
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Free vibration and bending of functionally graded 

beams resting on elastic foundation  

Şeref Doğuşcan Akbaş  

 

Online Publication Date: 11 Feb 2015 

URL:  http://www.jresm.org/archive/resm2015.03st0107.html 

DOI:  http://dx.doi.org/10.17515/resm2015.03st0107 

Journal Abbreviation: Res. Eng. Struct. Mat. 

To cite this article 

Akbaş ŞD. Free vibration and bending of functionally graded beams resting on elastic 

foundation. Res. Eng. Struct. Mat., 2015; 1: 25-37. 

 

Disclaimer 

All the opinions and statements expressed in the papers are on the responsibility of author(s) and are 

not to be regarded as those of the journal of Research on Engineering Structures and Materials (RESM) 

organization or related parties. The publishers make no warranty, explicit or implied, or make any 

representation with respect to the contents of any article will be complete or accurate or up to date. The 

accuracy of any instructions, equations, or other information should be independently verified. The 

publisher and related parties shall not be liable for any loss, actions, claims, proceedings, demand or 

costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with use 

of the information given in the journal or related means. 

http://www.jresm.org/archive/resm2015.03st0107.html
http://www.jresm.org/archive/resm2015.03st0107.html
http://dx.doi.org/10.17515/resm2015.03st0107


*Corresponding author: seref.akbas@btu.edu.tr 
DOI: http://dx.doi.org/10.17515/resm2015.03st0107  
Res. Eng. Struct. Mat. Vol. 1 Iss.1 (2015) 25-37 

25 
 

    Research article 

Free Vibration and Bending of Functionally Graded Beams Resting 
on Elastic Foundation 

Şeref Doğuşcan AKBAŞ 

Bursa Technical University, Department of Civil Engineering, TURKEY 

 
Article Info                     Abstract 

 
Article history: 
Received 07 Jan 2015 
Revised 06 Feb 2015 
Accepted 10 Feb 2015 

 In this paper, free vibration and static bending analysis of functionally 
graded (FG) beams resting on Winkler foundation are investigated within 
Euler-Bernoulli beam theory and Timoshenko beam theory. Material 
properties of the beam change in the thickness direction according to 
power-law distributions. In deriving of the governing equations, the 
Hamilton’s principle is used. In the solution of the governing equations, 
the Navier-type method is used for simply-supported beams. In order to 
establish the accuracy of the present formulation and results, the natural 
frequencies are obtained, and compared with the published results 
available in the literature. Good agreement is observed. In the numerical 
results, the influences the different material distributions, foundation 
stiffness, and shear deformation on the bending and free vibration 
behavior of FG beams are presented.                                                       

                                                     © 2015 MIM Research Group. All rights reserved. 
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1. Introduction 

Functionally graded materials (FGMs) are a new generation of composites where the 
volume fraction of the FGM constituents vary gradually, giving a non-uniform microstructure 
with continuously graded macro properties such as elasticity modulus, density, heat 
conductivity, etc.. Typically, in an FGM, one face of a structural component is ceramic that can 
resist severe thermal loading and the other face is metal which has excellent structural 
strength. FGMs consisting of heat-resisting ceramic and fracture-resisting metal can improve 
the properties of thermal barrier systems because cracking and delamination, which are often 
observed in conventional layered composites, are reduced by proper smooth transition of 
material properties. Since the concept of FGMs has been introduced in 1980s, these new 
kinds of materials have been employed in many engineering application fields, such as 
aircrafts, space vehicles, defense industries, electronics and biomedical sectors, to eliminate 
stress concentrations, to relax residual stresses, and to enhance bonding strength. In the 

literature, the mechanical behavior of FG beams resting on elastic foundation are as follows;  Ying 
et al. [1] presented exact solutions for bending and free vibration of FG beams resting on a 
Winkler-Pasternak elastic foundation based on the two-dimensional theory of elasticity. 
Omidi et al. [2] studied the dynamic stability of simple supported FG beams resting on a 
continuous elastic foundation.  with piezoelectric layers subjected to periodic axial 
compressive load. Pradhan and Murmu [3] investigated thermo-mechanical vibration 
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analysis of FG beams and FG sandwich beams resting on Winkler foundation and two-
parameter elastic foundation by using the modified differential quadrature method. Fallah 
and Aghdam [4] studied large amplitude free vibration and post-buckling analysis of FG 
beams rest on nonlinear elastic foundation subjected to axial force. Akbaş [5] investigated 
static analysis of cracked FGM beam resting on Winkler foundation by using finite element 
method. Mohanty et al. [6] investigated the dynamic stability of FG ordinary beam and FG 
sandwich beam on Winkler's elastic foundation using finite element method. The dynamic 
response of FG beams with an open edge crack resting on an elastic foundation subjected to a 
transverse load moving at a constant speed is studied by Yan et al. [7]. Fallah and Aghdam [8] 
studied thermo-mechanical buckling and nonlinear free vibration analysis of FG beams on 
nonlinear elastic foundation with Von Karman strain-displacement relation. Esfahani et Al. 
[9] examined thermal buckling and post-buckling analysis of FG Timoshenko beams resting 
on a non-linear elastic foundation by using Generalized Differential quadrature Method with 
considered von-Karman's strain-displacement relations. Post-buckling and nonlinear 
vibration analysis of geometrically imperfect beams made of functionally graded materials 
resting on nonlinear elastic foundation subjected to axial force are studied by Yaghoobi and 
Torabi [10]. Arefi [11] studied the nonlinear responses of a FG beam resting on a nonlinear 
foundation. Duy et al. [12] examined free vibration of FG beams on an elastic foundation and 
spring supports. Shen and Wang [13] investigated the large amplitude vibration, nonlinear 
bending and thermal post-buckling of FG beams resting on an elastic foundation in thermal 
environments. Li and Shao [14] studied nonlinear bending problem of FG cantilever beams 
resting on a Winkler elastic foundation under distributed load are discussed. Esfahani et al. 
[15] studied Small amplitude vibrations of a FG beam resting on nonlinear hardening elastic 
foundation under in-plane thermal loading in the pre-buckling and post-buckling regimes. 
Kanani et al. [16] investigated large amplitude free and forced vibration of FG beam resting 
on nonlinear elastic foundation containing shearing layer and cubic nonlinearity based on 
Euler-Bernoulli beam theory and von Karman geometric nonlinearity. Babilio [17] examined 
the nonlinear dynamics of axially graded beams rest on a linear viscoelastic foundation under 
axial time-dependent excitation is studied. Gan and Kien [18] studied a finite element 
procedure for the large deflection analysis of FG beams resting on a two-parameter elastic 
foundation. Sina et al. [19] investigated the vibration of FG beams by using analytical method. 
Şimşek and Reddy[20] studied bending and vibration analysis of FG microbeams based on 
modified coupled stress theory. Şimşek and Yurtçu [21] investigated bending and buckling of 
FG nanobeams based on nonlocal elasticity theory. Akbaş [22] studied wave propagation 

analysis of edge cracked beams resting on elastic foundation. 

The distinctive feature of this study is free vibration and static bending behaviour of 
simple supported FG beams resting on Winkler foundation are investigated by using 
analytical solution within Euler-Bernoulli beam theory and Timoshenko beam theory. 
Material properties of the beam change in the thickness direction according to power-law 
distributions. In deriving of the governing equations, the Hamilton’s principle is used. In the 
solution of the governing equations, the Navier-type method is used for simply-supported 
beams. In the solution of the governing equations, the Navier-type method is used for simply-
supported beams. In the study, the effects of foundation stiffness and different material 
distributions on the natural frequencies and the bending responses of the functionally graded 
beams are investigated in detail. Also, the difference between Euler-Bernoulli beam theory 
and Timoshenko beam theory on the FG beam is discussed. Some of the present results are 
compared with the previously published results to establish the validity of the present 
formulation. 

2. Theory and Formulations 

Consider a simple supported FG beam of length L, width b, thickness h, subjected to 
uniform distributed load q0, resting on Winkler foundation with spring constant kw as shown 
in Figure 1.  
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Fig. 1. A simple supported FG beam subjected to uniform distributed load resting on Winkler 

foundation and cross-section. 

 

In this study, it is assumed that the material properties of the FG beam P, i.e., Young’s 
modulus E, Poisson’s ratio ν, shear modulus G and mass density ρ vary continuously in the 
thickness direction (Y axis) according to a power-law form. 

 

              
 

 
 

 

 
 
 
                                                                          (1) 

 

where PT and PB are the material properties of the top and the bottom surfaces of the 
beam. It is clear from Eq. (1) that when Y=-h/2, P= PT, and when Y=h/2, P= PB. where n is the 
non-negative power-law exponent which dictates the material variation profile through the 
thickness of the beam. 

 

2.1. Governing equation of free vibration and static bending of FG beams 

Acoording to the coordinate system (X,Y,Z) shown in figure 1, based on Timoshenko beam 
theory, the axial and the transverse displacement field are expressed as   

 
                                                                                                                   (2)   

                                                                                                                             (3) 

                                                                                                                                      (4) 

where u, v, w are x, y and z components of the displacements, respectively.   is the total 
bending rotation. Also, u0 and v0 are the axial and the transverse displacements in the mid-
plane, t indicates time. By using Eqs. (2)-(4), the components of the strain are expressed as   
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                                                                                                           (5d)                        

                   

Because the transversal surfaces of the beam is free of stress, then 

                                                            (6) 

According to Hooke’s law, constitutive equations of the FGM beam are as follows: 
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                                                                            (7b) 

 

Where    ,     and    are normal stresses, shear stresses and the shear correction factor., 

respectively. When the total bending rotation     
    , the beam model reduces to Euler-

Bernoulli beam model. 

 

In deriving of the governing equations, the Hamilton’s principle is used; 

 

                
 

 
=0                                                                                                 (8) 

 

where Ui, T, Ue are the strain energy, the kinetic energy and the potential energy of the 
external load, respectively. The first variation of the strain energy (Ui) is expressed as   
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where    ,    and   stress resultants, and  expressed as follows: 
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The first variation of the kinetic energy (T) is expressed as   

 

       
 

 
      

   

  

    

  
 

  

  

  

  
    

   

  
 
    

    
 

     

  
  

 

 

 

 

                              
 

    

  
 
   

    
 

    

  
   

 
 
   

    
 

     

  
  

    

    
 

     

  
                 (11) 

 

where 

            
 

                                                                                                           (12a)        
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The first variation of the potential energy (Ue) of the external load is expressed as   
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      Substituting Eqs. (9), (11) and (13) into Eq. (8), and then using integrating by parts, the 
governing equations of the problem can be obtained as follows;  
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The boundary conditions at the beam ends are as follows; 

 

  NXX=0 or u=0 at x=0,L                                                                                                                       (15a)        

    

   

  
   

    

   
   

   

     
   

     

   
 =0     or  w=0     at x=0,L                                           (15b)           

 

  =0 or   
  

  
=0   at x=0,L                                                                                                                  (15c) 
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Substituting Eq. (10) into Eq. (14), the governing equations of the problem can be 
expressed as follows;  
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=0                                              (16c) 

 

2.2 Naiver solution of the problem 

The governing equations of the problem are solved for free vibration and static bending of 
a simply-supported beam by using Navier method for functionally graded materials 
[19,20,21]. In the Navier solution, the displacement fields are expressed as follows: 
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where    is the natural frequency, (An, Bn, Cn) are the unknown constants,        and 

     . When the Cn=0, the governing equations of the beam reduces to Euler-Bernoulli 
beam theory. 

 

In the static bending case, time and its derivatives are zero in the governing equations. 
According to the Navier solution, the uniform distributed load q0 is defined as follows; 
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                  n=1,3,5,...                                                            (18) 

Substituting Eqs. (17) and Eq. (18) into Eqs. (16), and then using matrix procedure, the 
algebraic equations can be expressed for static bending case as follows; 
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In the free vibration problem, the algebraic equations can be expressed as follows; 
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where 
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               ,                     (22d) 

                ,                    (22e) 

          ,                              (22f)                         

In Eq. (21), the algebraic equation is an eigenvalue problem. With solving the Eq. (21), the 
fundamental frequency can be obtained. 

4. Numerical Results 

In the numerical examples, the natural frequencies and the static bending deflections of 
the FG beams are calculated and presented in figures for different material distributions and , 
foundation stiffness. Also, the difference between Euler-Bernoulli beam theory and 
Timoshenko beam theory on the FG beam is discussed. The beam considered in numerical 
examples is made of Aluminum (Al; E=70 GPa, ν=0.3, ρ=2702 kg/m3) and Silicon Carbide (SiC; 
E=427GPa, ν=0.17, ρ=3100 kg/m3). The top surface material of the FG beam is Aluminum, the 
bottom surface material of the FG beam is Silicon Carbide. When the power index n=0, the 
beam material is reduced to full Aluminum (homogeneous Aluminum) according to Eq. 1. 
Unless otherwise stated, it is assumed that the width of the beam is b=0.1m and height of the 
beam is h=0.1m in the numerical results. The shear correction factor is taken as ks=5/6. 
Unless otherwise stated, it is assumed that the width of the beam is b=0.1m, height of the beam is 
h=0.1 m. 

 

In order to establish the accuracy of the present formulation and the computer program 
developed by the author, the results obtained from the present study are compared with the 
available results in the literature. For this purpose, the non-dimensional fundamental 
frequencies of a FG simple supported beam are calculated and compared with those of Sina et 
al. [19] for different material distributions (n)  and the slenderness ratio (L/h) according to 
Timoshenko beam theory in Table 1. The material parameter used in Sina et al. [19] are;  

Aluminum :Eu=70 GPa, ρu=2700 kg/m3, νu=0,23 

Alumina : EB=380 GPa, ρB=3800 kg/m3, νB=0,23 

The following non-dimensional frequency parameter used in Sina et al. [19] are as 
follows;  

        
  

     
                                                                                                              (23) 

Table 1 Comparison study for the non-dimensional fundamental frequency of the FG simply 
supported beam for different material (n) distributions and slenderness ratio (L/h). 

L/h 

Non-dimensional fundamental frequency β 

n=0 n=0.3 

Sina et al. [19] Present Sina et al. [19] Present 

10 2.797 2.797 2.695 2.695 

30 2.843 2.843 2.737 2.737 

100 2.848 2.848 2.742 2.742 

 

As seen from Table 1, the present results are in good agreement with that the results of 
Sina et al. [19]. 
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In figure 2, the effect of material distribution (the power-law exponent) and beam 
theories on the maximum the vertical displacements of the FG beam is shown for different 
slenderness ratio (L/h) for Winkler spring constant kw=108 N/m and distributed load q=108 
N/m. 

 

It is seen from Fig. 2 that increase in the material power law index (n) causes decrease in 
the vertical deflections for all values of the slenderness ratio (L/h): Because when the 
material power law index (n) increase, the material of the beam get close to Silicon Carbide 
(bottom side material) according to Eq. 1 and it is known from the physical properties of the 
Silicon Carbide and Aluminum (top side material) that the Young modulus of Silicon Carbide 
is approximately six times greater than that of Aluminum. With increase in the power-law 
index, the bending rigidity of the beam increases. As a result, the strength of the material 
increases. Also, it is seen from Fig. 2 that increase in the material power law index (n), the 
curve has an asymptote. With the material power law index (n) increases, the functionally 
graded material beam is reduced to the homogeneous Silicon Carbide  beam according to Eq. 
1. Also, it is clearly seen from Fig. 2 that, with decrease in the ratio L/h, the difference 
between the results of Euler Bernoulli beam theory and Timoshenko beam theory differs 
considerably. 

  

 

Fig. 2. The effect of material distribution (n) on the maximum the vertical displacements 
of the FG beam for different slenderness ratio (L/h), a) L/h=3, a) L/h=5 and a) L/h=10. 

 

Figure 3 shows that the effect of Winkler spring constant (kw) on the maximum the 
vertical displacements of the FG beam for different slenderness ratio (L/h) for  the power-law 
exponent n=0.3 and distributed load q=108 N/m. 

 

It is seen from Fig. 3 that the value of the Winkler parameter (kw) play important role on 
the static response of the beam. With increase in the Winkler parameter(kw), the 
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displacements of the FG beam decreases. Because, with increasing the Winkler 
parameter(kw), the beam gets more stiffer. Also, it is observed Fig. 3a that the the difference 
between the results of Euler Bernoulli beam theory and Timoshenko beam theory increase 
with decrease the Winkler parameter (kw). 

 

 

Fig. 3. The effect of Winkler spring constant (kw) on the maximum the vertical 
displacements of the FG beam for different slenderness ratio (L/h), a) L/h=3, a) L/h=5 and a) 
L/h=10. 

 

In figure 4, the effect of material distribution (the power-law exponent) on the 
fundamental frequency (w) of the FG simply supported beam is shown for different 

slenderness ratio (L/h) for Winkler spring constant kw=108 N/m.  

 

It is seen from Fig. 4 that increase in the material power law index (n) causes increase in 
the fundamental frequency (w) of the beam. It is noted before that an increase in the power-

law index causes a increase in the rigidity of the beam. Also, it is clearly seen from Fig. 4 that, 
with increase in the ratio L/h, the difference between the results of Euler Bernoulli beam 
theory and Timoshenko beam theory on the fundamental frequency coincide with each other.  

 

In Figure 5, the effect of Winkler spring constant (kw) on the fundamental frequency of the 
FG beam for different slenderness ratio (L/h) for the power-law exponent n=0.3.  

 

It is seen from Fig. 5 that with increase in the Winkler parameter (kw), the fundamental 
frequency increases. Because, with increasing the Winkler parameter (kw), the beam gets 
more stiffer. It is observed Fig. 5 that the the difference between the results of Euler Bernoulli 
beam theory and Timoshenko beam theory on the fundamental frequency decrease with 
increase the Winkler parameter (kw). 
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Fig. 4. The effect of material distribution (n) on the maximum the fundamental frequency 
(w) of the FG beam for different slenderness ratio (L/h), a) L/h=3, a) L/h=5 and a) L/h=10. 

 

 

Fig. 5. The effect of Winkler spring constant (kw) on the fundamental frequency (w) of the 

FG beam for different slenderness ratio (L/h), a) L/h=3, a) L/h=5 and a) L/h=10. 

4. Conclusions 

Free vibration and static bending analysis of FG beams resting on Winkler foundation are 
investigated within Euler-Bernoulli beam theory and Timoshenko beam theory. Material 
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properties of the beam change in the thickness direction according to power-law 
distributions. In deriving of the governing equations, the Hamilton’s principle is used. In the 
solution of the governing equations, the Navier-type method is used for simply-supported 
beams. 

 

Numerical results show that the material distribution and foundation parameter play an 
important role on static and vibration of the FG beam. It was seen from the investigations that 
the difference between the results of Euler-Bernoulli beam theory and Timoshenko beam 
theory increases considerably with decreases in the slenderness ratio. Therefore, for small 
slenderness of beam, Timoshenko beam theory must be used instead of Euler-Bernoulli beam 
theory because of the effect of the shear stresses on the deformation. Also, by choosing a 
suitable material distribution (power-law exponent (n)), it can be reduce the negative 
influence of the stresses and displacements in the design of FG structures. 
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