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ABSTRACT

An effort has been made to optimally determine the status of turbulence loss coefficient in the present
study. The parameter is identified in the framework of GA (Genetic Algorithm), which consequently
resulted in the development of a computer model. In accordance with principles of the GA, the objective
function, sse (sum of square of errors), is minimized between 0.009785 and 0.017565; as a result the
well hydraulic parameters are optimally identified. To check validity of the model, simulated draw downs
are compared against the observed ones, which indicate mean difference between them varying from
0.0049m to 0.0124m. Furthermore, validity of the model is also endorsed through statistical analysis
with model efficiency varying between 99.97 and 100.00%. The model is applied to 5 data sets of step
drawdown pumping test, yielding 5 values of turbulence coefficient varying between 1.01 and 2.08. Out of
these 5 optimized values of turbulence coefficient none of the values is equal to 2. This scenario of
variation of turbulence coefficient substantiate that turbulence coefficient is a variable and not a constant
(i.e. equal to 2.0, as suggested by Jacob and Singh) while considering turbulence loss coefficient as a
constant is discarded.

Key Words: Turbulence Loss Coefficient, Well Hydraulic Parameters, Optimization, Genetic
Algorithm.
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1. INTRODUCTION

status of last parameter i.e. turbulence loss coefficient.
Some of the researchers opine that it has a constant value
of 2.0, whereas others suggest it as a variable. At the
preliminary stage, when Jacob [1] established the
relationship for drawdown or loss of head in a pumping
well under steady-state; he suggested that turbulence
loss coefficient (n) have a constant value of 2. Rorabaugh
[2] proposed turbulence loss coefficient as variable
between 2.4 and 2.8 for higher discharges. Moreover, he
categorized n for various flow conditions and termed this
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Proper management of groundwater and its
balanced augmentation requires correct
knowledge of various parameters. Well

efficiency, ηw, is the one amongst those parameters which
needs to be properly identified. It depends upon
hydraulic characteristics of the aquifer and the well under
consideration. These characteristics consist of formation
loss coefficient (Bf), entry loss coefficient (Cf) and
turbulence loss coefficient (n). Amongst these three
parameters there exist a lot of controversy regarding the
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loss as; laminar loss for low discharges with n=1.0; and
turbulent loss in case of high discharges with n>2.0.
Lennox [3] considered turbulence loss coefficient as
variable and proposed its upper limit equal to 3.5.
According to Sheahan, [4] turbulence loss coefficient
may have a value between 1 and 4. Todd [5] opines that
exact value of n cannot be fixed since it varies from well
to well depending upon internal and external flow
conditions of the well. Whereas, Singh [6] agreed with
the constant value of 2 for turbulence loss coefficient as
suggested by Jacob's, [1]. But, recently Louwyck, et. al.
[7] termed n as well loss power and considered it as a
variable with lower limit of 1.0. Traditionally, aquifer
parameters have been identified by analyzing the step-
drawdown test using a graphical method suggested by
Jacob, [1]. However, this method is subjective in nature,
time-consuming, prone to error and possesses intrinsic
limitations.

With availability of high-speed computers and evolution
of different numerical techniques, graphical solution can
be efficiently replaced by some suitable numerical
solution in the form of a computer model. A number of
conventional optimization techniques such as Marquardt
algorithm, Dynamic programming, Guass-Newton method
and Gradient projection are available in literature, which
by virtue of their inherited characteristic yield local
optima. On the other hand, counterparts of the former
ones are the unconventional optimization techniques,
which merit in achieving global optima. Such techniques
include GAs (Genetic Algorithms), GP (Genetic
Programming), SA (Simulated Annealing), SCE (Shuffled
Complex Evolution) method developed at the UA
(University of Arizona) and ANN (Artificial Neural
Network). Savic, et. al. [8-9] determined optimal location
of isolating valves using GA, Khu, et. al. [10] applied GP
for forecasting real-time runoff, Savic, et al. [11]
developed a rainfall-runoff model using GP, Duan, et. al.
[12] used SCE-UA optimization technique for calibration

of watershed models, Rogers, et. al. [13] developed solute
transport and groundwater remediation model using
ANN, Simpson, et. al. [14] used GA for pipe optimization,
Ejaz et, et. al. [15] automized weight selection for robust
controller design using GA and Ranjithan, et. al. [16]
applied ANN for groundwater reclamation. Moreno, et.
al. [17] optimized groundwater pumping, by connecting
various variables related to hydrology, topography, and
economics, etc., using MATLAB. Their analysis reveals
that steepness of the characteristic curve, pumping pipe
diameter and maximum efficiency depends on the
fluctuation of the groundwater table, water demand and
month of highest demand, respectively.

Majumdar, et. al. [18] developed analytical solutions
using Duhamel's convolution theorem for fully
penetrating well either in single or multi aquifers with
respect to well storage, well loss, and interactions
between the individual aquifers through well bore. They
applied their solution for constant and variable rates of
injection and well loss to the experimental data of Gujarat
state in India. Onwunalu, et. al. [19] applied Genetic
algorithms techniques coupled with Particle swarm
optimization algorithm to determine optimum type and
location of the wells, considering four example cases.
Ciaurri, et. al. [20] optimized well pressure and injection
rates using Genetic algorithms as derivative-free
optimization tool. Louwyck, et. al. [7] took data sets
pertaining to step drawdown test performed in two
homogenous, confined and unconfined aquifers. They
developed an inverse numerical model to interpret the
data such that all drawdown observations could be used
for determination of aquifer and well hydraulic parameters.
They remarked that well loss coefficient and
transmissivity are identifiable for confined aquifers,
whereas the data analyzed in an unconfined-layered
aquifer showed that the well loss coefficient can be
identified when prior information regarding hydraulic
parameters is available.
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For the past few years GA has been widely used by
hydrologists and hydro-geologists for solution of
groundwater and solute transport problems. Memon, et.
al. [21] used GA as an optimization tool for identification
of aquifer parameters. Cieniawski, et. al. [22] employed GA
to solve multi-objective groundwater monitoring problem.
Gwo, [23] tried to search flow paths in structured porous
media by use of GA. McKinney, et. al. [24] gave GA solution
of groundwater management models. Parsad, et. al. [25]
while estimating net aquifer recharge and conductivity
zones, they used GA. Reed, et. al. [26] designed a
groundwater monitoring plan on long term basis while
using GA.  Ritzel, et. al. [27] solved a multi-objective solute
transport problem using GA. In this research work GA
technique is employed to optimally identify the turbulence
loss coefficient, which ultimately resulted in development
of a computer model coded in C++ language.

In this paper after brief description of the GA technique,
problem of estimating the optimal value of well hydraulic
parameters (including turbulence loss coefficient) is
formulated to be solved in the framework of genetic
algorithm, so that subjective graphical solution can be
avoided. Boundary conditions to be incorporated in the
GA model for the three well parameters are set. Also, setting
of string length, genetic parameters, population size and
number of generations for the code is described. Finally,
simulated results are compared with the field observations
and sensitivity analysis of the model is carried out.

2. GENETIC ALGORITHM

The GA is an evolutionary computing technique
developed by research group of John, [28] at the
University of Michigan. They tried to develop a robust
tool, in accordance with biological processes of survival
and adaptation that could be capable of maintaining
balance between efficiency and efficacy necessary for
survival in many different environments (Holland, [28]

and Goldberg, [29]). With continuous contribution by
various researchers, at present GAs have become highly
idealized and multidimensional search algorithms based
on the concepts of natural selection and natural genetics.
Due to their robustness and some other characteristics,
GAs are being extensively used as an optimization tool
in the fields of science, commerce, and engineering.

Coding for GAs can be done either by using real or binary
values of the parameters, later being more powerful and
dependable in search of optimal values (Goldberg, et. al.
[30]). Since, in the present work binary coded genetic
algorithm is used, therefore, forthcoming discussion is
related to the features related to these types of GAs.
Computational procedure for search and optimization of
any problem by GAs must include following five basic
steps (Michalewicz, [31]), viz: (1) Representation, in which
binary vectors or strings are used to represent real values
of the independent variables involved in the system to be
solved; (2) Initial Population, i.e. a number of chromosomes
are generated such that each chromosome is a binary
vector of bits (genes); (3) Evaluation function, includes
evaluation and rating of potential solutions contained in
population of chromosomes by putting real values of
binary vectors into the function; (4) Genetic operators
(crossover and mutation), used for reproduction i.e.
alteration of the present population to form new population;
and (5) Genetic Parameters (probability of crossover and
probability of mutation), define the extent of alteration by
the genetic operators

3. PROBLEM FORMULATION

A well penetrating throughout the depth of an aquifer is
subjected to formation and well losses. Formation loss is
domino effect of the aquifer properties, whereas well loss
is on account of friction met due to radially inward motion
of water to the well and of its uptake towards the pumping
device (Fig. 1). According to Jacob, [1], formation loss is
the product of Bf and Q, and the well loss of Cf and Qn,

( ) (⎣
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where Q is the pumping discharge of the well. Hence, the
total drawdown for a well running at discharge (Q) under
steady state condition is:

s = BfQ + CfQ
n (1)

From equation (1) it can be seen that for a given discharge,
Q, s is the function of Bf, Cf and n parameters. Proper
estimation of s requires prior knowledge of these
parameters; thus, the objective of the present research is
aimed at to optimally determine the above mentioned well
hydraulic parameters with special attention to value of n.

In order to achieve the desired objective, formulation of
the problem is made in such a way that the aim of
determination of well hydraulic parameters is achieved
through an optimal process of minimization of errors by
applying GA approach. Formulation of the problem is made
with the help of prototype data obtained through step-
drawdown test.

In equation (1), if an observed value of Q is introduced;
and also if Bf, Cf and n values are incorporated by selecting
them randomly within the range of their given boundary
conditions, then for an ith data-set a drawdown (si) could
be computed as:

n
iQfCiQfBis += (2)

Where, i = 1, 2, 3, ……., m; and m is the total number of
data-sets. Residue of the difference between simulated
drawdown (si) and observed drawdown (soi) ushers into
an error computed as:

ei = si - soi (3)

where ei is an error for an ith data-set. Integration of the
square of errors (ei) over the entire domain of step-
drawdown test data is formulated as:

( ) ( )p,3,2,1,j
m

1  i
2

isois    jsse LL=∑
=

−= (4)

where ssej is the objective function required to be
minimized to have an optimal solution for Bf, Cf and n; and
p is the total number of iterations, amongst which a minimal
value of the objective function is chosen. The objective
function, formulated as above, is minimized in the
framework of GA.

4. SETTING OF BOUNDARY
CONDITIONS

A computer model coded in C++ language is developed in
the framework of GA. To implement the model, boundary
conditions for formation loss coefficient, Bf, are set in
accordance with the governing Equation (1). Since Bf is
sort of a head loss, it may only have a positive value.
Putting value of n equal to 2 in Equation (1) and
simplifying:

QfCfB
Q

s
+= (5)

Q

FIG. 1. AN SCHEMATIC DIAGRAM OF A WELL SHOWING
LOSSES IN TERMS OF DRAWDOWN
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Accordingly, it can be construed from Equation (5) that
while 'CfQ' tends to 's/Q' then Bf reaches to 0, which
characterizes its lower boundary, and when 'CfQ' attains
to 0 then Bf tends towards 's/Q', which marks its upper
boundary condition. Therefore, the boundary conditions
for Bf are set as 0 and 3.0. Boundary conditions for entry
loss coefficient, Cf, are set in accordance with suggestions
made by Walton, [32]. According to him Cf depends upon
well condition; Table 1 contains such information and
hence in line with his suggestions the boundary conditions
for Cf are set as 0 and 5.0. Jacob, [1] and Singh, [6] suggested
a constant value of 2 for turbulence loss coefficient, n,
whereas Rorabaugh [2], Lennox [3], Sheahan [4], Todd's
[5] and Louwyck, et. al. [7] argued that n may have different
value than 2.0. Consequently, the boundary conditions
for n are set at 1.0 and 4.0.

5. RUNNING OF GA MODEL

For determination of the well hydraulic parameters and
investigation of the status of turbulence loss coefficient,
the computer model developed in the framework of GA
prerequisites discharge-drawdown data for its execution.
For this purpose the model was applied to 5 (published
and unpublished) data-sets of step-drawdown test.

In line with the boundary conditions set for execution of
the model a precision of 2 digits after decimal point was
fixed for Bf and Cf, whereas a precision of 3 digits after
decimal point was fixed for n. Based on these
characteristics chromosome lengths of 9, 9 and 12 binary
digits were required for Bf, Cf and n, respectively. Hence,
total length of a chromosome became 30 binary digits.

The computer model was run for numerous iterations to
obtain a minimized value of the objective function, sse. To
achieve the objective of minimization of sse, the model

parameters; such as POPSIZE (Population Size), Pc

(probability of crossover) and Pm (probability of mutation)
were fixed through trial and error and are obtained as 110,
0.85 and 0.015, respectively. Trial and error approach was
adopted since change in these parameters influence the
diversity level within the chromosomes which in turn affect
the optimal values of the unknown parameters i.e. Bf, Cf and
n, and eventually the objective function, sse. POPSIZE is
set to vary from 10~170 by an increment of 10 and with each
POPSIZE, the NOGEN (Number of Generations) is allowed
to vary in between 100 and 3000 with a constant step size of
100, and under these conditions for each iteration minimized
value of the objective function, sse is recorded.

6. RESULTS DISCUSSION

6.1 GA Model Application and Results

The optimal values of the well hydraulic parameters were
obtained for the minimal objective function varying
between 0.009785 and 0.21054; Table 2 shows these
optimal values. From Table 2 the optimal values of
turbulence loss coefficient are plotted as shown in Fig. 2.
These values of turbulence loss coefficient vary between
1.01 and 2.80.

TABLE 1.  ENTRY LOSS COEFFICIENT (Cf) FOR
VARIOUS CONDITIONS OF WELL [32]

Properly designed and well developed <0.5

Mildly deteriorated or clogged 0.5-1.0

Severely deteriorated or clogged 1.0-4.0

Difficult to restore to its original condition >4.0

TABLE 2. WELL HYDRAULIC PARAMETERS FOR 5 DATA-
SETS OF STEP-DRAWDOWN PUMPING TEST

Data Set Bf Cf n

1 0.28 0.01 2.80

2 0.10 0.22 1.32

3 0.29 0.03 1.59

4 0.41 0.02 1.80

5 0.39 0.05 1.01

FIG. 2. OPTIMAL VALUES OF TURBULENCE LOSS
COEFFICIENT FOR THE 5 DATA-SETS
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Sensitivity of the model is measured in terms of
minimization of the objective function, sse, with respect
to well hydraulic parameters Bf, Cf and n. Fig. 3(a-c) show
plotting segments for a data-set. The figures exhibit
jumbled phenomena with numerous spikes allowing
identifying optimal values for the well hydraulic parameters
while the objective function is realized at least minimal
level.

6.2 Validity of the Model

Validity of the model was tested using simulated and
observed values to ensure model applicability. If results
of comparison between the observed and simulated values
indicate good agreement, then the model can be
recommended.

Simulated values were compared with the observed ones
which match fairly well in case of all the data-sets, for
instance, the coefficient of determination for data-set 1
being almost unity (Fig. 4), which supports the reliability
of the model. The values of coefficient of determination
(R2), for the 5 data-sets, listed in Table 3, vary between
0.9740 and 0.9980. Based on these values the numerical
solution can be assumed quite accurate.

Mean error between the simulated and observed draw
downs varies between -0.0049 m and 0.0124 m; mean relative
error varies between -1.1897 % and 1.8661 %; and variance
varies between 0.3986 and 0.7053 for 5 data-sets as shown
in Table 3.

FIG. 3(a-c). SENSITIVITY OF THE SSE WITH RESPECT TO
WELL HYDRAULIC PARAMETERS BF, CF AND N.

TABLE 3. STATISTICAL ANALYSIS OF THE MODEL
RESULTS

Data Mean
Mean Model

Set Error Relative Variance RMSE Efficiency R 2

Error(%)  (%)

1 0.0112 1.8154 0.4553 0.0266 100.00 0.9980

2 -0.0049 -1.1897 0.7053 0.1192 99.97 0.9740

3 0.0050 1.8661 0.3986 0.0298 100.00 0.9970

4 0.0054 1.7472 0.6928 0.0440 100.00 0.9960

5 0.0124 1.7771 0.5109 0.0589 99.99 0.9890

(a)

(b)

(c)

FIG. 4. GOODNESS-OF-FIT BETWEEN SIMULATED AND
OBSERVED DRAW DOWNS FOR DATA-SET 1.
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Validity and performance of the model was also checked
statistically by computing RMSE (Root Mean Square error)
and model efficiency (EF) as shown in Table 3. These
parameters indicate the goodness-of-fit between measured
and simulated values; their variation is 0.0266~0.1192m
and 99.97~100.00%, respectively. Based on these results
it can be concluded that the model is dependable and can
be a useful tool to apply in practice.

7. CONCLUSION

In the present study, effort has been made to develop
a computer model in the framework of GA for
determination of optimal values of well hydraulic
parameters with special attention to turbulence loss
coefficient. In accordance with the principles of GA,
the objective function, sse is minimized and varies as
0.009785~0.21054; correspondingly the well hydraulic
parameters Bf, Cf and n are optimally identified. Validity
of the model was also tested by plotting simulated
draw downs against the observed ones; the gradient
of line obtained for each data-set being almost unity,
hence the numerical solution is assumed to be quite
accurate. Mean difference between the simulated and
observed draw downs, mean relative error and variance
varied as -0.0049~0.0124, -1.1897~0.8661%, and
0.3986~0.7053, respectively. The statistical parameters,
RMSE and EF were computed and varied from 0.0266-
0.1192m and from 99.97-100.00%, respectively. These
parameters indicate the high goodness-of-fit between
measured and simulated values. Based on these results
it can be concluded that the model is dependable and
can be applied in practice. The optimal values of
turbulence loss coefficient (n) vary between 1.01 and
2.80; hence, assumption of Jacob [1] and Singh [6] for
it as a constant value is discarded; conversely opinion
of Rorabaugh [2], Lennox [3], Sheahan [4], Todd's [5]
and Louwyck, et. al. [7] for considering it as a variable
is ascertained.
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