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 In this study, linear vibration of fluid carrying pipe with intermediate support 
was discussed. Supports located at the ends of the pipe were clamped supports. 
A support was located in the o0middle section show the features of a simple 
support.  It was accepted that the fluid velocity varied harmonically by an 
average speed. The equation of motion and limit conditions of the system were 
obtained by using Hamilton principle. The solutions were obtained using the 
Multiple Scale Method, which is one of the Perturbation Methods. The first term 
in the perturbation series causes the linear problem. Exact natural frequencies 
were calculated by the solution of the linear problem for the different positions 
of the support at the center (η), different longitudinal stiffness (vb), different pipe 
coefficient (vf), different rate of fullness (β) and natural frequencies depending 
on velocity of the fluid (v0) were calculated exactly. The obtained results were 
shown in graphics. 
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1. Introduction 

Vibrations of fluid-carrying continuums are under study for a long time in terms of their 
significance. They have several fields of application ranging from oil pipelines carrying 
fluid to natural gas pipelines, water pipes, the pipes that carry hazardous fluids in chemical 
plants, fire extinction equipment, sewers and underwater pipelines for conducting fluid. 
Such systems are considered as problems of fluid-carrying strip pipes, fluid-carrying 
flexible pipes and fluid-carrying pipes. Studies have been conducted on dynamics of fluid-
carrying pipes where friction of fluid is neglected [1]. Ulsoy et al. [2] studied principal 
developments on vibrations and stability of strips. Pakdemirli and Batan [3] achieved an 
approximate analytical solution for strips that accelerate axially with multiple time-scale 
method (perturbation technique [4]). Pakdemirli et al. [5] studied transverse vibrations of 
axially-moving strips. Pakdemirli et al. [6] used two different approaches in their studies. 
In the first approach, they used discretization-perturbation method. The second approach 
was used in continuums with axial movement for the first time in the said study and it 
introduces some advantages. This approach neglects the necessity to write the equations 
in a new form and define an orthogonal base system. In their study where they compared 
the results of two methods for nonlinear cable vibration, they showed that branching and 
stability analysis were different for each method and the behavior of the actual system was 
better represented by direct-perturbation method. Pakdemirli and Ulsoy [7] conducted 
stability analysis of strips with axial motion, comparing direct-perturbation and 
discretization-perturbation methods. Velocity is considered as fixed and analyses were 
made on this basis in most of the studies mentioned above. Mulcahy [8] examined the 
vibrations arising from the fluid effect in nuclear power plant reactors and then the natural 

mailto:ahmetkesimli@hitit.edu.tr
http://dx.doi.org/10.17515/resm2015.18me0825


Kesimli et al. / Research on Engineering Structures & Materials 2 (2016) 75-87 

 

76 

 

frequencies of vibrations caused by the flow between 2 nested pipes [9]. Chen et al. [10] 
studied the vibration of pipes under the flow effect. Lee and Mote [11] studied the changes 
in frequency values of fluid-carrying pipes depending on speed. Paidoussis and Semler [12] 
studied the nonlinear dynamics of bent pipes on the assumption of smaller mass on the 
free end. Ridvan and Boyaci [13] studied transversal vibrations of the pipe in cases where 
the speed of fluid depends on time. Özkaya and Pakdemirli [14] examined the behavior of 
transmission from the strip to the beam, assuming that the beam coefficient is very small 
and studied the vibrations of such axially-moving beams. Özkaya [15] studied the beams 
that carry concentrated mass. Wang et al. [16] studied vibrations caused by fluids in Euler-
Bernoulli beams. Öz and his coworkers [17] and [18] studied the natural frequency of 
tensioned pipes for different limit conditions. Wang et al. [19] designed nonlinear fluid 
load model for elastic cylinder. Modarres and Païdoussis [20] conducted a dynamic 
analysis of pipes supported at both ends, which carry fluids with a weak nonlinearity using 
the Galerkin method. In that study, the velocity of the fluid is considered to be fixed. Wang 
et al. [21] studied the effect of geometric defects on fluid-carrying pipes, using the Galerkin 
approach. Nikolić and Rajković [22] analyzed bifurcation points of fluid-carrying pipes 
supported at both ends using Lyapunov-Schmidt reduction and singularity theory. Enz 
[23] studied simple supported straight pipe using perturbation analysis with multiple 
time-scaled method and measurements made by Coriolis flowmeters were compared. Ritto 
et al. [24] studied fluid-carrying Euler-Bernoulli pipe by means of finite elements method. 
Dai et al. [25] studied vortex-induced vibrations of pipes carrying pulsed fluids, using 
multiscale method. Kheiri et al. [26] studied dynamic stability of fluid-carrying pipes 
supported by bows on its ends. Chen et al. [27] studied using Galerkin method the 
nonlinear vibrations of fluid-carrying viscoelastic pipes at about critical velocity. Li et al. 
[28] analyzed by means of matrix transfer method the vibration of fluid-carrying systems. 
Kheiri and Païdoussis [29] used generalized Hamilton principle to get the motion 
equations of fluid-carrying pipes. Yang et al. [30] studied the stability of transversal 
vibrations of beams modelled as viscoelastic pipes. Ghayesh et al. [31] studied nonlinear 
plenary dynamics of fluid-carrying bent pipes. Kesimli et al. [32] studied nonlinear 
vibrations of spring supported string by means of multiple scaled method. Zhang and Chen 
[33] studied external and internal resonances of fluid-carrying pipes around the critical 
velocity. Modarres and Païdoussis [34] studied oscillations of fluid-carrying pipe with a 
mass on its end. Banerjee [35] studied free vibrations of the beam that has a mass-spring 
system on its end. Yi-Min et al. [36] calculated natural frequencies of the simply-supported 
fluid-carrying system using the Ferrari method that is used for solving quartic equations. 
Lee et al. [37] conducted the dynamic analysis of the beam that bears a mass-spring system 
with embedded and simple support on its ends, using finite element method. Bağdatli et al. 
[38] Studied dynamics of axially accelerating beams with multiple supports. Ghayesh et al. 
[39] studied three-dimensional dynamics of the fluid-carrying bent pipe that has a spring 
on its middle section and a mass on its end. Ni et al. [40] calculated natural frequencies of 
fluid-carrying pipes with different limit conditions, using differential transfer method 
(DTM). Li et al. [41] identified free vibrations of fluid-carrying pipes with multiple support, 
using dynamic stiffness method. Bağdatli et al. [42] Investigated to dynamics of 
intermediate support beams. 

This study examines the fluid-carrying pipe with multiple support. The situation where the 
pipe is attached to the ground by embedded supports on its ends and bears a simple 
support on its middle section is studied. Fluid velocity is assumed to change harmonically 
around an average velocity (v(t)=v0+εv1sin t). Taking into consideration the nonlinear 
effects caused by extension of pipes, motion equations and limit conditions are found by 
Hamilton's principle. Dependence on material or geometric structure was eliminated by 
nondimensionalizing the equations of motion. Approximate solutions were found by using 
the multiple time-scaled method, which is one of the perturbation methods. Natural 
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frequencies were precisely calculated for different positions, different pipe coefficient and 
different rates of fullness and fluid velocity values of the support on the middle part. 

2. Equation of Motion  

In this section, equations of motion will be worked out for the fluid-carrying pipe 
supported at its two ends and a middle point as specified in Fig. 1. Hamilton's principle will 
be used to find equations of motion. Euler-Bernoulli pipe where turning inertia and shear 
stresses are neglected was used in working out the equation of motion. It was assumed 
that sizes of sections do not change during motion.  
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w2
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v*(t*)  
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u2
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Fig. 1 Pipe carrying fluid with intermediate support 

In the fluid-carrying pipe with three supports shown in Fig. 1, u* (x*,t*) shows displacement 
in the direction of x*; v* (t*) shows the velocity of fluid in the direction of x* (independent 
of x*); w1*(x*,t*) and w2* (x*,t*) w* show displacement at the right and left of the support, 
respectively, at a middle location in the direction of w*. Expressions of kinetic energy and 
elastic potential energy may be written as follows, respectively. 
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In the Eq. (2) above, first integrals are about the transformation, the second integral (P) is 
about axial stress and the third is about deflection. In the Eqs. (1-2), b stands for the 
distance of the support at the middle part to the starting point. p, f show the density of 
the pipe and fluid, Ap, Af the section area of the pipe and the fluid, w1,2* the transversal 
displacement of each part of the pipe among the supports, Ep, Ef the elasticity module of 
the pipe and fluid, respectively, u1,2* the axial displacement of each part of the pipe among 
the supports, ( ) the derivative on the basis of time and (  )’ the derivative on the basis of x. 
The Lagrangian, kinetic and potential energy of the system are different. According to 
Hamilton’s Principle, variation of the integral of Lagrangian on time is zero. 
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In order to make the solutions independent of the material and geometric structure used 
and more general, the equations have to be nondimensionalized. The non-dimensional 
parameters required for transformations are defined as follows. 
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Where vb represents longitudinal stiffness, vf pipe coefficient, v* velocity of the fluid and β 
the rate of fullness. Nondimensionalized motion Eqs. (7-8) can be written as follows: 
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3. Perturbation Analysis 

If our equation of motion is modified by transformation of degree   this leads to 

nonlinear expressions at the degree ε.   
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Change of velocity can be expressed on the basis of time and space and derivatives as an 
Eqs. (9-13). 
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Therefore, our equation of motion is like (14-15) for the regions I and II. 
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If the terms of degree 1 and ε are written separately, the equations of motion and limit 
conditions are found as follows. 
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Boundary Conditions: 
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The equations at the degree of (1) (16-17) make up the linear equation of motion and the 
linear problem of limit conditions. We can suggest the Eqs. (24-25) for solution of the 
equation of linear motion. 
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If the solutions we suggest are written to their specific places, the Eqs. (26-27) is found. 
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This equation is a fourth degree, linear, ordinary differential equation. We can use the Eqs. 
(28-29) for solution of the Eqs. (26-27). 
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When we write the Eqs. (26-27) to its place in the equation of motion and equation of limit 
condition, the expressions (30-32) are found. 
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Natural frequency values depending on the changes in the velocity of fluid were found for 
the values of η, vf and β in the figures above. Fig. 2 shows the graph that indicates the 
change of vf for the values η=0.1 and β=0.50. When the vf value increases, the first three 
natural frequency values also increase. On the other hand, when the velocity of the fluid 
increases, the natural frequencies decrease. Fig. 3 shows the graph that indicates β change 
for the values η=0.1 and vf=0.50. An increase in the value of β does not cause any change in 
first three natural frequency values (v0=0), then decreases those values. When the velocity 
of the fluid increases, natural frequencies decrease. Fig. 4 shows the frequency values that 
indicate change of vf for the values η=0.3 and β=0.50. When the vf value increases, the 
values of natural frequencies increase. When the velocity of fluids increases, natural 
frequencies decrease. Fig. 5 shows the graph that indicates change of β for the values η=0.3 
and β=0.50. When the β value increases, the values of natural frequencies increase. When 
the velocity of fluid increases, natural frequencies decrease. Fig. 6 shows frequency values 
that show the change of vf pipe coefficient for the values η=0.5 and β=0.50. When the vf 
value increases, the values of natural frequencies increase. When the velocity of fluid 
increases, natural frequencies decrease. Fig. 7 shows the natural frequency values that 
indicate change of β for the values η=0.5 and β=0.50. When the β value increases when the 
support is on the midpoint, the values of natural frequencies decrease. Fig. 8 shows natural 
frequency values that show the change of the position η for the values β =0.50 and vf=0.50. 
When the location of support approaches the midpoint, frequency values increase in mode 
1 and mode 3. The highest frequency value occurs in η=0.3 while the lowest frequency 
value occurs in η=0.1 for mode 2. For each case, when the velocity of fluid increases, the 
natural frequency values decrease.  Fig. 9, Fig. 10 and Fig. 11 show mode structure graphs 
for different locations of the support (η=0.1-0.3-0.5) on the middle section for vf=0.5, β=0.5 
and v0=2. Critical non-dimensional fluid velocity of the system was given in table 1 for 
β=0.5, vf=0.5 and different η locations. 
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Fig. 2 Variation of the first three modes with fluid velocity for η =0.1, β =0.5 
parameters and for different vf  values.  

 

 

Fig. 3 Variation of the first three modes with fluid velocity for η =0.1, vf=0.5 
parameters and for different β values.  

 

 

Fig. 4 Variation of the first three modes with fluid velocity for η =0.3, β =0.5 
parameters and for different vf  values.  
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Fig. 5 Variation of the first three modes with fluid velocity for η =0.3, vf=0.5 
parameters and for different β values.  

 

 

Fig. 6 Variation of the first three modes with fluid velocity for η =0.5, β =0.5 
parameters and for different vf  values.  

 

 

Fig. 7 Variation of the first three modes with fluid velocity for η =0.5, vf=0.5 
parameters and for different β values.  
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Fig. 8 Variation of the first three modes with fluid velocity for β=0.5, vf=0.5 parameters 
and for different η locations.  

 

 

Fig. 9 First mode shapes for vf=0.5, β=0.5, v0=2 and different η locations. 

 

 

Fig. 10 Second mode shapes for vf=0.5, β=0.5, v0=2 and different η locations 
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Fig. 11 Third mode shapes for vf=0.5, β=0.5, v0=2 and different η locations 

 

Table 1 Variation of the first three modes with critical fluid velocity for β=0.5, vf=0.5 and 
different η locations.  

η ω1 ω2 ω3 

0.1 3.53 5.13 6.71 
0.3 4.13 5.99 7.77 
0.5 4.6 6.36 7.84 

 

4. Conclusions 

This study discusses the fluid-carrying pipe with multiple supports and axial motion. A 
specific situation is examined where the pipe is attached to the ground with embedded 
supports on its ends and there is a simple support on the middle section. It is assumed that 
fluid velocity changes harmonically around an average velocity (v(t)=v0+εv1sint). Taking 
into consideration the nonlinear effects caused by extension of pipes, equations of motion 
and limit conditions were found by Hamilton's principle. Such equations of motion were 
non-dimensionalized, hence the dependence on material and geometric structure was 
eliminated. Approximate solutions were found using the multiple time-scaled method. The 
first term in the perturbation series constitutes the linear problem. Solution of the linear 
problem enabled precise calculation of natural frequencies for different positions of the 
support at the middle part, different pipe coefficients, different rates of fullness and values 
of fluid velocity. First, second and third natural frequencies were found for different 
parameters from the solution of the linear problem and these results were shown as 
graphs. According to these results, an increase in pipe coefficient for all locations of 
support also increases the values of natural frequency. On the other hand, when the 
velocity of fluid increases, natural frequencies tend to decrease. Values of natural 
frequency cannot be obtained after a certain value of velocity, which is considered critical 
velocity. For all positions of support, when the rate of fullness of the fluid-carrying pipe 
increases, the values of natural frequencies start from the same point. As the rate of 
fullness increases, frequencies decrease for the same value of fluid velocity. Whereas, when 
the location of support is close to the midpoint, natural frequency values increase. The 
highest frequency value occurs at the position η=0.3 and the lowest frequency value occurs 
at the position η=0.1 only for the second natural frequency values. When the fluid velocity 
increases, natural frequencies tend to decrease.  
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