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ABSTRACT

The paper investigatestheviscoelastic behaviour of blood over low valueof elasticity, to analysethe

influence of inertia in the presence of elasticity. For viscoelastic fluids shear-thinning and strain-

softening PTT (Phan-Thien/Tanner) congtitutivemode isemployed toidentify theinfluence of agticity.

The computational method adopted isbased on afinite element semi-implicit time stepping Taylor-

Galerkin/pressure-correction scheme. Simulations ar e conducted via ather oscler otic vesselsalong

with variousper centagesof deposition at digtinct valuesof Reynoldsnumbers. Thenumerical Smulations

areperformed for recir culation flow structureand development of recir culation length toinvestigatethe

impact of ather oscler osison partially blocked plaquedeposited vessals.
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1 INTRODUCTION

he predictionson viscoel astic behaviour of blood

are presented by employing shear thinning and

strain softening PTT constitutive model. The
viscoelastic behaviour of blood in plague deposited
capillary segment is observed, when the diameter of the
capillary blood vessel is smaller than the diameter of red
blood cells. Literature review suggests that the micro
structure of red blood cellsadopt two qualitatively distinct
responses to flow. In the first case inelastic Non-
Newtonian behaviour is observed at shear rate greater
than 3S?, while passing through this situation red blood
cells deforms but not aggregate and squeezes and move
inasinglelineto passthe artery in two phases, one being
the blood cells and the other being plasma. Whereas, at
low shear rates (0-1S?) the red cells deform and form

Viscodastic, Non-Newtonian, Ather osclerosis, Blood Flow, Capillaries.

extended aggregates called reuleaux, second case of
response of red blood cellsisreferred asviscoelastic. The
tight interaction between the red cells and a thin layer of
endothelial cells (present on the wall of the blood vessel,
which cannot move but can deform) imposes high shear
stresses on the vessel wall. Asthe shear rateisincreased,
the aggregates are broken up in to small aggregatesand a
corresponding decrease in viscosity is observed. In this
scenario viscosity of blood decreaseswith increased shear
rate, hence the non-Newtonian effects are added in the
form of elasticity and shearing thinning [1].

The prediction of viscoelastic behaviour of blood in
capillaries, having an axially symmetric deposition of

plaque, presents a considerable challenge to researchers
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aswell asmedical device design and treatment. To study
the viscoel astic nature of blood is more complicated than
the Newtonian one. The present study is concerned with
the main issues, which arise in numerical simulation of
complex viscoelastic flows in two dimensional partially

plaque deposited capillaries.

The non-Newtonian behaviour of blood over low value
of elasticity is investigated along with governing
elongational parameters and inertia. For viscoelastic
fluids shear thinning and strain softening PTT
constitutive model isemployed to identify theinfluence
of rheological variations[2-3]. Flow of blood along with
the partially plaque deposited capillariesinvolving flow
separation and reattachment is of considerabletechnical
interest for researchers. Literature review suggests that
over the past few years, real fluids study has become a
leading issue especially in biomedical, chemical,
pharmaceutical and food industries, because of severe
limitations for the application of flow theory associated
with the flow problems in these industries [4-5]. It has
been observed that Newtonian behaviour of blood
presents the predictions of several interesting features
of blood flow. For example, it is known that the stream
line pattern of the recirculation flow regionincreasesin
the downstream area as the Reynolds numbers or
deposition of plague increases. Whereas in literature
viscoelastic behaviour of blood has received scant
attention in comparison to Newtonian flow of blood [6-
9.

2. THE PTT
EQUATION

CONSTITUTIVE

The congtitutive equation for themodified PTT differentia
model with asingle relaxation time A, the elastic stress
tensor may be expressed as:
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The total viscosity p=p +u, and the ratio p /u, is 1/9
selected. The non-linear function f, for the exponential

casg, is:
el
—7r(r)
2
f :eyl @

and for the linear case:
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Here Tr(z) is the trace of the stress tensor and € is the
material parameter. Shear and elongational propertiesare
controlled by material parameters, € and p, respectively,
which can be evaluated by fitted the linear or exponential
data.

3. GOVERNING
EQUATIONS

SYSTEM OF

The axi-symmetric flow of incompressible viscoelastic
nature of blood in the plague deposited capillary segment
can be mathematically modelled through a system
comprising mass conversion, momentum transport and
viscoelastic stress constitutive equations [10]. These
governing equationsfor two dimensional cylindrical polar
coordinates taken over domain Q, in the absence of body
force are given as under:

Continuity Equation:
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Momentum Equation:
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Where,
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Consgtitutive Equations for Exponential Form of PTT
Model:
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3.1  Non-Dimensional System of Equations

Casting above system of equations into dimensionless
form by placing non-dimensional variablesaong suitable
scales as under:

Where V and R are considered as characteristic velocity
and length respectively, V is taken as velocity of blood
and Ristaken asradius of artery respectively. Whereasyv,
and v, arethevelocity componentsinr and z direction, tis
the extrastresstensor, p isthe pressure of blood, 1, isthe
relaxation time, p isthe density of blood, tisthetimeand
u is the constant viscosity given by u=p, +u,, here p, is
the elastic solute viscosity and i, isthe Newtonian sol vent
viscosity. By substituting these non-dimensional values
in Equations (4-6) and Equations (11-14), then discarding
asterisks for brevity and simplicity, the above system of
equations may be rewritten as:

Continuity Equation:
oVy Vg OV
or r oz

Momentum Equations:
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Where, Reisdefined as:
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Constitutive Equations:
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HereW =)’ , referred as Weissenberg number.
4, NUMERICAL METHOD

The numerical scheme adopted here is a semi-implicit
Taylor-Galerkin/pressure-correction scheme. Thismethod
isbased on time stepping procedure, that semi discretises

thetemporia domain, by applying Taylor seriesexpansion
in time and a pressure correction procedure to extract a
time stepping scheme of second order accuracy [11-15].

5. DISCRETE SYSTEM OF EQUATIONS

The governing system of equations for the semi-implicit
Taylor-Galerkin/pressure-correction schemeisgiven as:

Momentum Equations:
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The fully discrete semi-implicit system of equationsin a
wesk formiswritten as:
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1 Non-linear e astic matrices.
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6. INITIAL AND  BOUNDARY  CONDITIONS

To obtain the steady state solution, simulationsare started
with quiescent initial conditionsfor fixed levelsof inertia
and elasticity parameters. For the modelling of two
dimensional viscoelastic behaviour of blood, the analytic
solution of [16], axial velocity profileisfixed at bothinlet
and outlet, vanishing on solid wall and free on axis of
symmetry; vanishing cross component of velocity
everywhere; pressure is fixed at only outlet and stresses
only at inlet boundary.

7. RESULTSAND DISCUSSION

Numerical computationsare carried out by employing PTT
model at distinct values of Reynolds numbersbeing set at
Re=100, 200 and 300 respectively along various
percentages of depositioni.e. 30, 50 and 70% respectively,
in a capillary segment having viscoelasticity value
W =0.01. The computational predictionsare computedin
termsof velocity gradients, first normal stressdifference,
shear stress, vorticity and stream function, so that
reattachment length and recirculation flow region of blood
to be determined.

In Figs. 3-5 streamline projections are displayed to
investigate the impact of inertia in a plaque deposited
capillary segment. It is illustrated that blood inertia
generates the formation of vortex even at low Reynolds
number. Further it isobserved that the reattachment length
is a function of Reynolds number and deposition level
and ishaving an increasing linear trend along inertia and
level of deposition. Furthermore, it isobserved that, vortex
formed at 30% level of depositionisnegligible, moderate
at 50% and dominates at 70% level of deposition in the
downstream of the capillary segment.

The reattachment length verses Reynolds number at
different percentages of deposition levels is computed
and presented in Fig. 1. Linear growth of reattachment
length is observed with small slope at 60% level of
deposition, where as beyond 60% deposition level,
reattachment length increases, with the same linear trend
with a very high slope, along larger values of Reynolds
number.

Developed empirical equations for reattachment length
are listed in Table 1, presents linear trend and increases
along Reynolds numbersfor variouslevels of deposition.
Whereas, polynomial trend of second order is observed
in Table 2, which presents empirical equations of
reattachment length verses various levels of deposition
for different values of Reynolds numbers.

The computed recirculation flow rate of blood against
various Reynolds numbers for different levels in
percentages is computed and its behaviour is illustrated
inFig. 2. It isobserved that the recirculation flow rate of

30— Vortex Length Vs Re
30% Power law
25— — 30% Carreau model
o 50% Power law
& 20 50% Carreau model
3 15 — 70% Power law
§ — 70% Carreau model
< 10
5
0 T 1
100 200 300

Reynolds Number
FIG. 1. REATTACHMENT LENGTH AT DOWNSTREAM
AGAINST REYNOLDS NUMBERS FOR VARIOUS
DEPOSITION LEVELS

TABLE 1. EQUATIONS FOR REATTACHMENT LENGTH
(R) AT DOWNSTREAM AGAINST REYNOLDS NUMBERS
(Re) FOR DIFFERENT PERCENTAGES OF DEPOSITION

Deposition (%) Equation
30 R=4.7x10" (Re)-0.2187
40 R=1.1x10? (Re)-0.0867
50 R=2.35x102(Re)+0.1707
60 R=4.85x10?(Re)+0.308
65 R=6.78x10?(Re)+0.272
70 R=9.08x10?(Re)+0.468

TABLE 2. EQUATIONSFOR REATTACHMENT LENGTH AT
DOWNSTREAM AGAINST DEPOSITION (D) FOR
DIFFERENT REYNOLDS NUMBERS

Reynolds number Equation
50 R=2.8x107 (D )*1.691x10*" (D )+2.5497
100 R=5.8 x10° (D )*-3.563x10" (D )+5.7898
150 R=9x10° (D )?-5.655x10* (D )+9.551
200 R=1.22x10? (D )*0. 7511 (D )+13.446
250 R=1.54x10? (D )?-1.0003 (D )+17.391
300 R=1.75x10% (D)*>1.1131 (D,)+19.126
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blood is of logarithmic trend at low values of Reynolds
numbers and turns to be nonlinear and reaches at plateu
level for very high Reynolds numbers. Whereas, in
Table 3 developed empirical equations have been
displayed. In contrast to recirculation flow rate of blood
against Reynolds numbers, it is computed against
blockage and placed in terms of equations, displayed in
Table 4, which presents the trend of second order
polynomia inFig 3-5.

0.08- Vortex Intensity Vs Re
30% Power law
/- — 30% Carreau model
0.06- 50% Power law
%ﬁ 50% Carreau model
5 — 70% Power law
; 0.04+ — 70% Carreau model
E
>
0.024
0 T l
100 200 300
Reynolds Number

FIG 2. RECIRCULATION FLOW RATE AT DOWNSTREAM
AGAINST REYNOLDS NUMBERS FOR DIFFERENT
PERCENTAGES OF DEPOSITION

TABLE 3. EQUATIONS FOR RECIRCULATION FLOW
RATE (R) AT DOWNSTREAM AGAINST REYNOLDS
NUMBERS FOR DIFFERENT PERCENTAGES OF

DEPOSITION
Deposition(%) Equation
30 R=0.001 In (Re)-0.0044
40 R=0.0047 In (Re)-0.0185
50 R=0.0092 In (Re)-0.0309
60 R=0.0135 In (Re)-0.0309
65 R=0.0185 In (Re)-0.0385
70 R=0.0171 In (Re)- .0052

TABLE 4. EQUATIONS FOR RECIRCULATION FLOW
RATE AT DOWNSTREAM AGAINST DEPOSITION FOR
DIFFERENT REYNOLDS NUMBERS

Reynolds number Equation
50 R=6x10° (D )*- 5x10°® (D )+9.37x10
100 R=7x10* (D )* 4.8x10° (D )+8.75x10?
150 R=6x10° (D )* 4.6x10° (D )+8.04x10
200 R=6x10° (D )* 4.4x10° (D )+7.62x10?
250 R=6x10° (D )* 4.4x10° (D )+7.64x102
300 R=6x10° (D )>- 4.2x10° (D )+7.25x10°

8. CONCLUSION

The numerical predictionsfor the flow of blood structure
in plague deposited capillary segment are compared only
qualitatively against those available, as complete
experimental datain open literatureis unavailable. Hence,

. 75

‘.4'0(".5'0""60."’70

20 30
30% DEPOSITION
20 30 40 50 60 70

50% DEPOSITION

20 30 40 50 60 70
70% DEPOSITION

FIG 3. STREAM-LINE PROJECTIONS FOR PTT MODEL AT
REYNOLDS NUMBER Re=100 FOR DIFFERENT LEVELS
OF DEPOSITION

o
20 30 40 50 60 70
30% DEPOSITION
20 30 40 50 60 70
50% DEPOSITION

r S‘Ol 60 70
70% DEPOSITION
FIG. 4. STREAM-LINE PROJECTIONS FOR PTT MODEL AT

REYNOLDS NUMBER Re=200 FOR DIFFERENT LEVELS
OF DEPOSITION

AT
20 30 4 50 60 70
30% DEPOSITION
N
20 30 40 50 60 70
50% DEPOSITION

20 30 40 50 60 70
70% DEPOSITION
FIG. 5. STREAM-LINE PROJECTIONS FOR PTT MODEL AT

REYNOLDS NUMBER Re=300 FOR DIFFERENT LEVELS
OF DEPOSITION
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numerical simulations are performed for low values of
elasticity and the numerical predictions are compared
qualitatively against inertial and extensional effects on
vortex development. In comparison to Newtonian
behaviour of blood, the flow of blood develops vortices
in the downstream of the artery segment that grow with
increasing inertiaaswell asvariouslevels of deposition.
Theformation of vortex from streamline patterns observed
that at 30% deposition level issmall, moderate at 50% and
dominates at 70% level of deposition at downstream of
the capillary segment. Since the model has been
investigated at low value of elagticity, the computed results
on viscoel asticity are observed similar flow phenomenon
with the Newtonian case of blood. This is due to the
dominancy of inertia, Weissenberg number do not show
any marked effect on computed results.
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