and there is an
upper limit for thisincrease, astimet>60 velocity reaches
at steady-state. Similarly effect of normal stress
componen t,, and shear stress component t,, are shown
in Figs. 11-12. These figures depict that normal stress
component t,, increases at an increased for values of
time and there is also an upper limit for this increase,
There is no further change in normal stress as time
reaches beyond the value of t=60 units, and the shear
stress component t,, decreases as time increases and
thereisalower limit for thisdecrease. Shear stresstends

to steady-state after time t>60.

4.2.2 Invariant Solution CorrespondingtoX,

The invariant solution associated with X is the steady-
state solution:

=1, =5, =10, (=15, t=20, (=25, t=50, =100

0.5

0.4f

_ 03}

02—

0.1} \
0.2 04 06 0.8 ~~ 1

FIG 10. ANALYTICAL SOLUTION OF THE VELOCITY V OF
EQUATION (33) WITH Re=1, Da=10 AT DIFFERENT TIME t

t=1, (=5, 1=10, t=15, t=20, t=25, t=50, t=100
0.25
0.2
0.15
0.1
_—
0.2 0.4 0.6 0.8 1

y

FIG 11. ANALYTICAL SOLUTION OF THE NORMAL STRESS
COMPONENT 7,, OF EQUATION (33) MITH Re=1, Da=10
1,=1/9 AND We=1 AT DIFFERENT TIME t

v, y) =0 (),

TV (),
and (39
Ty =9 ()

Substituting Equation (34) into system of Equation (5)
yieldssystem of ODEsfor ¢(y), w(y), and ¢(y):

1
I+, 0" ()49’ ——(»)=0
Da

2We ¢ () 0" (¥) -y (»)=0

BHe'M-6(»=0 )
Subject to boundary conditions:
@(-1)= 0and (1) = (36)

After integration of Equation (35), theresult isgiven as:

o(y)= dl Cosh——+ d Sinh———=+Da

W f

(dl Sinh—===+d, Cosh——
u Da

)2

2We n
Yy (¥ =
uw Da \/pDa

(37

(d, Sinh

= d, Cosh
b (y)= Tpa \‘Tpf  Cosh—=—)

uDa

Applying theboundary conditionsof Equation (36), system
of partial differential of Equations (5) admit the steady-
state solutions as under"

Cosh Y
1 Da
—)
1
Cosh——
uDa

v(t,v)=¢(y)=Da (1—

Sin/12
2We ) Da

Tll([-y):‘lf =

(38)

VK Da

Da
T () =0 () =y /:
|t

Cosh

u Da
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Steady-state solutionsare plotted in Figs. 13-15 at different
vaues of Da

The steady-state velocity, normal stress component and
shear stress are displayed in Figs. 13-15 respectively.
The Figs. 13-14 shows that in the steady-state, if
channels having small Da, then steady velocity v and
steady normal stress component t,, have small values
that if permeability decreases, then resistance increases
and hence velocity decreases and normal stress 1, also
decreases in the steady-state, and Fig .15 shows that in
the steady-state, if channels having small Da, steady
shear stress component t,, have large values that is if
permeability decreases, then shear stress t,, increases
in the steady state.

100

t=1, t=5, t=10, t

15, t=20, t-25, t=50, t

0.2 0.4 0.6 0.8 1

y

FIG 12. ANALYTICAL SOLUTION OF THE SHEAR STRESS
COMPONENT z,, OF EQUATION (33) MITH Re=1, Da=10
7,=1/9 AND We=1 AT DIFFERENT TIME t

Da=0.1, Da=0.2, Da=0.5, Da~1, Da=5, Da=10, Da=20

0.5

0.4

.03

0.1

0.2 0.4 0.6 0.8 1
y

FIG. 13. STEADY-STATE SOLUTION OF THE VELOCITY V OF
EQUATION (38) AT DIFFERENT VALUES OF Da

4.3 Numerical Solution

Numerical solution are obtained for the system of PDEs
of Equation (5) subject to initial and boundary
conditions of Equations (6-7) using NDSolve in
Mathematica solver and are plotted in the Figs. 16-18
with increasing time. Fig. 16 shows that as time
proceeds, the channel velocity increases and reaches
at steady-state as time approaches beyond six units
(t>6). Similarly, in Fig. 17 the normal stress component
T, illustrate increases with respect to time and achieve
steady-state at same time level with similar non-linear
fashion. Whilst, in Fig. 18 the behaviour of shear stress
isillustrated which clearly indicate the linear trend. All
numerical results are comparable with analytical
solutions.

Da=0.1, Da=0.2, Da=0.5, , Da=5, Da=10, Da=20

0.25

0.2¢

0.05}

0.2 0.4 0.6 0.8 1
y

FIG. 14. STEADY-STATE SOLUTION OF THE NORMAL
STRESS COMPONENT 7,, OF EQUATION (38) AT
DIFFERENT VALUES OF Da

, Da=5, Da=10, Da=20

Da=0.1, Da=0.2, Da-0.5,

-0.02
-0.04
2-0.06

-0.08

0.2 0.4 0.6 0.8 1
y
FIG. 15. STEADY-STATE SOLUTION OF THE SHEAR STRESS
COMPONENT 17,, OF EQUATION (38) AT DIFFERENT
VALUES OF Da
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FIG. 16. NUMERICAL SOLUTION OF THE VELOCITY V OF
SYSTEM OF EQUATIONS (5-7) WITH Da=10, Re=1, ,=1/9,
11,=8/9 AND We=1 AT DIFFERENT TIME t
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FIG. 17. NUMERICAL SOLUTION OF THE NORMAL STRESS
COMPONENT 7,, OF THE SYSTEM OF EQUATIONS (5-7)
WITH Da=10, Re=1, u,=1/9, u,=8/9 AND We=1 AT
DIFFERENT TIME t
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FIG 18. NUMERICAL SOLUTION OF THE SHEAR STRESS
COMPONENT 7, OF THE SYSTEM OF EQUATIONS (5-7)
WITH Da=10, Re=1, 11,=1/9, 11,=8/9 AND We=1 AT

DIFFERENT TIME t

S. CONCLUSIONS

Analytical solutions are obtained successfully by
employing Lie group techniquefor both velocity profile
and non-linear Oldroyd-B stress constitutive equation
coupled with momentum equation. From the results, it
is observed that velocity and first normal stress
components have increasing trends against increasing
time and turns to be steady state at non-dimensional
time greater than 50 and smaller than 75 units
respectively. Whereas shear stress component
decreases as time increases and becomes steady state
at time greater than 75.

Whilst, in the steady state, velocity profiles and first
normal stress components, at different values of
viscosity and Darcy's number are observed with
increasing trend against increasing values of viscosity
and Darcy's number. Whereas, shear stress component
is observed decreasing trend as viscosity or Da
increases. Comparison has been made against anal ytical
and numerical solutions and is found very close
agreement to one another.
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