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ABSTRACT

The paper investigates the viscoelastic behaviour of blood over low value of elasticity, to analyse the
influence of inertia in the presence of elasticity. For viscoelastic fluids shear-thinning and strain-
softening PTT (Phan-Thien/Tanner) constitutive model is employed to identify the influence of elasticity.
The computational method adopted is based on a finite element semi-implicit time stepping Taylor-
Galerkin/pressure-correction scheme. Simulations are conducted via atherosclerotic vessels along
with various percentages of deposition at distinct values of Reynolds numbers. The numerical simulations
are performed for recirculation flow structure and development of recirculation length to investigate the
impact of atherosclerosis on partially blocked plaque deposited vessels.
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1. INTRODUCTION

extended aggregates called reuleaux, second case of
response of red blood cells is referred as viscoelastic. The
tight interaction between the red cells and a thin layer of
endothelial cells (present on the wall of the blood vessel,
which cannot move but can deform) imposes high shear
stresses on the vessel wall. As the shear rate is increased,
the aggregates are broken up in to small aggregates and a
corresponding decrease in viscosity is observed. In this
scenario viscosity of blood decreases with increased shear
rate, hence the non-Newtonian effects are added in the
form of elasticity and shearing thinning [1].

The prediction of viscoelastic behaviour of blood in

capillaries, having an axially symmetric deposition of

plaque, presents a considerable challenge to researchers
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The predictions on viscoelastic behaviour of blood
are presented by employing shear thinning and
strain softening PTT constitutive model. The

viscoelastic behaviour of blood in plaque deposited
capillary segment is observed, when the diameter of the
capillary blood vessel is smaller than the diameter of red
blood cells. Literature review suggests that the micro
structure of red blood cells adopt two qualitatively distinct
responses to flow. In the first case inelastic Non-
Newtonian behaviour is observed at shear rate greater
than 3S-1, while passing through this situation red blood
cells deforms but not aggregate and squeezes and move
in a single line to pass the artery in two phases, one being
the blood cells and the other being plasma. Whereas, at
low shear rates (0-1S-1) the red cells deform and form
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as well as medical device design and treatment. To study

the viscoelastic nature of blood is more complicated than
the Newtonian one. The present study is concerned with

the main issues, which arise in numerical simulation of

complex viscoelastic flows in two dimensional partially

plaque deposited capillaries.

The non-Newtonian behaviour of blood over low value
of elasticity is investigated along with governing
elongational parameters and inertia. For viscoelastic
fluids shear thinning and strain softening PTT
constitutive model is employed to identify the influence
of rheological variations [2-3]. Flow of blood along with
the partially plaque deposited capillaries involving flow
separation and reattachment is of considerable technical
interest for researchers. Literature review suggests that
over the past few years, real fluids study has become a
leading issue especially in biomedical, chemical,
pharmaceutical and food industries, because of severe
limitations for the application of flow theory associated
with the flow problems in these industries [4-5]. It has
been observed that Newtonian behaviour of blood
presents the predictions of several interesting features
of blood flow. For example, it is known that the stream
line pattern of the recirculation flow region increases in
the downstream area as the Reynolds numbers or
deposition of plaque increases. Whereas in literature
viscoelastic behaviour of blood has received scant
attention in comparison to Newtonian flow of blood [6-
9].

2. THE PTT CONSTITUTIVE
EQUATION

The constitutive equation for the modified PTT differential
model with a single relaxation time λ1, the elastic stress
tensor  may be expressed as:

df 121 μττλ =+
∇

(1)

The total viscosity μ=μ1+μ2 and the ratio μ1/μ2 is 1/9
selected. The non-linear function f, for the exponential
case, is:
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Here Tr(τ) is the trace of the stress tensor and ∈ is the
material parameter. Shear and elongational properties are
controlled by material parameters, ∈ and μ1 respectively,
which can be evaluated by fitted the linear or exponential
data.

3. GOVERNING SYSTEM OF
EQUATIONS

The axi-symmetric flow of incompressible viscoelastic
nature of blood in the plaque deposited capillary segment
can be mathematically modelled through a system
comprising mass conversion, momentum transport and
viscoelastic stress constitutive equations [10]. These
governing equations for two dimensional cylindrical polar
coordinates taken over domain Ω, in the absence of body
force are given as under:
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Where,
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Constitutive Equations for Exponential Form of PTT
Model:
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3.1 Non-Dimensional System of Equations

Casting above system of equations into dimensionless
form by placing non-dimensional variables along suitable
scales as under:
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Where V and R are considered as characteristic velocity
and length respectively, V is taken as velocity of blood
and R is taken as radius of artery respectively. Whereas νr

and νz are the velocity components in r and z direction, τ is
the extra stress tensor, p is the pressure of blood, λ1 is the
relaxation time, ρ is the density of blood, t is the time and
μ is the constant viscosity given by μ=μ1+μ2, here μ1 is
the elastic solute viscosity and μ2 is the Newtonian solvent
viscosity. By substituting these non-dimensional values
in Equations (4-6) and Equations (11-14), then discarding
asterisks for brevity and simplicity, the above system of
equations may be rewritten as:
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Where, Re is defined as:
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Here We=λ*
1, referred as Weissenberg number.

4. NUMERICAL METHOD

The numerical scheme adopted here is a semi-implicit
Taylor-Galerkin/pressure-correction scheme. This method
is based on time stepping procedure, that semi discretises

the temporial domain, by applying Taylor series expansion
in time and a pressure correction procedure to extract a
time stepping scheme of second order accuracy [11-15].

5. DISCRETE SYSTEM OF EQUATIONSDISCRETE SYSTEM OF EQUATIONSDISCRETE SYSTEM OF EQUATIONSDISCRETE SYSTEM OF EQUATIONSDISCRETE SYSTEM OF EQUATIONS

The governing system of equations for the semi-implicit
Taylor-Galerkin/pressure-correction scheme is given as:

Momentum Equations:
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The fully discrete semi-implicit system of equations in a
weak form is written as:
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The system of matrices is defined as:
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Momentum diffusion matrices:
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6. INITIAL AND BOUNDARY CONDITIONSINITIAL AND BOUNDARY CONDITIONSINITIAL AND BOUNDARY CONDITIONSINITIAL AND BOUNDARY CONDITIONSINITIAL AND BOUNDARY CONDITIONS

To obtain the steady state solution, simulations are started
with quiescent initial conditions for fixed levels of inertia
and elasticity parameters. For the modelling of two
dimensional viscoelastic behaviour of blood, the analytic
solution of [16], axial velocity profile is fixed at both inlet
and outlet, vanishing on solid wall and free on axis of
symmetry; vanishing cross component of velocity
everywhere; pressure is fixed at only outlet and stresses
only at inlet boundary.

7. RESULTS AND DISCUSSION

Numerical computations are carried out by employing PTT
model at distinct values of Reynolds numbers being set at
Re=100, 200 and 300 respectively along various
percentages of deposition i.e. 30, 50 and 70% respectively,
in a capillary segment having viscoelasticity value
We=0.01. The computational predictions are computed in
terms of velocity gradients, first normal stress difference,
shear stress, vorticity and stream function, so that
reattachment length and recirculation flow region of blood
to be determined.

In Figs. 3-5 streamline projections are displayed to
investigate the impact of inertia in a plaque deposited
capillary segment. It is illustrated that blood inertia
generates the formation of vortex even at low Reynolds
number. Further it is observed that the reattachment length
is a function of Reynolds number and deposition level
and is having an increasing linear trend along inertia and
level of deposition. Furthermore, it is observed that, vortex
formed at 30% level of deposition is negligible, moderate
at 50% and dominates at 70% level of deposition in the
downstream of the capillary segment.

The reattachment length verses Reynolds number at
different percentages of deposition levels is computed
and presented in Fig. 1. Linear growth of reattachment
length is observed with small slope at 60% level of
deposition, where as beyond 60% deposition level,
reattachment length increases, with the same linear trend
with a very high slope, along larger values of Reynolds
number.

Developed empirical equations for reattachment length
are listed in Table 1, presents linear trend and increases
along Reynolds numbers for various levels of deposition.
Whereas, polynomial trend of second order is observed
in Table 2, which presents empirical equations of
reattachment length verses various levels of deposition
for different values of Reynolds numbers.

The computed recirculation flow rate of blood against
various Reynolds numbers for different levels in
percentages is computed and its behaviour is illustrated
in Fig. 2. It is observed that the recirculation flow rate of

TABLE 1. EQUATIONS FOR REATTACHMENT LENGTH
(Ri) AT DOWNSTREAM AGAINST REYNOLDS NUMBERS
(Re) FOR DIFFERENT PERCENTAGES OF DEPOSITION

Deposition (%) Equation

30 Rl=4.7x10-3 (Re)-0.2187

40 Rl=1.1x10-2 (Re)-0.0867

50 Rl=2.35x10-2 (Re)+0.1707

60 Rl=4.85x10-2 (Re)+0.308

65 Rl=6.78x10-2 (Re)+0.272

70 Rl=9.08x10-2 (Re)+0.468

TABLE 2.  EQUATIONS FOR REATTACHMENT LENGTH AT
DOWNSTREAM AGAINST DEPOSITION (Dp) FOR

DIFFERENT REYNOLDS NUMBERS

Reynolds number Equation

50 Ri=2.8x10-3 (Dp)2-1.691x10-1 (Dp)+2.5497

100 Ri=5.8 x10-3 (Dp)2-3.563x10-1 (Dp)+5.7898

150 Ri=9x10-3 (Dp)2-5.655x10-1 (Dp)+9.551

200 Ri=1.22x10-2 (Dp)2-0. 7511 (Dp)+13.446

250 Ri=1.54x10-2 (Dp)2-1.0003 (Dp)+17.391

300 Ri=1.75x10-2 (Dp)2-1.1131 (Dp)+19.126

 FIG. 1. REATTACHMENT LENGTH AT DOWNSTREAM
AGAINST REYNOLDS NUMBERS FOR VARIOUS

DEPOSITION LEVELS
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blood is of logarithmic trend at low values of Reynolds
numbers and turns to be nonlinear and reaches at plateu
level for very high Reynolds numbers. Whereas, in
Table 3 developed empirical equations have been
displayed. In contrast to recirculation flow rate of blood
against Reynolds numbers, it is computed against
blockage and placed in terms of equations, displayed in
Table 4, which presents the trend of second order
polynomial in Fig 3-5.

TABLE 3. EQUATIONS FOR RECIRCULATION FLOW
RATE (Rf) AT DOWNSTREAM AGAINST REYNOLDS

NUMBERS FOR DIFFERENT PERCENTAGES OF
DEPOSITION

Deposition(%) Equation

30 Rf=0.001 ln (Re)-0.0044

40 Rf=0.0047 ln (Re)-0.0185

50 Rf=0.0092 ln (Re)-0.0309

60 Rf=0.0135 ln (Re)-0.0309

65 Rf=0.0185 ln (Re)-0.0385

70 Rf=0.0171 ln (Re)- .0052

FIG. 2. RECIRCULATION FLOW RATE AT DOWNSTREAM
AGAINST REYNOLDS NUMBERS FOR DIFFERENT

PERCENTAGES OF DEPOSITION

TABLE 4. EQUATIONS FOR RECIRCULATION FLOW
RATE AT DOWNSTREAM AGAINST DEPOSITION FOR

DIFFERENT REYNOLDS NUMBERS

Reynolds number Equation

50 Rf=6x10-5 (Dp)2- 5x10-3 (Dp)+9.37x10-2

100 Rf=7x10-5 (Dp)2- 4.8x10-3 (Dp)+8.75x10-2

150 Rf=6x10-5 (Dp)2- 4.6x10-3 (Dp)+8.04x10-2

200 Rf=6x10-5 (Dp)2- 4.4x10-3 (Dp)+7.62x10-2

250 Rf=6x10-5 (Dp)2- 4.4x10-3 (Dp)+7.64x10-2

300 Rf=6x10-5 (Dp)2- 4.2x10-3 (Dp)+7.25x10-2

30% DEPOSITION

50% DEPOSITION

70% DEPOSITION

FIG. 3. STREAM-LINE PROJECTIONS FOR PTT MODEL AT
REYNOLDS NUMBER Re=100 FOR DIFFERENT LEVELS

OF DEPOSITION

30% DEPOSITION

50% DEPOSITION

70% DEPOSITION

FIG. 4. STREAM-LINE PROJECTIONS FOR PTT MODEL AT
REYNOLDS NUMBER Re=200 FOR DIFFERENT LEVELS

OF DEPOSITION

30% DEPOSITION

50% DEPOSITION

70% DEPOSITION

FIG. 5. STREAM-LINE PROJECTIONS FOR PTT MODEL AT
REYNOLDS NUMBER Re=300 FOR DIFFERENT LEVELS

OF DEPOSITION

8. CONCLUSION

The numerical predictions for the flow of blood structure
in plaque deposited capillary segment are compared only
qualitatively against those available, as complete
experimental data in open literature is unavailable. Hence,
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numerical simulations are performed for low values of
elasticity and the numerical predictions are compared
qualitatively against inertial and extensional effects on
vortex development. In comparison to Newtonian
behaviour of blood, the flow of blood develops vortices
in the downstream of the artery segment that grow with
increasing inertia as well as various levels of deposition.
The formation of vortex from streamline patterns observed
that at 30% deposition level is small, moderate at 50% and
dominates at 70% level of deposition at downstream of
the capillary segment. Since the model has been
investigated at low value of elasticity, the computed results
on viscoelasticity are observed similar flow phenomenon
with the Newtonian case of blood. This is due to the
dominancy of inertia, Weissenberg number do not show
any marked effect on computed results.

ACKNOWLEDGMENTS

Authors greatly acknowledge with thanks to the HEC
(Higher Education Commission, Islamabad, Pakistan, for
financial support through project No. 20-217/R&D/2003/
615 under National Research Programme for Universities.

REFERENCES
[1] Fung, Y.C., “Biomechanics: Mechanical Properties of

Living Tissues”, Springer Verlag, 1993.

[2] Oldroyd, J.G., "On the Formulation of Rheological
Equations of State", Procedings of Royal Society,
Volume A200, pp. 523-541, 1950.

[3] Petrie, C.J.S., "Elongational Flows: Aspects of the
Behaviour of Model Elastic Viscous Fluids", Pitman,
London, 1979.

[4] Crochet, M.J., Davies, A.R., and Walters, K., "Numerical
Simulation of Non-Newtonian Flow", Rheology Series,
Volume 1, Elsevier Science Publication, Amsterdam,
1984.

[5] Ikbal, Md. A., Chakravarty, S., and Mandal, P.K.,
"Unsteady Response of Non-Newtonian Blood Flow
through a Stenosed Artery in Magnetic Field", Journal of
Computational and Applied Mathematics, Volume 230,
pp. 243-259, 2009.

[6] Mandal, D.K., Manna, N.K., and Chakrabarti, S., "A
Numerical Model Study of Steady Flow through Bell
Shaped Stenosis with and Without Symmetry",
International Journal of Experimental and Computational
Biomechanics, Volume 1 , pp. 306-331, 2010.

[7] Perera, G.M., and Walters, K., "Long Range Memory
Effects in Flows Involving Abrupt Changes in Geometry:
Part-2: The Expansion/Contraction/Expansion
Problem", Journal of Non-Newtonian Fluid Mechanics,
Volume 2, pp. 353-365, 1977.

[8] Pak, B., Cho, Y.I., and Choi, S.U.S., "Separation and
Reattachment of Non-Newtonian Fluid Flows in a Sudden
Expansion Pipe", Journal of Non-Newtonian Fluid
Mechanics, Volume 37, pp. 175-199, 1990.

[9] Mekheimer, Kh.S., and Elkot, M.A., "The Micropolar
Fluid Model for Blood Flow through a Stenotic Arteries",
International Journal of Pure and Applied Mathematics,
Volume 36, pp. 393-405, 2008.

[10] Bird, R.B., Stewart, W.E., and Lightfoot, E.N.,
“Transport Phenomena”, 2nd Edition, John Wiley &
Sons, 2002.

[11] Van, K.J., "A Second Order Accurate Pressure Correction
Scheme foe Viscous Incompressible Flow", SIAMJ.
Science Statistics Company, Volume 7, pp. 870-891,
1986.

[12] Townsend, P., and Webster, M.F., "An Algorithm for the
Three Dimensional Transient Simulation of Non-
Newtonian Fluid", Theory and Applications, Proceedings
of Numeta Conference on Numerical Methematics
Engineering, T12/1-11, Nijhoff, 1987.

[13] Townsend, P., and Walters, K., "Expansion Flows of
Non-Newtonian Liquids", Chemical Engineering Science,
Pergamon, Elsevier, Volume 49, pp. 749-763, 1994.

[14] Baloch, A., and Webster, M.F., "A Computer Simulation
of Complex Flows of Fibre Suspensions", Computers
Fluids, Volume 24, pp. 135-151, 1995.

[15] Hawken, D.M., Tamaddon, Townsend, P., and Webster,
M.F., "A Taylor-Galerkin Based Algorithm for Viscous
Incompressible Flow", International Journal of
Numerical Methematics Fluids, Volume 10,
pp. 327-351, 1990.

[16] Walters, N.D., and King, M.J., "Unsteady Flow of an
Elastico-Viscous Liquid", Rheology Acta, Volume 9,
pp. 345-355, 1970.


