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ABSTRACT

ThisarticleproposesWT (Wavelet Transform) and an ANN (Artificial Neural Networ k) based approach
for detection and classification of EPQDs (Electrical Power Quality Disturbances). A modified WT
known as ST (Stockwell Transform) issuggested for featureextraction and PNN (Probabilistic Neural

Network) for pattern classification.

The ST possesses outstanding time-frequency resolution characteristics and its phase correction
techniquesdeter minethephaseof theWT tothezerotimepoaint. Thefeatur evector sfor theinput of PNN
areextracted using ST techniqueand these obtained featuresarediscrete, logical, and unaffected to

noisy data of distorted signals.

Thedata of themodelsrequired to develop thedistorted EPQ (Electrical Power Quality) signals, is
obtained within therangesspecified by | EEE 1159-1995 in itsliter atures.

Thefeaturesvector sincluding noisy timevarying data during steady stateor transient condition and
extracted usingthe ST, aretrained through PNN for pattern classification. Their smulation results
demonstratethat the proposed methodology issuccessful and can classify EPQDseven under anoisy
environment very efficiently with an aver age classification accuracy of 96%.
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1 INTRODUCTION
1.1  Electrical Power Quality

PQisavery interesting cross-disciplinary topic,
including power engineering, power electronics

ith digital signal processing, software
engineering, and networking. EPQ isdefined asany power
problem manifested in voltage, current, or frequency

deviationsthat result infailure or misoperation of customer
equipment and system itself. The EPQ of power supplies
isgrowing to beamajor concern of electricity users. Poor
power quality may resultin malfunctions, instabilities, short
lifetime, and so on. The causes of poor power quality are
the growing popularity of power electronics and other
sensitive non-linear loads. The power supplies for
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information technology equipment along with high
efficiency lighting, rectifiers, inverters, choppers and
adjustable frequency devices are considered the main
sources of PQDs. These PQDs are produced from the
suppliers or by the users load and they may cause
malfunctioning of the equipment [1-4].

1.2 LiteratureReview

Toimprovethe EPQ of the power system supply, the PQDs
should be detected and classified precisely so that correct
mitigation measures could be applied. This requires
monitoring, recognition and classification of disturbances
that is often an inconvenient task involving abroad range
of disturbance categories from low-frequency dc offsets
to high-frequency transients. In the literature, various
methods based on WT, FL (Fuzzy Logic), NN (Neural
Network) and GA (Genetic Algorithm) have been proposed
and implemented for PQ recognition and classification.

[6].

In [7-11] different approaches based on WT and wavel et
packet for EPQDs recognition are presented. The
combination of FFT (Fourier Transform) and FL is
introduced for classification of PQDsin [12]. In[13-14]
new techniques based on fuzzy reasoning with WT have
been suggested. A rule-based technique with a wavelet
packet-based hidden Markov model for recognition and
classification of PQDsispresentedin[15].

ANN detection schemesare carried out in[16]. In[17-18]
hybrid schemes combined with NNsasclassifier and WT
for feature extractions are suggested. For identifying and
classifying PQDs, neural-fuzzy techniqueis utilized with
thedecomposition procedure of WT in[19-22]. Application
of ANN combined with GA in power quality signals
disturbances classification is suggested in [23].

Fromthissurvey itisfavored to extract signal featuresby
advanced analytical tools, replace of signal time domain

valuesfor adaptation of Al (Artificial Intelligence) tools,
because of improved efficiency. Thus, monitoring EPQ
has become essential for fast recognition and correction
of EPQ problems. The survey of DSP (Digital Signal
Processing) techniques for EPQDs analysis suggests the
different methods like: Park's Vector Approach, Kalman
filtersand most popul ar time-frequency analysis methods
such as FT, STFT (Short Time Fourier Transform), WT,
and ST. The conventiona methodologies for monitoring
EPQ are expensive and incompetent. In literature over the
years, avariety of techniquesfor automatic detection and
classification of EPQDslikevoltage swell, sag, harmonics,
notch, flicker and transients employ DSP techniqueswith
electrical power systems knowledge and Al.

As PQDs are non-stationary signal, so time-frequency
tools such as WT are more practical than FFT that maps
signal to frequency domain, without any timeinformation.

FT determinesthetime-averaged spectral components of
asignal which does not provide the changes of magnitude,
frequency and phase differencewith time. Hence, thetime-
frequency information of thesignalscan easily beanalyzed
with advanced techniques of STFT, WT and ST.

As PQDs are non-stationary signal, and the freguency
content varieswith time. Due to the limitation of affixed
window width, and fixed resolution over time frequency,
STFT can not distinguish the signal characteristics
properly [24-26]. Thishasbeen provedin [26] that WT is
incapable of identifying the accurate results when noise
ispresent in the signal.

1.2.1 Proposal

It is also suggested [24-25] that the if wavelet
transformation does not extract the essential frequency
components from the signal then the efficiency and
accuracy of the classification of that signal with the help
of Al will bebadly affected. Time-scaleplot in the absence

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]

756



Wavelet Transform and ANNs for Detection and Classification of Power Signal Disturbances

of phase difference produced by wavelet transformation
isatediousjobto beunderstood [27-28]. From thisdetailed
discussion the combined approach of STFT and WT will
bemoresuitablefor thistiresomeanaysisof EPQDswhich
vary with time. ST is the combination of STFT and WT
and performs multiresolution time-frequency analysis.
Therefore, this paper suggeststhe application of ST which
isthe finest candidate for such EPQ signal problems.

2. STOCKWELL TRANSFORM AND
FEATURE EXTRACTION

21 Sockwdl Transform

Advanced DSP techniques of WT and its modification
known as ST are nowadays utilized for extracting feature
vectors methodology from the sampled time data. This
can be done obtaining the data by simulation or by field
test. The ST creates a time-frequency illustration and
combines a frequency dependent resolution and the
localization of the imaginary and real spectra. As ST is
modified form of FFT, hence in the case of noisy data of
non-stationary disturbances the ST provides prototypes
that directly resemble the types of disturbances, this ST
technique provides the simplest procedure for the
classification, which not possible in case of WT. The ST
has come up to provide inversely proportional to
frequency and inconsistent window, which facilitate to
capture of both low and high frequency disturbances of
eectrical supply network [29-30].

The SM (Stockwell Matrix) can be represented in atime-
frequency domain like the WT. The SM known as the
output fromthe ST (N by M matrix) whose N rowsrelateto
frequency and columns relate to the time index and each
element of the SM possessesthe complex values[29-30].

In[31] it suggested that ST is used to identify EPQDs by
visual inspection and from the SM, the STA (Stockwell
Transform Amplitude) matrix is calculated by finding the
absolute value of each element of the SM as:

STA = abs(ST) @

From Equation (1) thefrequency-amplitude, time-frequency
and time-amplitude can easily be plotted and these plots
can provide the valuable information of localization,
detection, and visual classification of EPQDs.

Thefeaturesafter normalization will beintroduced to PNN
network for training purposes. These features will be
obtained from ST.

ST givesthe information both in the amplitude spectrum
and phase of thesignal. In order to exploit theinformation
enclosed in phase of the CWT, it is essential to adjust the
phase of mother wavelet. The CWT, W(a.,d), of afunction
h(t) isexpressed as:

o0

W(a,d)= _g](t)/v(d,t — o)t @

Where W(a.,d) isascaled replicaof fundamental mother
wavel et; the dil ation decides the width of thewavel et and
this controls the resolution and the ST is achieved by
multiplying the CWT with a phase factor.

Sat,f) = €2 \W(d, cr) (€

And its mother wavelet is assumed as;

wit, )= || [ZfzJ‘jz’Zﬂ @

In Equation (2), wheredisdilation factor or scale parameter
whichisinversely proportional to frequency f.

Equation (4) in final form of continuous ST becomes as

[27]:
—t2f2

Dol

Sla, f)= e 12y ©)
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Width of Gaussian window is as:

a(f)=T=%| ©)

ST istheillustration of local spectra, time average spectrum
or can be calculated directly from averaging local spectra
through inverse ST and becomes as[27]:

h(t) T { T f)da}ejz’zﬂdf @

2.2 FeatureExtraction

Taking the advantage of FFT with convolution theorem,
ST calculatesthe datavery quickly and localizesthe phase
spectrum and amplitude spectrum simultaneously and
efficiently.

It is clear from the literature that ST possesses better
applicability than WT. Feature extraction is prepared by
applying standard statistical techniques onto the contours
of the SM as well as directly on the SM. These features
have been found to be useful for detection, classification
of relevant parameters of the signals. The power network
signal isnormalized (1) with respect to abase value, which
is the normal value without any disturbance. In this
proposal the features of SD (Standard Deviation), energy
of thesignal are considered as: (i) Standard deviations of
maximum maghnitudes of each columnand row of SM, with
phase contour. (ii) Energy of the data set including
equivalent to maximum magnitude of each column of the
SM.

These features are found to be well well-matched to
discriminate the twelve (12) types EPQDs detection and
classification techniques very accurately.

3. DATA GENERATION AND SIMULATION

31 Data Generation of EPQDs

Inthisproposal pure sinusoidal wavewith following eight
EPQDsare considered to detect, and classify thesignal of
electrical power system networks.

Normal or Puresinewave

Momentary Interruption.

Oscillatory transient (Low frequency).
I nstantaneous voltage sag
Instantaneous voltage swell
Harmonics

Voltage notch

Voltage spike (Impul setransient)

© O N oo g b~ w DN P

Voltageflicker

Theequationsfor the above PQDssignalsareavailablein
[32] and the parameters are varied within the ranges
specified by the IEEE 1159 [5]. The signal under anoisy
environment isgenerated by adding uniformly distributed
Gaussian noise of 30db with theoriginal signal. This30dB
SNR value is considered equivalent to a peak noise
magnitude which isabout 3.5% of thevoltagesignal [30].

Considering the best computational efficient analysis,
original distorted signalsare generated with 8 cycles, and
each cycle is represented by 64 points, hence total
corresponding 512 pointsare considered using MATLAB
7.13, Simulink 7.8, and Wavelet Toolbox 4.8 versions
respectively.

3.2 Results and Discussion

The simulation results with the application of ST shown
bel ow provide the important information of the disturbed
signals. Form Figs. 1-9; visualization inspections clearly
indicate the types of EPQDs with the help of time-
frequency contours technique of ST.

Figs. 1-9 show nine (09) diffeent types of EPQDs signals
(with eight cycles at 0.16 seconds) with their TFC (Time
Frequency Contours), ST maximuim amplitudewith time
index and ST amplitude spectrum.

InFig. 1(a-d), (a) showssinesignal wave, (b) TFC, (c) ST
maximuim amplitude and timeindex and (d) ST amplitude
spectrum.
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The TFC awaysprovidesthehint for theidentification or
recognition of the types of EPQDs. The TFC in the
simulation result of Fig. 1(b) is staright line because the
signal is pure sine wave without any disturbanesc.

Fig. 2(a-d) show momentary interruption distortion of the
signal with the ST visualization information. Thevoltage
drop of interruption and its exact intervals of starting and
finishing in time-frequency domain are shown accurately
inFig. 2(b).

Fig. 3(a-d) showsthelower frequency oscillatory transient
and its ST feature waveforms, with TFC, ST maximum
amplitude/index and amplitude spectrum. According to
the Shannon's Theorem, highest frequency is considered
in case of oscillatory transient in Fig. 4.
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The Figs. 4-9 show instantaneous sag, swell, harmonics,
voltage notch, spike and flicker signals of EPQDs
respectively with their changesindicatedin their contours
representations. It can easily be observed with the visual
analysis, the colors of bars and the plots of contour
representations play very important part in the
visualization analysis of the signal disturbances. In Fig.
9(b) magnitude variation is observed which isresembled
whichlookslikeavoltageflicker distortionin time domain.

Figs. 4(b) and 5(b) show the decrease and increase in
magnitudes of EPQ signals exactly asin case of sag and
swell signals of time-domain. Fig. 6(d) obviously givesan
idea of 03 peaks, i.e. EPQD of power system harmonic

signal.
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FIG 1. PURE SINE WAVE AND S-TRANSFORM FEATURE WAVEFORMS
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4. APPLICATION OF PNN FOR THE
CLASSFICATION OFEPQDS

The PNN is based on the probabilistic model known as
Bayesian classifierswhichisused in the basic principle
operation of PNN. The Bayesian classifiers PNN model
isknown as an important among the supervised learning
networks possesses the distinct features from those of
other networksin the learning processes like [33]:

1 PNN isawaysapplied with probabilistic model,
such as Bayesian classifiers.

2 IfitisgiventhesufficienttimetotrainthePNN is
guaranteed to converge to a Bayesian classifier.
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3. The laborious work of selecting or setting
the initial weights of the network is not
needed.

4 Hence, there is no affiliation between learning
and recalling processes.

5. For the modification of the weights of the
network, the tedious process of checking the
difference between target vector and the
inference vector isnot required.

The values of probabilistic density function decide the
training paradigms. Thefirst layer computes detachments
from the input vector to the training input vectors, when
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an input is presented. This process produces a closure
vector between the input vector and atraining input. The
second layer for each class adjoinsall these contributions.
In thisway avector of probabilities (as output) is created
and eventually, an accurate transfer function at the output
of the second layer is selected from the utmost of these
probabilities[34-36].

Dueto these diverse properties, the learning speed of the
PNN model isvery fast and makesit the most suitablein
real time applications of the fault diagnosis and
classification of power signalsanalysis.

Nine types of different EPQ disturbances are considered

as.
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Form Sections 3.1 and 3.2, thefeature extractions obtained
fromthe ST technique provide thefour-dimensional feature
sets (03 of SD and 01 of the energy of transformed signal)
for training and testing. These vectors provide distinctive
knowledge of EPQ signalswithin minimum data amount
required as input for training of PNN as automatically
classifier of EPQDssignal.

The target output of the PNN isa 09 element vector. For
each event only oneof theelementswill be 1. For C itwill
[100000000],C,=[010000000],C=[001000000]
andfor C;=[000000001].

The eval uations performance of developed model of PNN,
with its classification results during testing are shown in
Tablel.
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PNN produces atwo-layer network, wherefirst layer has
radbas neurons, and computes its weighted inputs with
dist and itsnet input with net product (netprod). Whereas
second layer has compet neurons, and computes its
weighted input with dot product (dotprod) and its net
inputs with net sum (netsum). Only the first layer has
biases. The PNN istwo layer networks. The error god is
set at 0.00001 with 1.1 spread constant. Then input layer
of PNIN contains 36 neurons (9* 4=36) neurons/nodeswith
radbas transfer function and only 9 neuron/node with
purelin transfer functions in output layer are required.
This process of training takes only 2 seconds and the
networks are trained by using OLS (Orthogonal Least
Squares) algorithm. Fig. 10 shows nine types of EPQDs
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with four-dimensional feature sets (03 of SD and 01 of the
energy of transformed signal) areintroduced as input for
training and out put of PNN classifier are the types of
EPQDs.

Theoverall accuracy of correct classificationistheratio
of correctly classified power quality disturbances to
that of the total number of EPQDs. The overall
classification accuracy of PNN is 93.11% when 50
samplesweretested and 96.55% when 100 sampleswere
investigated. It proves that the best classification
accuracy can be further improved by training the PNN
by higher number of PQDs.
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The PNN is simple in training because it requires less
learning time, number of epochs, and lesstimeto classify
aparticular input data during testing. This has been also
verified that with suggested four extracted features
obtained from ST are sufficient for aPNN to classify the
different types of EPQDs.

InFirst Case: Total 450 samplesof 09 typesof PQDs
aretested, out of those 419 areidentified
accurately with about 93.11%.
In Second Case:  Total 900 samples of 09 types of EPQDs
aretested, out of those 869 areidentified
accurately with about 96.55%.
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5. CONCLUSIONS

Inthisresearch work, we have suggested asimple method
to detect and classify the types of EPQDs correctly. The
features of EPQDs signals have been extracted with the
help of ST and PNN asclassifier. Dueto thelower level of
decomposition, useful information is obtained for
classification. The proposed technique of modified ST
NN classifier along with the statistical computation has
improved the classification accurateness. This
methodology shows low sensitivity to noise level and
simulation results with low error rate confirms this

capability.
The proposed methodology shows ahigh accuracy inthe

classification of the EPQDsi.e. 93.11% for lower number
samplesand 96.55% for higher number of samples, which
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can be enhanced by training PNN classifier with more
number of samples of PQDs signals.

PNN has proven to be moretime efficient and learnsmore
quickly which makesit more suitablefor an online EPQDs
classifier. For afuture work, thistechnique can be applied
for hybrid EPQDs.
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