
Distributed Design of a Central Service to Ensure
Deterministic Behavior

IMRAN ALI JOKHIO*, SANA HOOR JOKHIO**, AND JAVED ALI BALOCH***

RECEIVED ON 18.11.2011 ACCEPTED ON 21.06.2012

ABSTRACT
A central authentication service to EPC (Electronic Product Code) system architecture is proposed in
our previous work. A challenge for a central service always arises that how it can ensure a certain level
of delay while processing emergent data. The increasing data in the EPC system architecture is tags
data. Therefore, authenticating increasing number of tag in the central authentication service with a
deterministic time response is investigated and a distributed authentication service is designed in a
layered approach. A distributed design of tag searching services in SOA (Service Oriented Architecture)
style is also presented. Using the SOA architectural style a self-adaptive authentication service over
Cloud is also proposed for the central authentication service, that may also be extended for other
applications.

Key Words: Quality of Service, Trusted Naming Service, User Registration Repository, Central
EPCIS Repository, Supply Chain Management, Reader Interface, and Security Method
Operations Store.

* Assistant Professor, Department of Software Engineering, Mehran University of Engineering & Technology Jamshoro.
** Assistant Professor, Department of Computer Systems Engineering, Mehran University of Engineering & Technology Jamshoro.

RFID (Radio Frequency Identification)
Technology has a number of applications.
Security and privacy challenges [1-2] to this

technology are a major hindrance in successful
implementation. A number of security methods have been
proposed globally to protect the confidential data on RFID
tags [3]. But, exhaustive authentication searching in the
back-end servers poses a new challenge. This exhaustive
authentication-searching problem in EPC system
architecture [4-5] is introduced and explained in [6-8]. A
central trusted naming service is also proposed in [8]. In
this paper, our previous work is extended to design a
distributed authentication service. In order to design a
distributed authentication service, layered architecture
approach is adopted to separate number of processes of

authentication service. This ensures the overall QoS
(Quality of Service) (deterministic response time) of the
authentication service workflow. The number of tags in a
global RFID system is emergent, hence SOA style designed
is presented to achieve a self-adaptive service whilst
exploiting the on-demand service availability of the Cloud
computing infrastructure.

2. SOA

In todays' business applications, the SOA architectural
style [9] is becoming more popular than ever. The
popularity of the SOA architectural style is owed to its
loosely coupled system components and their interaction
capabilities. As a unit, these components may offer services
and dynamic selection of a service for a workflow to ensure

1. INTRODUCTION

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
619

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
620

Distributed Design of a Central Service to Ensure Deterministic Behavior

a level of QoS. An application or business process may
have certain challenges, especially from a service providers'
view i.e. if we as a provider are offering a service that is a
part of a workflow of our clients or our own application, it
may have to ensure a SLA (Service Level Agreement) in
which response time is the main constraint of the QoS. For
this scenario, in Fig. 1 elements of SOA are shown as
business processes, applications and services. Business
process may have certain requirements and one of these
requirements is response time. The time critical business
processes result in deterministic applications. For
deterministic applications choreography of services is very
important [10]. Though traditionally, response time of a
service depends on the computation of an operation in a
service, for emergent data applications, response time of
an operation of a service becomes a function of
computation over data sources/sets. An example of this
type of application is exhaustive searching or match and
find computation. In run time or dynamic selection, to
meet a SLA over emergent data sources/sets is a challenge
for a service. The services are normally part of SOA
application workflows, and any failure to meet a SLA will
come forward as a catastrophe for a time critical application.

2.1 Self-Adaptive Services in SOA
Architectural Style

A service is the basic entity responsible for maintaining
the response time of a workflow. As discussed earlier, a

service having an exhaustive process over data would
decrease its QoS with increasing data sets. In order to
overcome this challenge, a design of a self adaptive service
is described which can be configured to offer a certain
level of QoS i.e. response time requirement with increasing
data sets.The design of the central authentication service
has certain access points to integrate it with existing EPC
system architecture [8]. These access points have anumber
of processes and the processes can be accessed by their
respective interfaces as discussed in [8]. A layered approach
to group the processes and the repositories while these
processes are being accessed is shown in Fig. 2. The ABS
(Authentication Broker Service) architecture has three
layers: definition, management and authentication. From
a logical view of the TNS (Trusted Naming Service)
architecture, for all Ei the tags TEir are kept in CTR (Central
Tag Repository) and the processing during authentication
is the same for a tag TEir i.e. P p TEirr

k
i
n= =∑=∑ e j111 but in

TNS rather than distributed across Ei. This does not allow
the leakage of any information at all during any of process
in the EPC networksystem architecture. It may be seen
that with the ABS based EPC network architecture, the
privacy and confidentiality of the RFID data is maintained.

FIG. 1. SERVICE ORIENTED ARCHITECTURE PRACTICAL
PORTAL FIG. 2. ABS LAYERED ARCHITECTURE

Business
Processes

User Interface
Applications

Service
Choreography

Service
Application

Composite
Services

Elemental Services

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
621

Distributed Design of a Central Service to Ensure Deterministic Behavior

But scalability was another problem in MORIS (Multi
Organizational RFID System), so in the data management
layer it is separated from the rest of the processes. This
facilitates a flexible way to address this issue. For an
authentication service, the response time or deterministic
nature is the parameter of scalability so the data
management layer can be enhanced to ensure the response
time of the TS (Tag Search) during the authentication
process. The scalability issue is mainly due to TS process
but in the proposed design TS is separated from other
operations. In the data management layer, the TS process
is carried on the CTR repository and the authentication
layer accesses the URR (User Registration Repository)
and the CER repositories to enforce policies. So a
distributed design of CTR and TS process can provide
improved scalability. The design of the ABS is a loosely
coupled architecture where the processes and operations
are operating independently. This ensures the
deterministic behavior of authentication in the TNS.

In Fig. 3, SS (Self-Adaptive Service) components are
shown. In order to maintain a deterministic behavior of
services, a SOA architectural style [9-10] based model is
designed to deploy services. In this model for deterministic
services, there is a service interface for clients, which is
very same as of any service. The design model has a core
component, SSM (Self-Adaptive Service Manager), which
gets a feedback (response delay) from the SS. A response
time delay requirement is also defined in SSM by a SLA so
when a SS time response delay reaches the defined
threshold, the SSM triggers a call to the SR (Service
Replicator). SR replicates the service and deploys a newly
created replicated service and an interface to it is sent to
SSM. In this way the SSM has all the interfaces of the
internal service in the SS design. When a client queries
the service interface, it forwards the request to the SS
services and all the deployed services process chunks of
the data sets. The response time delay will be within the
threshold defined as the SSM services are managed to do
so. This self-adaptive approach to creating and deploying
the SS continues to scale up and provides the required

QoS. The self-adaptive scaling up of the SS is needed as
new data sets may be added to data sources. An example
of this type of application is an RFID based SCM system.
The addition of tags and readers is very common in RFID
based SCM (Supply Chain Management) and will increase
the number of tags in the RFID data events repository.
This will increase authentication delay because of tag
searching delays. But a dynamic, self-adapting scaling up
of a service may maintain a certain level QoS of response
time delays.

3. EXHAUSTIVE SEARCHING

The authentication process begins when a reader queries
the broker about a tag by accessing the RI interface as
shown in Fig. 4 and explained in our previous work Lemma-
2 [8]. The SMOS component of the ABS searches a tag by
encrypting and matching the tags. The encryption of the
tag ID or EPC is as: f=h(x,ID,y) where x and y are two
random numbers generated by reader and tag respectively.
The encryption model h is usually one-way hash function
or some other method having similar properties. SMOS
receives x,y and f so to get the ID of a tag there is no
searching technique but a blind search i.e. encrypting the

() (⎣

FIG. 3. SELF-ADAPTIVE SERVICE DESIGN IN SOA
ARCHITECTURAL STYLE

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
622

Distributed Design of a Central Service to Ensure Deterministic Behavior

tags registered in CTR {z1, z2, z3..zn} as: g=h(x,zi,y) and
matching f=g until a match is found. This results in a brute
force searching in the authentication process.

3.1 ABS Over Cloud

In the ABS, the SMOS repository is a separate repository
to the policy definitions. This is helpful in separating the
searching overhead of the encrypted EPC data caused by
any security method deployed between a tag and a reader.
The searching overhead of a tag may be maintained for a
deterministic time response by exploiting the capabilities
of the cloud-computing paradigm. We propose a self-
adaptive distributed design approach for tag searching in
CTR to maintain a certain level of QoS as shown in Fig. 4.
It may be noted here that we assume all the components
and interactions between these components in the Cloud
is secure.

In order to maintain deterministic behavior of the
authentication service a model is proposed to deploy the
authentication service of the EPC network over the cloud.
The cloud based authentication service has an ABS
manager. It has a core component SM (Service Manager),
which gets a feedback (authentication delay) from SMOS
of the ABS. An authentication delay requirement is also
defined in the SM so when the SMOS authentication delay

reaches the defined threshold, the SM triggers a call to
the Cloud to create a new VM (Virtual Machine). An ABS
is deployed on the newly created VM and an inter-face to
it is sent to the RI. In this way the RI has all the interfaces
of the VM having ABS in the Cloud. When a reader queries
the RI for the authentication of a tag, it forwards the request
to all the VMs and ABS service hosted on a VM that holds
the tag replies with a positive authentication reply. The
authentication delay will be within the thresh- old defined
as the VMs are managed to do so. However, the rest of the
VMs will have redundant authentication processing, as
these do not contain the tag. This redundancy cannot be
avoided because of the nature of the security method on
the tag as described in previous work [7-8]. This self-
adaptive approach to create and deploy the ABS continues
to scale up and provides the required QoS of the
authentication. The self-adaptive scaling up of the ABS is
needed as a new EPCIS service may register with the ABS
and adds up its tags and readers or existing registered
EPCIS services may add up their tags and readers. The
addition of tags and readers is very common in RFID based
systems and it will increase the number of tags in the CTR.
This will increase authentication delay because of the
SMOS tag searching delays. But with dynamic self-
adaptive scaling up of the ABS over the Cloud may
maintain a certain level QoS authentication delay.

4. EXPERIMENTAL EVALUATION

To demonstrate scalability of the proposed distributed
design of TNS over large data with increased queries a
number experiments are conducted.

4.1 Reliability Analysis

For reliability analysis experiments are performed multiple
time. In section 5, the experiments are executed for three
times, the standard deviation error is calculated and 90%
confidence interval is calculated. In the scalability
experiments, in order to calculate standard deviation error
and show 90% confidence level, the experiments of each
scenario is performed four times.FIG. 4. SELF-ADAPTIVE DESIGN OF ABS OVER CLOUDS

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
623

Distributed Design of a Central Service to Ensure Deterministic Behavior

4.2 Experimental Setup/Configurations

In the second part of the experiments, the Cloud is set up
using the Xen-Hypervisor 3.4. The hypervisor is
configured with Ubuntu Kernel Version 2.6.31.4 having
memory of 128 megabyte. Two virtual machines were
configured in this setup each having the 1 Giga-byte of
the RAM (Random Access Memory). Each virtual machine
was running Ubuntu 8.0 operating system with Apache
Axis2 platform and postgreSQL database configured on
them.

4.3 Hardware

In the case of without Cloud setup, the experiments were
performed on a single machine having features a dual-
core processor and 2 Gigabytes of RAM, with hosting all
the services and repositories of the EPC network
architecture. While in the case of the Cloud setup a machine
having features a dual-Xeon core processor and 4 gigabyte
of RAM is used in the experiments.

5. SCALABILITY EXPERIMENTS

The scalability of the proposed TNS based EPC network
is measured in terms of response time of the authentication
service. In order to assure a response time, there is a need
to assess the average authentication response time of an
authentication service, so that each authentication request
can be responded within a specified time. For this, the
simulation of the TNS based EPC network is experimented
with two scenarios whilst increasing the number of tags in
the system, to demonstrate how the average authentication

delay and response time of TNS behave. Experiments are
run four time for each scenario. In order to perform reliability
analysis of the experiment standard deviation error and
90% confidence interval is also calculated.

5.1 First Scenario

In the first scenario of TNS, all the tags of the system are
kept in a single central repository and an authentication
service is implemented over it. The experiment is done
with varying number of tags as shown in Table 1. The
experiments were repeated for several times for the
reliability analysis. Table 1 shows the four runs and their
respective authentication. The average authentication
delay, standard deviation error and 90% confidence level
interval is shown Table 2.

In Fig. 5 the four run's and the average authentication
delay whilst increasing the total number of tags in the
TNS are plotted. It can be noted in the Fig. 5, that the
average authentication delay curve is of parabolic fashion
rather than being linear. This indicates that, a level of
average response time t can be maintained in the TNS for
n tags. However, in a real-time application, the response
time of a service needs to be assured. The next experiment
is done by considering the response time requirement of a
real-time application is treq and t>treq, in this case, the
repository of the TNS can be divided into smaller chunks
so that the worst time response twor should be less than
treq. And, an authentication service is replicated on all the
chunks of the TNS repository. Only one replicated service
across the chunks of the repository, will ultimately respond

TABLE 1. AUTHENTICATION DELAY IN TNS CENTRAL REPOSITORY

No. of Run-1 Delay Run-2 Delay Run-3 Delay Run-4 Delay
Tags (millisecond) (millisecond) (millisecond) (millisecond)

1K 375.13283 462.0530049 400.5911598 436.5946751

5K 1262.47419 1342.541691 1285.925418 1319.090463

10K 2811.85355 2891.628441 2835.219074 2868.262916

15K 5186.12398 5327.013708 5227.389626 5285.748062

20K 7211.40345 7414.120734 7270.777968 7354.746216

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
624

Distributed Design of a Central Service to Ensure Deterministic Behavior

in time tchunk i.e. tchunk<treq. This response of the
authentication service, over the chunk of the repository,
is forwarded to meet the response time of the application.
In order to demonstrate that division of the repository of
the TNS into chunks can assure a certain level of response
time requirement, a simulation of the self-adaptive TNS
service over the virtualized resources is conducted and is
discussed in the second scenario.

5.2 Second Scenario

In this scenario, in order to demonstrate that distributed
design of the TNS using load balancing techniques can
maintain a level of response time, the experiment of the
first scenario is repeated by dividing the TNS central
repository into two chunks. In a real world RFID
application, this central repository grows with the
increasing number of tags and the participating
organizations. This increase in the number of tags in TNS
needs to distribute the central repository internally. Not
only that but there is also a need of the authentication and
authorization service over this tag repository. The
distribution of the central repository is to maintain the
response time of the TNS service. Therefore in order to
accommodate the distribution of the central repository,
the virtual machines of the Clouds is a candidate solution
for this problem. When a new virtual machine with a chuck
of the central repository is created, the authentication and
authorization service can easily be deployed over this
virtual machine. However, a separate physical server may
also be setup for the distribution of the central repository
of the TNS service. But the virtual machines are relatively

easier and faster to setup. The virtual machines also give
an advantage of easier scaling up and shrinking down of
the servers. Moreover, the resources of the virtual
machines may not always be acquired by the TNS service;
these resources may be used for other applications.
Therefore, experiments of the distributed design of the
TNS service are done using the Clouds. In this experiment
two authentication services are replicated over the two
virtual machines, each having a part of the central
repository of the TNS. The responses of each of the
deployed services are aggregated at a point that is
accessible to the reader device.

Although in the design and implementation of the
distributed SMOS, the central repository is divided into
two equal parts, but because of the aggregation of the
results in authentication service and virtual machines the
authentication delay is not decreased to the half.
Comparing the Table 1 and 3 it can be noted that the
authentication delay may be improved with the proposed
design of the distributed SMOS over virtual machines/
Clouds.

TABLE 2. STANDARD DEVIATION ERROR AND CONFIDENCE INTERVAL.

No. Average Standard Upper Lower
of Tags Authentication Delay Deviation Error Interval Interval

1K 418.5929174 38.4087011 457.2896838 379.896151

5K 1302.50794 35.3806087 1338.790755 1266.225126

10K 2851.741 35.2513088 2887.891213 2815.590778

15K 5256.568844 62.2570246 5320.413423 5192.724265

20K 7312.762092 89.5776794 7404.624002 7220.900182

FIG. 5 .AVERAGE AUTHENTICATION DELAY

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
625

Distributed Design of a Central Service to Ensure Deterministic Behavior

The experiment for second scenario was also repeated
four time, the iterations of the experiment are shown in
Table 3. Table 4 shows standard deviation error and 90%
confidence level intervals to demonstrate the reliability of
the performed experiments.

In the experimental simulations, the tags searching and
matching time in the SMOS component of the TNS is
shown in Fig. 5-6. It can be noted in the Fig. 5-6, that the
average authentication delay of the tags verses increasing
number of tags in CTR is decreased with the distributed
deployment of the SMOS or central authentication
repository. This is so because the searching and matching
of the tags is are carried out separately in two parts of the
SMOS repository (i.e. distributed SMOS). The distributed
approach improves the response time of the authentication
process. This demonstrates that the distributed design of
SMOS and CTR can improve response time of the TNS
and scale it up for the increasing number of tags. The
distributed deployment of the SMOS repository can be
extended, whilst dividing the central repository in more
than two chunks too. Hence, in this way a certain level of
response time of the TNS can be achieved. The increased
number of virtual machines provides a scalable distributed

TABLE 4. STANDARD DEVIATION ERROR AND CONFIDENCE INTERVAL

No. Average Standard Upper Lower
of Tags Authentication Delay Deviation Error Interval Interval

1K 212.0975241 38.4087011 250.7942905 173.4007577

5K 672.0132017 35.3806087 707.659165 636.3672384

10K 1477.363696 35.2513088 1512.87939 1441.848002

15K 2723.590538 62.2570246 2786.31449 2660.866586

20K 3788.542886 89.5776794 3878.792398 3698.29337

TABLE 3. AUTHENTICATION DELAY IN TNS CENTRAL REPOSITORY

No. of Run-1 Delay Run-2 Delay Run-3 Delay Run 4-Delay
Tags (millisecond) (millisecond) (millisecond) (millisecond)

1K 197.4383316 221.1908114 211.945781 217.8151724

5K 664.4601 673.9659253 659.4976913 690.1290904

10K 1479.922921 1468.42244 1443.919491 1517.189932

15K 2729.538937 2706.257265 2661.553845 2797.012106

20K 3795.4755 3765.358641 3702.66435 3890.673054

design of the TNS because; the authentication services
deployed over the virtual machines are independent of
each other, as each service has its own data. For real-time
deployment of the TNS that ensures a certain level of
response time, a self-adapting approach may be
incorporated. In the self-adaptive approach, a new virtual
machine can be initiated on request to deploy an
authentication service over a chunk of the central
authentication repository. The data transfer from the central
SMOS repository to a virtual machine is not an issue, as
the virtual machines are kept in the single domain that has
high-speed network bandwidth or connections. Further-
more, a new virtual machine is initiated when the existing
virtual machines reach their maximum number of tags

FIG. 6. DELAY IN DISTRIBUTED TNS OVER CLOUDS

Mehran University Research Journal of Engineering & Technology, Volume 31, No. 4, October, 2012 [ISSN 0254-7821]
626

Distributed Design of a Central Service to Ensure Deterministic Behavior

authentication data, so a new virtual machine's tags
authentication data grows slowly. This does not create
any sudden degradation of the authentication service.

6. CONCLUSION

In EPC system architecture TNS is a central service that
has a deterministic response time as one of the prime
requirement besides securing the confidential tags data.
In this paper is aimed to the former requirement henceforth
a distributed design of tag searching services in a SOA
style is presented. Using the SOA architectural style a
self-adaptive authentication service design is also
proposed for the central authentication service. The
proposed design of the service is aimed at the
authentication service in EPC system architecture. But,
the proposed work in this paper is a generic in its design
that can be exploited in other application requiring a central
scalable service. Therefore, the proposed design in this
research work has wider candidate applications that may
have deterministic response requirements. In our future
work, the architecture presented in this work and Map-
Reduce architecture are to be investigated for their
applicability in Filtering and Blocking URLs system.

ACKNOWLEDGEMENT

Authors are thankful to Mehran University of Engineering
& Technology, Jamshoro, Pakistan, to provide funding/
infrastructure to conduct this research in general and
Department of Computer Systems & Software Engineering
in particular.

REFERENCES

[1] Henrici, D., “RFID Security and Privacy: Concepts,

Protocols, and Architectures”, Lecture Notes in Electrical

Engineering, Springer Publishing Company,

Incorporated, 2008.

[2] Neumann, P.G., "Risks to the Public", SIGSOFT Software

Engineering Notes, Volume 32, No. 5, pp. 17-25, 2007.

[3] Langheinrich, M., "A Survey of RFID Privacy

Approaches", Personal Ubiquitous Computing, Volume

13, No. 6, pp. 413-421, 2009.

[4] Kin Seong Leong, D.W.E., and MunLeng, N.G., "EPC

Network Architecture", Auto-ID Center MIT, White

Paper, 2005.

[5] Ken Traub, G.A., "EPC Network Architecture

Framework", Auto-ID Center/EPCglobal, Technical

Report. July, 2005.

[6] Jokhio, I.A., and Xu, J., "An Authentication Broker

Service for Secure and Confidential EPC Code", 22nd

International Symposium on Information,

Communication and Automation Technologies, 2009.

[7] Jokhio, I.A., and Xu, J., "Data Privacy Management in

a Multi-Organizational RFID Authentication", 6th

International Conference on Wireless Communications,

Networking and Mobile Computing, Chengdu, China,

September, 2010.

[8] Jokhio, I.A., Jokhio, S.H., and Shaikh, F.K., "A Trusted

Naming Service for Things of Internet" Mehran

University Research Journal of Engineering &

Technology, Volume 31, No. 2, pp. 325-334, Jamshoro,

Paksitan, April, 2012.

[9] Lublinsky, B., "Defining SOA as an Architectural Style:

Align Your Business Model with Technology", Technical

Report, January, 2007. http://www.ibm.com/

developerworks/architecture/library/ar-soastyle/ (Last

Accessed February, 2012.

[10] Sprott, L.W.D., “Understanding SOA”, http://

msdn.microsoft.com/en-us/library/aa480021.aspx, (Last

Accessing February, 2012.

