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ABSTRACT

This work is related to establish the exact solutions of sine hyperbolic and cosine hyperbolic oscillations
of Maxwell fluid over the velocity field and shear stress. Under the effects of sine hyperbolic and cosine
hyperbolic oscillations, the general solutions are derived for the motions of incompressible Maxwell
fluid. For the sack of the general solutions the mathematical techniques of integral transformations
(Laplace and Fourier Sine transforms) are applied. We have expressed the obtained solutions under form
of theorem of convolutions product and integral notation, satisfying the boundary and initial conditions.
The expressions for similar solutions are specialized as a limiting case of Newtonian fluid.
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1. INTRODUCTION

polymeric melts the integral model is more enough for
detection of behavior of memory phenomenon. The
abundance of literature for viscoelastic behavior of fluid
lies in non-Newtonian such as second grade and third
grade do not detect the phenomenon related to retardation
and relaxation. But the models of the types such as second
grade, Maxwell, Oldroyd-B and Burger are very popular.
The work in this paper is based on the analysis of Maxell
fluid which is considered for the observation of the
phenomenon like memory effects and elasticity. The
numerical simulation to visualize certain experimental data
is the main advantage of Maxwell model which is highly
applicable in the biological and polymeric liquids[7-20].
The focal communication of this note is to have the
solutions for the partial governing differential equations
using mathematical transformations techniques which are
Fourier sine transforms and Laplace transforms. The
velocity field u(y,t) and shear stress τ(y,t) are found out
by satisfying all the boundary and initial conditions. The
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The oscillations due to sine and cosine are of great
interest in practical as well as theoretical domains
and have lot of importance and applications in

the scientific and technological field such as oil
exploration, chemical engineering, bio-engineering and
different industries. Among the comparison of non-
Newtonian and Newtonian fluid, the non-Newtonian fluid
has diverted much attention among the scientists and
researchers as well. On In addition, Navier Stokes
equation is inadequate to detect the behavior of non-
Newtonian fluid. The complicated fluids do not obey the
retardation and relaxation phenomenon rheologically.
Under this process several models are presented for
determination of fluid flows. These fluids are categorized
in three types which are; integral, differential and rate
types. The most influential type is the differential type
which detects the response of fluids with respect to their
slight memory that is applicable in dilute polymeric
solutions [1-6]. On the other hand, with reference to



Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
156

Exact Solutions on the Oscillating Plate of Maxwell Fluids

obtained solutions are written as the limiting case of
analysis. Finally several graphical discussions and
illustrations are considered depending over the variations
of parameters. As for the checking of exactness and
accuracy, we also showed that for small values of the
rheological parameters λ only, the diagrams of the
solutions are very nearly identical to those corresponding
to the known solutions for Newtonian fluids.

2. GOVERNING EQUATIONS

The stress tensor for Cauchy under the consideration of
Maxwell fluid is detected as [19-20]:
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is the upper convected derivative. We assume a an extra-
stress tensor S and velocity field V of the form

V = V(y,t) = u(y,t)i, S(y,t) = S (3)

At the moment t = 0, the fluid is at rest then

V = (y,0 )= 0, S = (y,0) = 0 (4)

From equations (1) and (4) imply Syz = Syy = Szz = Sxz = 0
and
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where the non-zero shear stresses are Sxy = τ. The balance
of linear momentum reduces to:

ρut = τt - px (6)

In the absence of body forces, eliminating τ between
Equations  (5) and (6), we have the partial differential
equations under the form:
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Where y,t > 0 and the kinematic viscosity of the fluid is v
= μ/ρ, then equations govern the Maxwell fluid are:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
=

∂

∂
2

2

2

2

t

u

t

u

t

u
v λ (8)

⎟
⎠
⎞

⎜
⎝
⎛

∂

∂
+=

∂

∂

ty

u τ
λτμ (9)

The concerned problem with initial and boundary
conditions is:
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u(0,t) = UH(t) sinhωt or UH(t) coshωt t > 0 (11)

Moreover, the considerable conditions with Heaviside
function H(t).
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have to be also satisfied.

3. CALCULATION OF PROBLEM

3.1 Velocity Components for Sine Oscillation

For sacking the solutions, we shall use the Fourier sine
transforms [21].
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Where usis Fourier sine transform and has to satisfy the
initial conditions:

us(ξ,0) = ust(ξ,0) = 0, ξ > 0 (14)

By applying the Laplace transform [22] to equation (13)
and having in mind the initial conditions from Equation
(10), we find that:
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Now, rewriting Equation (15) in very appropriate
representation:

( )
( )

( ) ( )⎥⎦
⎤

⎢
⎣

⎡
++

×
−

+
−

−
=

λξω

λπω

ωξ

πω
222222

1122

qqvq

qq/U

q

/U
us (16)

Applying the inverse Fourier sine formula on Equation
(16) as:
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Finally for velocity field, we apply the inverse Laplace
transform to Equation (17), the simple expression is:
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are the roots of ξ2v + q + q2λ = 0 quadratic equation.

3.2 Evaluation of Shear Stress for Sine Oscillations

Apply Laplace transform to Equation (9) to have solution
of shear stress, here we determine as:
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By finding the partial derivative of Equation (17) with
respect to y, we get:
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Solving Equations (21) in Equation (20):
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Simplifying Equation (22):
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Applying inverse Laplace transform in Equation (23) we
get:
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Is sought out.

3.3 Velocity Field and Shear Stress for
Cosine Oscillations

Under considering the similar procedure of mathematical
transformation techniques, the solutions for velocity field
and shear stress for cosine oscillations are:
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are obtained respectively.

4. SPECIAL CASES

4.1 Newtonian Fluid

Solving Equations (18, 24, 25 and 26) for l → 0 as the limit
and applying following possible mathematical facts:
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are achieved.



Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
158

Exact Solutions on the Oscillating Plate of Maxwell Fluids

5. COMPUTATIONAL RESULTS AND
DISCUSSION

In this paragraph, we have developed exact solutions for
the effects and oscillations of sine hyperbolic and cosine
hyperbolic for Maxwell fluid. To depict and capture certain
relevant physical aspects, we have drawn several graphs
related to motion of Maxwell fluid under effects and
oscillations of sine and cosine. The graphical as well as
numerical profiles of velocity field and shear stress are
illustrated for incompressible Maxwell fluid with respect
to emerging parameters of variation of interest. From the
general solutions, the similar solutions are particularized

as a Newtonian solution also the comparison and contrast
has been depicted for both types of solutions graphically
and numerically. Fig. 1 is arranged for the oscillations of
sine and cosine for Maxwell fluid, where the variations of
t display the effects of increasing function of velocity
field and shear stress. Fig. 2 provides the increasing
motion with regard to the increasing value of v. Fig. 3
gives interesting results under the effects of relaxation
time λ to have intersecting motion of fluid. Fig. 4 is depicted
for amplitude in which both the velocity field as well as
the shear stress is increasing function of for the motion
of incompressible Maxwell fluid.

FIG. 1. PLOT OF THE VELOCITY FIELD AND THE SHEAR STRESSF ROM EQUATIONS (18) AND (24), FOR M,N,U,Λ, AND Ω WITH
VALUES 1.52, 0.63,2, 2, AND 2 FOR VARIOUS VALUES OF T

FIG. 2. PLOT OF THE VELOCITY FIELD AND THE SHEAR STRESSF ROM EQUATIONS (18) AND (24), FOR M,P,U,Λ, AND T WITH
VALUES 1.52, 2.413,1, 2, AND 2 S RESPECTIVELY FOR VARIOUS VALUES OF N
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FIG. 3. PLOT OF THE VELOCITY FIELD AND THE SHEAR STRESS FROM EQUATIONS(18) AND (24), FOR M,N,U,Ω, AND WITH
VALUES 1.52, 0.63,1,2, AND 2 RESPECTIVELY FORVARIOUS VALUES OF Λ

FIG. 4. PLOT OF THE VELOCITY FIELD AND THE SHEAR STRESS FROM EQUATIONS(18) AND (24), FOR M,N,U,Λ, AND WITH
VALUES 1.52, 0.63,1, 2, AND 2 RESPECTIVELY FOR VARIOUS VALUES OF Ω

6. CONCLUSION

The major findings related to this paper are exact solutions
over hyperbolical oscillations of sine and cosine for
Maxwell fluid. The main focus is given to use mathematical
transformation techniques for the solutions of such type
of Maxwell fluid problems arising in nature. Different types
of conditions are also imposed on the general solutions
to verify the results. Further it is also analyzed that as the
time increases the motion of the fluid as well as shear
stresses increases and also as viscosity increases the

profile of velocity field is oscillating and shear stresses
are increasing. In addition, as the amplitude of fluid
increases velocity field oscillates and shear stresses
increases.
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