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ABSTRACT

Viscoelastic flow in channel having transient hydrodynamic behavior, filled with and without porous
medium is addressed. The boundary value problem is investigated through analytical and numerical
solutions, for the governing system of partial differential equations, arising in the study for flow of
viscoelastic fluids. Analytical solutions in terms of velocity, normal stress and shear stress at different
values of time, viscosity and Darcy's number are obtained for constant viscosity Oldroyd-B constitutive
model. Lie group technique is adopted to find solutions through symmetry of differential equations,
whilst numerical solutions are realized by employing ND Solve, Mathematica Solver. Lie group technique
is compared against numerical solutions by employing ND Solve, Mathematica Solver. The analytical
solutions are observed in good agreement with the numerical solutions.
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1.     INTRODUCTION

The investigation is addressed in terms of analytical and
numerical solutions of a boundary value problem for
governing system of partial differential equations arising
in the study of the flow of viscoelastic fluids through non
porous and porous medium obeying the constant viscosity
Oldroyd-B constitutive model. The analytical solutions
are obtained by applying Lie group techniques, while
numerical predictions are made by ND- Solve determined
by Mathematica [10-11].

Symmetry group analysis based on the transformation
groups known as Lie groups is most important solution
technique for solving the differential equations and
symmetries can be found to simplify the problem. Lie group
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Viscoelastic fluid flow through porous channels
is termed as of practical interest in many
investigations, which during deformation

illustrate the mixture of both viscous and elastic
components [1-5]. Such materials may include toothpaste,
paint, blood, oil, cookie dough, soap solutions, cosmetic
and etc.

Viscoelastic effects includes shear-thinning and
thickening, strain-softening and hardening, viscoelastic
stresses (normal and shear) and time-dependent
rheological phenomena. The governing equation to model
the flow of viscoelastic fluids through porous media,
recently developed by Tan, et. al. [6-9], adapts to Darcy-
Brinkman model.
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approach is widely applied solving the PDEs, in various
fields of applied mathematics, mechanics and engineering
science.

Symmetries of a differential equations form a one-
parameter group of transformations in which parameter
is small and guide to the reduction of the number of
independent variables, has been initiated and developed
in [12]. A theory presented in [13] guide to the
developments in the Lie group method over previous
methods. Some important studies dealing with
development of the Lie group theory is made by a number
of researchers [14-26].

2. PROBLEM FORMULATION

Consider the incompressible laminar flow of viscoelastic
fluid in a channel filled with porous medium. The system
of governing equations of flow comprises of the
conservation of mass and conservation of momentum
transport coupled with the Oldroyd-B constitutive model.
The flow of viscoelastic fluids through porous media is
assumed to be isotropic and homogeneous. The
momentum equation can be modelled by using Darcy-
Brinkman model and in the absence of body force,
equations of continuity and momentum may be written in
the following form:

Δ.u = 0 (1)
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The Oldroyd-B constitutive equation describes the
viscoelastic stresses in the flow can be expressed as below:
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In the above equations, u is the velocity vector field of
flow, τ is the extra stress tensor, d is the rate-of-strain
tensor, Δ is the spatial differential operator, p is the isotropic
fluid pressure (per unit density) and t is the time. The μ1

and μ2 are respectively the viscoelastic solute and
Newtonian solvent viscosities, fluid density is denoted
by ρ, whereas λ is the relaxation time of the viscoelastic
fluid and K is the intrinsic permeability of the porous
medium. Total viscosity μ of the viscoelastic flow is  μ=μ1

+μ2 and is taken constant. The acceleration coefficient
tensor (ε) in Equation (2) is assumed as porosity of porous
media.

The equations are derived which govern the unsteady
unidirectional flow of viscoelastic fluid through porous
media adopting Oldroyd-B constitutive model. The
derivation of such equations by employing the momentum
transport equation of viscoelastic fluid and Oldroyd-B
constitutive equations assuming constant pressure
gradient and may be expressed in the absence of body
force as follows:
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Where v(y,t) is the velocity component in axial direction
and τ11(y,t), τ12(y,t) and τ22(y,t) are the stress tensor
components in axial, shear and transversal direction. As y
is in the transversal direction where second normal stress
vanishes (τ22= 0).

The governing system of equations is written in the
dimensionless form by introducing the following non-
dimensional variables:
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v = v* Vc, τ=μ Vcτ*/L,y = y*L, K=K* and t=t*L/Vc, along
with material parameters: λ=λ*L/Vc, μ1= μ μ1

*, μ2 = μ μ2
*,

Re= ρLVc /μ.

Where v*, τ* and y* are dimensionless velocity, stress
tensor and transversal coordinates and t*and K* are the
non-dimensional time and the non-dimensional modified
permeability of the porous medium. Whilst, L is the
characteristic length taken as half width of the channel
and Vc is the characteristic velocity assumed as reference
axial velocity Vc=εL2(-∂p/∂x)/μ, then after dropping asterisk
from variables for brevity, the non-dimensional equations
become:
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Where the dimensionless Re (Reynolds Number), We
(Weissenberg Number) and Da (Darcy's Number) are
defined as Re=ρLVc /μ, We=λ*=λVc /L and Da=K/εL2

respectively.

To complete the well posed problem specification, it is
necessary to prescribe initial and boundary conditions.
Here initial conditions are taken from rest i.e.

v (0,y) = 0 when y>0 (6)

and boundary conditions are taken as:

v(t,-1) = 0 and v(t,1) = 0, when t>0 (7)

3. SOLUTION OF VISCOELASTIC
FLOW THROUGH CHANNEL
WITHOUT POROUS MEDIA

As Da approaches to infinity, the last Darcy's term
vanishes, then the system Equation (5) written as:

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

−
∂

∂
=

∂

∂

−
∂

∂
=

∂

∂
∂

∂
+

∂

∂
+=

∂

∂

121
12

1112211

12
2

2

21Re

τμ
τ

ττ
τ

τ
μ

y

v

t
We

y

v
We

t
We

yy

v

t

v

(8)

Subject to same initial and boundary conditions as referred
in Equations (6-7).

3.1 Symmetry Analysis

Once symmetry Lie algebra of the differential equation is
known, it can be used in the investigation of
transformations that will reduce the equation to simpler
form and it is powerful method in obtaining analytical
solutions of differential equations. In this section,
symmetry conditions and method for finding the Lie point
symmetries are introduced.

The Operator:
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is the Lie point symmetry generator for the system of
Equation (8) if:
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Where first and second extended infinitesimal generator
of X are:
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Where Dxi is the total derivative operator given as:
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In the operator X, according to Lie's theory, the unknown
functions φ, ξ and η are taken independent of the
derivatives of the primitive variables v, τ11and τ12. The
expansion of Equation (13) can be set into the symmetry
condition of Equation (10). After equating these equations

with the partial derivatives of v, τ11, τ12  and their powers,
the generators can be obtained after simplifying the over
determined system of linear PDEs, which is described in
the following form:
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3.1.1 Lie-point Symmetries

Solution of the linear system (15) gives rise to the values
of the functionsφ, ξ, η1 , η2 and η3 are:
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Where ci are arbitrary constants and β(y) is an arbitrary
function of y. Thus the symmetry Lie algebra of the system
of Equation (8) is four-dimensional and defined by the
following generators:
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3.2 Solutions

From given generator Equation (9), the invariant solutions
corresponding to X, are obtained by solving the
characteristic system:
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For solving the problem only those operators are used
which represent meaningful physical solutions of the
problem consisting with the governing Equation (8). This
method is used to reduce the problem of PDEs Equation
(8) to solvable form.

3.2.1 Invariant Solution Corresponding to the
Operator X3+tX2
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The invariant results admitted by the operator X are given
as:
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Substituting the above values into given Equation (8)
system represents ordinary differentials equations of
functions φ1(y), φ2(y) and φ3(y).
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Where prime stands for derivatives of y, solving the above
system of ODEs, the following solution is obtained:
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Substituting solutions Equation (20) into Equation (18),
the system of Equations (8) subject to initial and boundary
conditions Equations (6-7) gives the following solutions:
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These solutions are plotted in Figs. 1-3 for several
parameters and at different time t.

The result of velocity profile is displayed in Fig. 1 that the
channel velocity v increases as time proceeds and reaches
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at highest value as time approaches to the value of 75 time
units and velocity profile tends to steady-state. Similarly,
the first normal stress component τ11 is shown in Fig. 2
which illustrates that the normal stress τ11 increases with
increasing  time and attain an upper limit at same time level
in non-linear fashion. Whilst, the shear stress componen
τ12 is displayed in Fig. 3 which exhibits linear trend in
decreases with increase in time as it shall be. There is no
further change in shear-stress as time reaches beyond the
value of t=75 units.

3.2.2 Invariant Solutions Related with X2

The invariant solution related with X2 is given in the
following functions:
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Substituting these functions into Equations (8) yields
ODEs for ψ1(y), ψ2(y) and ψ3(y).
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Subject to boundary conditions:

ψ1(-1) = 0 and ψ1(1) = 0 (24)

After integration above system result in:
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FIG. 1. ANALYTICAL SOLUTION OF THE VELOCITY v OF
EQUATION (21) WITH Re=1, μ2=8/9 AND We=1 AT

DIFFERENT TIME t

FIG. 2. ANALYTICAL SOLUTION OF THE NORMAL STRESS
11 OF EQUATION (21) WITH Re=1, μ1=1/9, μ2=8/9 AND We=1

AT DIFFERENT TIME t

FIG. 3. ANALYTICAL SOLUTION OF THE SHEAR STRESS τ12
OF EQUATION (21) WITH Re=1, μ1=1/9, μ2=8/9 AND We=1 AT

DIFFERENT TIME t
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Applying the boundary conditions of Equation (24) admit
the steady-state solutions
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Steady-state solutions are plotted in Figs. 4-6 at different
values of μ. The Figs. 4-5 illustrate that if with small
fluid viscosity μ, then velocity profile and normal stress
component τ11 has large values and if channels having
large viscosity μ, then velocity profile and normal stress
component τ11 decreases and has small values and the
Fig.6 show that in the steady-state, if channels having
small viscosity μ, then shear stress component τ12 has
small values and if with large viscosity μ, then shear
stress component τ12 increases and also has large
values.

3.3 Numerical Solutions

For the system of Equation (8) subject to initial and
boundary conditions Equations (6-7), numerical solution

is resolute adopting function NDSolve of Mathematica
solver. Solutions are plotted in the Figs. 7-9, with increasing
time to compare against above analytical solution obtained
by Lie Group technique and displayed in Figs. 1-3. Fig. 7
illustrates that as time proceeds from rest, the velocity
profile of the flow increase in parabolic fashion and reached
at maximum value of v=0.5 from transition to steady-state.
Similarly, in Fig. 8 the normal stress component τ11 has
also similar trend of increase in non-linear style as time
increased from initial state and reached at a maximum value
of τ11=0.22. Whilst, in Fig. 9 the shear stress component
τ12 demonstrate linear tendency of increase in negative
direction and attain at the value of τ12=-0.11. The numerical
results have very close agreement with analytical
solutions.

FIG. 4. STEADY-STATE SOLUTION OF VELOCITY V OF
EQUATION (26) AT DIFFERENT VALUES OF μ.

FIG. 5. STEADY-STATE SOLUTION OF THE NORMAL STRESS
COMPONENT τ11 OF EQUATION (26) AT DIFFERENT

VALUES OF μ

FIG. 6. STEADY-STATE SOLUTION OF THE SHEAR STRESS
COMPONENT τ12 OF EQUATION (26) AT DIFFERENT

VALUES OF μ
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4. SOLUTION OF VISCOELASTIC
FLOW THROUGH CHANNEL
FILLED WITH POROUS MEDIA

The system of Equation (5) represents the flow of
viscoelastic fluid in channels filled with porous media
adopting Oldroyd-B constitutive model, solved as:

4.1. Lie-point Symmetries

The problem of Equation (5) can be admitted into Lie group
transformations if and only if:
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Substituting the expansion of Equation (13) into the
symmetry conditions of Equation (27). Then equating and
separating them by the derivatives of v, τ11, τ12 and their
powers lead to the over determined system of linear partial
differential equations and after solving the system of linear
PDEs, the result of the linear equating system gives rise
the values of φ, ξ, η1, η2 and η3 in the following form:
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where f(y) is an arbitrary function of y.

In Equation (28), ci are arbitrary constants and symmetry
Lie algebra of system of partial differential of Equations
(5) is four-dimensional and spanned by the following
generators:

FIG. 7. NUMERICAL SOLUTION OF THE VELOCITY V OF THE
SYSTEM OF EQUATION (8) SUBJECT TO INITIAL AND

BOUNDARY CONDITIONS OF EQUATIONS (6-7) WITH Re=1,
μ1=1/9, μ2=8/9 AND We=1 AT DIFFERENT TIME t

FIG. 8. NUMERICAL SOLUTION OF THE NORMAL STRESS
COMPONENT τ11 OF THE SYSTEM OF EQUATION (8)

SUBJECT TO INITIAL AND BOUNDARY CONDITIONS OF
EQUATIONS (6-7) WITH Re=1, μ1=1/9, μ2=8/9 AND We=1 AT

DIFFERENT TIME t

FIG. 9. NUMERICAL SOLUTION OF THE NORMAL STRESS
COMPONENT τ12 OF THE SYSTEM OF EQUATION (8)

SUBJECT TO INITIAL AND BOUNDARY CONDITIONS OF
EQUATIONS (6-7) WITH Re=1,μ1=1/9, μ2=8/9 AND We=1 AT

DIFFERENT TIME t
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4.2       Solutions

Here only those operators are used that related to solution
of physical problem of Equation (5) subject to initial and
boundary conditions of Equations (6-7). Method of
solutions depends on the applications of Lie group of
transformation related with one-parameter to the system
of partial differential of Equation (5).

4.2.1  Invariant Solution Corresponding to
X1+αααααX4
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The invariant solutions under the operator X1+αX4 is
given by:
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Substituting  Equation (30) into the system of Equation
(5) yields system of ODEs for β1(y), β2(y) and β3(y).
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In Equation (31), prime stands for derivatives of y. It can
be seen that this system of Equation (31) admit the
following solutions:

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

+=

+=

++=

)21(1)(3

2)21(12
)(2

21)(1

Da

y
Coshc

Da

y
Sinhc

Da
y

Da

y
Coshc

Da

y
Sinhc

Da

We
y

Da
Da

y
Sinhc

Da

y
Coshcy

μμμ

μ
β

μμμ

μ
β

μμ
β

(32)

Substituting the values of Equation (32) into Equation
(30) and applying conditions of Equations (6-7), then the
system of Equation (5) admit the following solutions:
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These solutions of Equation (33) are expressed in Figs.
10-12 for several of parameters at different time t.

The time dependent effect on the axial velocity, normal
stress component and shear stress are displayed in Figs.
10-12 respectively. Fig. 10 illustrates that the channel
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velocity increases as the time increases and there is an
upper limit for this increase, as time t>60 velocity reaches
at steady-state. Similarly effect of normal stress
componen τ11 and shear stress component τ12 are shown
in Figs. 11-12. These figures depict that normal stress
component τ11 increases at an increased for values of
time and there is also an upper limit for this increase,
There is no further change in normal stress as time
reaches beyond the value of t=60 units, and the shear
stress component τ12 decreases as time increases and
there is a lower limit for this decrease. Shear stress tends
to steady-state after time t>60.

4.2.2 Invariant Solution Corresponding to X1

The invariant solution associated with X1 is the steady-
state solution:

(34)

Substituting Equation (34) into system of Equation (5)
yields system of ODEs for ϕ(y), ψ(y), and φ(y):

(35)

Subject to boundary conditions:

ϕ(-1) = 0 and ϕ(1) = 0 (36)

After integration of Equation (35), the result is given as:

(37)

Applying the boundary conditions of Equation (36), system
of partial differential of Equations (5) admit the steady-
state solutions as under"

(38)

FIG. 10. ANALYTICAL SOLUTION OF THE VELOCITY V OF
EQUATION (33) WITH Re=1, Da=10 AT DIFFERENT TIME t

FIG. 11. ANALYTICAL SOLUTION OF THE NORMAL STRESS
COMPONENT τ11 OF EQUATION (33) WITH Re=1, Da=10

μ1=1/9 AND We=1 AT DIFFERENT TIME t
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Steady-state solutions are plotted in Figs. 13-15 at different
values of Da.

The steady-state velocity, normal stress component and
shear stress are displayed in Figs. 13-15 respectively.
The Figs. 13-14 shows that in the steady-state, if
channels having small Da, then steady velocity v and
steady normal stress component τ11 have small values
that if permeability decreases, then resistance increases
and hence velocity decreases and normal stress τ11 also
decreases in the steady-state, and Fig .15 shows that in
the steady-state, if channels having small Da, steady
shear stress component τ12 have large values that is if
permeability decreases, then  shear stress τ12 increases
in the steady state.

4.3       Numerical Solution

Numerical solution are obtained for the system of PDEs
of Equation (5) subject to initial and boundary
conditions of Equations (6-7) using NDSolve in
Mathematica solver and are plotted in the Figs. 16-18
with increasing time. Fig. 16 shows that as time
proceeds, the channel velocity increases and reaches
at steady-state as time approaches beyond six units
(t>6). Similarly, in Fig. 17 the normal stress component
τ11 illustrate increases with respect to time and achieve
steady-state at same time level with similar non-linear
fashion. Whilst, in Fig. 18 the behaviour of shear stress
is illustrated which clearly indicate the linear trend. All
numerical results are comparable with analytical
solutions.

FIG. 12. ANALYTICAL SOLUTION OF THE SHEAR STRESS
COMPONENT τ12 OF EQUATION (33) WITH Re=1, Da=10

τ1=1/9 AND We=1 AT DIFFERENT TIME t

FIG. 13. STEADY-STATE SOLUTION OF THE VELOCITY V OF
EQUATION (38) AT DIFFERENT VALUES OF Da

FIG. 14. STEADY-STATE SOLUTION OF THE NORMAL
STRESS COMPONENT τ11 OF EQUATION (38) AT

DIFFERENT VALUES OF Da

FIG. 15. STEADY-STATE SOLUTION OF THE SHEAR STRESS
COMPONENT τ12 OF EQUATION (38) AT DIFFERENT

VALUES OF Da
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FIG. 16. NUMERICAL SOLUTION OF THE VELOCITY V OF
SYSTEM OF EQUATIONS (5-7) WITH Da=10, Re=1, μ1=1/9,

μ2=8/9 AND We=1 AT DIFFERENT TIME t

FIG. 17. NUMERICAL SOLUTION OF THE NORMAL STRESS
COMPONENT τ11 OF THE SYSTEM OF EQUATIONS (5-7)

WITH Da=10, Re=1, μ1=1/9, μ2=8/9 AND We=1 AT
DIFFERENT TIME t

FIG. 18. NUMERICAL SOLUTION OF THE SHEAR STRESS
COMPONENT τ12 OF THE SYSTEM OF EQUATIONS (5-7)

WITH Da=10, Re=1, μ1=1/9, μ2=8/9 AND We=1 AT
DIFFERENT TIME t

5. CONCLUSIONS

Analytical solutions are obtained successfully by
employing Lie group technique for both velocity profile
and non-linear Oldroyd-B stress constitutive equation
coupled with momentum equation. From the results, it
is observed that velocity and first normal stress
components have increasing trends against increasing
time and turns to be  steady state at non-dimensional
time greater than 50 and smaller than 75 units
respectively. Whereas shear stress component
decreases as time increases and becomes steady state
at time greater than 75.

Whilst, in the steady state, velocity profiles and first
normal stress components, at different values of
viscosity and Darcy's number are observed with
increasing trend against increasing values of viscosity
and Darcy's number. Whereas, shear stress component
is observed decreasing trend as viscosity or Da
increases. Comparison has been made against analytical
and numerical solutions and is found very close
agreement to one another.
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