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ABSTRACT 

In this paper, we present an improved path planning method and obstacle avoidance algorithm for a 2-wheel 

mobile robot. Firstly, we briefly introduce the rapidly exploring random tree (RRT) and the single polar polynomial (SPP) 

algorithm. Secondly, we present additional 2 methods for applying our proposed method. Thirdly, we propose a global path 

planning, smoothing and obstacle avoidance method that combine RRT and SPP algorithm. Finally, we present simulation 

using proposed method and check the feasibility. This shows that proposed method is better than existing methods in terms 

of the optimality of the trajectory and the satisfaction of the kinematic constraints. 
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INTRODUCTION 
Background/ Objectives and Goals 

Recently, an autonomous robot like a drone and a self-driving car is an important issue. The autonomous robot 

means a robot which has high autonomy and can make decision and action by itself in a dynamic environment. Path 

planning is an important part in autonomous robots because it is a kind of criterion which tells how robot’s autonomy is 

good. 

Generating the shortest path is the most important part in the path planning algorithm. There are several path 

planning algorithms using graph or tree structure which are Dijkstra (Thomas H. Cormen et al., 2001), A* (W.ZENG and 

R. L. CHURCH, 2009) (Delling, D. et al., 2009), and D* (Stentz Anthony, 1994) (Stentz Anthony, 1995). These 

algorithms divide maps into many nodes, and find the shortest path according to each of their methods. Those algorithms 

have an advantage that they can get the optimal shortest path. However, those algorithms have a disadvantage that they are 

inefficient because it may explore all nodes in the high-dimensional configuration environment. 

Because of those reasons, several randomized algorithms have been proposed and successfully applied to the 

general problem of path planning. The randomized algorithms are based on randomized sampling. Those algorithms select 

some random nodes in the total map and apply own algorithm or method. These algorithms cannot find the optimal path 

compared with the algorithms using graph or tree structure, but they have low computational time. Therefore, they can 

generate path at extremely fast time. The algorithms using this method include randomized potential field, probabilistic 

roadmap (Jérôme Barraquand et al., 1996) and RRT (Steven M. Lavalle, 1998) (Pepy, R., 2006) (Chris Urmson and Reid 

Simmons, 2003). Among those, RRT gets many researchers’ attention because it uses fast space exploration method result 

from the Voronoi region. 

In the autonomous robot, path smoothing is as important as path planning. The path planning using randomized 
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algorithms generates a jittered path. The simplest smoothing method for optimizing the jittered path is to connect two 

nodes that have no obstacles between them. However, the smoothed path cannot satisfy real kinematic constraints. Several 

smoothing methods satisfying kinematic constraints include SPP curve smoothing (Nelson, W., 1989) and clothoid curve 

smoothing (Henrie, Joshua and Wilde, Doran, 2007). 

The above path planning and path smoothing are separated at researches, but these cannot be separated when 

these are applied to the real mobile robot. There are some existing research results satisfying both the shortest path and 

robot’s kinematic constraints. However, those researches need instant post-processing causing unpredictable computational 

load, or do not generate the shortest path. 

In this paper, we firstly perform global path planning through the RRT, and propose smoothing of the planned 

path with consideration of the kinematic constraint through the SPP. In Section 2, we introduce to the RRT, SPP and 

proposed method that combine RRT and SPP. In Section 3, we present simulation results and make conclusions. 

METHODS 
Rapidly Exploring Random Tree (RRT) 

The RRT that is one of the path planning methods based on tree structure. It can find nodes and edges from the 

starting point to the arrival point using random node sampling (Steven M. Lavalle, 1998) (Pepy, R., 2006). 

Table 1: The RRT Generation Algorithm 

_ ( , , ∆ ) 
1 . ( ); 
2 = 1  
3 = _ ();  
4 = _ ( , ); 
5 = _ ( , ); 
6 = _ ( , , ∆ ); 
7 . _ ( ); 
8 . _ ( , , ); 
9 Return  

 

Table 1 presents a pseudo-code of the RRT generation algorithm. First of all, the algorithm selects random node 

 in the map. Next, it finds the nearest node to the in the tree , and the input  for arriving to the  

from the  in the input set . It calculates real state  after ∆ using the and the . Information of the node 

 and edge is saved as the children node of the . 

RRT has many advantages and the most important advantage is efficiency and fast exploration to the unexplored 

region. This advantage comes from that the RRT has the characteristics of the Voronoi bias. When the pseudo-code of the 

Table 1 is iterated, the probability of the selecting one of the nodes in the tree  to the  is directly proportional to its 

size of the Voronoi region. The size of the Voronoi region means the size of the empty region and it causes the probability 

of the exploration to the empty region to be bigger. This is the Voronoi bias. 

The node set  generated by the goal biased RRT presents non-optimal path which has jitters without pre-

smoothing. To reject the jitter,  is generated using the simplest smoothing method and new node set  is 

generated using the  for the SPP curve smoothing. 
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Table 2: The Pre-Smoothing for the Generation of the SPP Curve 

_ _ ( , , ) 
1 . init( , ); 
2 = length( ); 
3 = 1  
4 ( , ) = , ; 
5 , = , ; 

6 = , − , ; 

7 =
−
− ; 

8 = 1  
9 = + ∙ ( ) ; 
10 = + ∙ ( ) ; 
11 =  _ ( , , ); 
12  s == TRUE 
13 . _ ( , ); 
14 Return  

 

Table 2 presents the simplest smoothing method. Distance from the  to the nearest node is divided to 

the . After that, the method increases edge’s distance according to the , and checks the collision, iteratively. If 

collision is detected, the node at the sample + 1 is saved in the . This smoothing method generates the optimal 

path based on the straight line that does not collide with obstacles. 

Single Polar Polynomial (SPP) Curve 

The SPP curve that is used by the path smoothing method generates continuous curvature path which satisfies 

kinematic constraint of the mobile robot (Nelson, W., 1989) generally, the path generated by path planning consists of the 

line or combination of the line and arc. However, the mobile robot can hardly track the path because real robot has several 

constraints according to the kinematic hardware limit and the path does not consider about them. To obtain the curve 

satisfying the constraints, we can present the SPP curve in the polar coordinate where independent variables can be 

uniformly changed according to the distance on the curve. 

 
Figure 1: The Radius Change of the SPP Curves 

According to the State of the Rotation Angle 

Figure 1 shows an SPP curve . The SPP curve substitutes an arc that has a radius  and a center , where ( )is a 
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variable radius according to the rotation angle , ̇ ( ) is the derivative of the ( )with respect to , and ̈ ( ) is the second 

derivative of the ( )with respect to . ( ), ̇ ( ), and ̈( )are given in (1) and they have to satisfy a boundary condition 

(2) 
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Where is heading angle, and  is circumference. ( ) is the curvature for given and is given as follows: 
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.                                                                                                           (3)

 Substituting (1), (2) to the (3) and calculating ~  gives 

0 1 2 3 4 52,  0,  ,  ,  ,  0
2 2
R R Ra R a a a a a

 
       .                                                                              (4)

 So, we can get (5) that present a trajectory of the SPP curve as follows: 

2 3 4

2( ) 1
2 2

r R   
 

 
     

 
.                                                                                              (5) 

Even if we use the above SPP curve, we may not generate proper path that connects a starting point and an arrival 

point when we use 1-segment path that is one arc or one line. The criterion that considers the number of the segments is to 

determine symmetry or asymmetry let’s define  as follows: 

01

0
tan f

f

y y
x x

   
    

.                                                                                                                           (6)

 If a starting point = ( , , )and an arrival point = ( , , ), and satisfy 

 0 f       ,                                                                                                                                       (7) 

Then the two points are said to be symmetric. 

Figure 2 shows 1-segment and 2-segment paths that connect symmetrical or asymmetrical two points. 

 



Fast and Kinematic Constraint-Satisfying Path Planning with Obstacle Avoidance                                                                                                                  21 

 
www.iaset.us                                                                                                                                                     editor@iaset.us 

Figure 2: Path (a) and (b) Connecting Asymmetrical Two Points and (c) ~ (e) Connecting Symmetrical Two Points 

The path using 1-segment consists of the line or one SPP curve, and the path using 2-segment consists of the line + 

one SPP curve, the one SPP curve + line or the two SPP curves. The criterion of the generating each path is referred to the 

paper (Henrie, Joshua and Wilde, Doran, 2007). 

Selection of and Generation of the SPP Curve Via  

 
Figure 3: (a) The Difference of the Path between  and . 
(b) The Difference of the Path According to the Location of the . 

We have to generate new node set  for SPP curve generation using the . Figure 3-(a) shows 

generated SPP curves for different node sets given a random starting point and arrival point. Two ellipses denote the 

starting and the arrival point, squares denote , and circles denote , respectively. Dashed lines denote paths 

using , dash-dot lines denote paths using . Length of the path using  is longer than the path 

generated by . Otherwise, length of the path using  is shorter than the path generated by . 

Figure 3-(b) shows the different paths according to the location of the . The criterion for generating 

varies with the driving environment and the situation of developer’s concern. The closer  is to the , the 

less difference those two paths have. That means that when  approaches the , the probability of obstacle 

collision is decreased. On the other hand, when  is far away from the , then path length is shortened. 

In the proposed method, initial has the same starting and arrival point as .Except those two points, 

corresponds to the midpoint of neighbor nodes in . This method generates shortest path and curves that 

have small curvature for satisfying kinematic constraints. 

Obstacle Collision Detection (Using Geometry) 

The method of Section 2.3 can generate SPP curve satisfying kinematic constraints, but obstacle avoidance 

algorithm has to be applied because the generated path using SPP curve does not have obstacle avoidance mechanism. To 

use it, we need some criteria for the collision detection. Firstly, we’ll check radius size of the SPP curve and an obstacle. 

Secondly, we’ll check possibility of the collision. Finally, we’ll check whether there is collision with an obstacle. For these 

criteria, we’ll consider three assumptions. 
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Firstly, the shape of obstacles is assumed to be a circle and the radius of obstacles is assumed to be bigger than the 

real radius. Circle obstacle has fixed curvature and distance from the center to the surface of the obstacle. These 

characteristics simplify the collision avoidance problem. Secondly, the SPP curve is assumed to be a circle. The SPP curve 

has boundary conditions that distance  from starting point to center is the same as the distance from arrival point to 

center. It means that the SPP curve is assumed to the arc or the circle which has radius . Finally, only one SPP curve is 

considered in this method. The path generated by the proposed method consists of a line and a SPP curve, and the line path 

does not collide with obstacles because of the RRT’s characteristics. It means that we can simplify the obstacle avoidance 

problem for all paths as the problem for one SPP curve. Through the above three assumptions, the relation between the SPP 

curve and an obstacle is to be the relation between two circles. 

Three criteria for the obstacle collision detection are like these: Firstly, relation between the radius of an obstacle 

and the SPP curve is compared. Figure 4 is one of the situations where the radius of an obstacle is bigger than the radius of 

the SPP curve. Line paths  and  generated by RRT avoid obstacles due to the RRT’s characteristics. Therefore, there are 

never two intersections. There are no in circles in the in circle sets of the  and , which have a radius bigger than the SPP 

curve’s. 

 
Figure 4: When the Radius of an Obstacle is bigger Than the Radius of the SPP Curve 

 
Figure 5: The Relation between an Obstacle and the Initial SPP Curve. (a) External, 

(b) Externally Tangent, (c) Secant, (d) Internally Tangent, (e) Internal 

Secondly, collision possibility according to the relation between an obstacle and the SPP curve is checked. Figure 

5 presents the relation between an obstacle and initial SPP curve. Dash-double dot line denotes real SPP curve, black circle 

with radius  denotes initial SPP curve, and red circle denotes an obstacle. Through the Figure 5, secant situation is 

considered where obstacle collision occurs. By the assumption, external and externally tangent situation do not cause 

obstacle collision, but real SPP curve has possibility of the obstacle collision at external and externally tangent situation 

because its radius is bigger than or equal to the assumed circle’s radius. 

Finally, a criterion for checking real collision should be made according to the above collision detection. The each 
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region  on the Figure 6 denotes an obstacle that collides with the real SPP curve. Therefore, when the relation of two 

circles is external or externally tangent state, the collision is detected if the center of an obstacle is in the region  

consisting of the lines ,  and . In the secant situation, the collision is detected if the center of an obstacle is in the region 

 consisting of the lines , ,  and . 

 
Figure 6: The Region of the Collision between an Obstacle and the Initial SPP Curve 

(a) External and Externally Tangent, (b) Secant 

Obstacle Avoidance Algorithm (Using Geometry) 

Through the above section 2.4, we can detect obstacle collision. If there is a collision, new SPP curve has to be 

generated having radius ′. At this moment, the new SPP curve having the optimal radius ′ has to be internally tangent 

state to an obstacle. Here, the center of the initial SPP curve is ( , ) and the radius of that is , the center of the new SPP 

curve is ( ′, ′) and the radius of that is ′. 

 
Figure 7: The Optimal SPP Curve that does not Collide with an Obstacle 
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,                                                                                             (8)

 where  denotes center of an obstacle,  denotes one of the nodesin the , and ,  are unit 
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direction vectors of the start node and end node. The start node and end node are calculated using( ′, ′) and ′ that are 

generated by simultaneous equations (8). Through the above, we can generate an optimal SPP curve that is internally 

tangent state to an obstacle. 

RESULTS 
Simulation 

The first simulation is performed with the starting point (0, 0) and the arrival point (400,400). The centers of four 

obstacles are (180,180), (310,230), (150,350), (300,350) and the radii of those are 50. The probability variable , which is 

same with the probability of = , is 0.5. For the simulation, we use a PC with a processor Intel Core i7-4770 

3.40GHz with 8GB RAM memory 

 
Figure 8: The Difference between the Proposed 

Method and the Original RRT Path 

Figure 8 is simulation result. Large circles denote obstacles. Dotted lines denote path obtained from simple 

smoothing. Two paths are same on the straight line part, but the proposed method satisfies kinematic constraints on the 

curved part. 

In the second simulation, we check the performance of the proposed obstacle avoidance algorithm. The obstacle 

with a center at (180,180) is moved to (188,203) for obstacle collision. In Figure 9-(b) and (c), red circle consisting of 

dashed line denotes the SPP curve represented by circle. An internally tangent circle that means an optimal SPP curve is 

perfectly generated in this simulation. 

 
Figure 9: (a) The Path Generation not using the Proposed Obstacle Avoidance Algorithm 

(b) The Path Generation using the Proposed Obstacle Avoidance Algorithm 
(c) The path Generation using the Proposed Obstacle Avoidance Algorithm (Zoom-In) 
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In the third simulation, we measure average execution time obtained for different goal bias probability to check 

the performance of the proposed method. Figure 10 shows the execution time graph for 500 iterations with = 0.20. 

Average execution time is 0.5763s, and deviation is somewhat large because RRT uses random sampling. RRT execution 

time is 0.5451s and execution time for SPP smoothing and obstacle avoidance algorithm is 5.5% of the total execution 

time. It is negligible amount compared with total execution time. Table 3 is total records of the execution time. The relation 

between the probability  and the execution time is nonlinear. For better performance of the proposed method, the most 

proper probability  has to be selected depending on the experiment environment. 

 
Figure 10: The Execution Time Graph when the Proposed 

Method is iterated 500 Times ( = . ) 

Table 3: The Total Execution Time for Different Goal Bias Probability  

 RRT (s) SPP Smoothing (s) Total (s) 
0.10 0.6303 0.0294 0.6597 
0.20 0.5451 0.0312 0.5763 
0.25 0.5088 0.0346 0.5435 
0.30 0.5299 0.0338 0.5637 
0.35 0.5478 0.0343 0.5821 
0.40 0.5272 0.0352 0.5623 
0.45 0.5833 0.0356 0.6189 
0.50 0.6463 0.0349 0.6812 

 

Finally, we compare performance of the A* algorithm, which is typical path planning algorithm, with the 

proposed method on the final simulation. The program included in the report (Alex Andriën, 2012), is used for the 

simulation of the A* algorithm. Figure 11 shows two A* algorithms. Execution time of the A* Manhattan is 2.971s, and 

execution time of the A* straight is 397.784s. This result shows that the execution time of the A* algorithms are too long. 

Furthermore, the algorithms can’t satisfy the kinematic constraints. Therefore, A* algorithm can be hardly applied to real 

experiment. 
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Figure 11: (a) The Path Planning Using the A* Algorithm (Manhattan Distance). 

(b) The Path Planning Using the A* Algorithm (Straight Distance) 

CONCLUSIONS 

General path planning has lots of computational loads, or consists of the only straight lines, and it causes some 

limitation that the robot cannot follow the planned path directly. In this paper, we propose the method using the RRT that 

shows better performance in terms of the computational load and speed compared with other general path planning, and the 

SPP that can smooth the path so that it can satisfy kinematic constraints. Through the simulation, the proposed method 

shows better performance in the real experiment compared with RRT only. Furthermore, computational speed is faster than 

the typical path planning. Through the proposed method, we can expect to get the better results satisfying the kinematic 

constraints of the robot when it is applied in the experiment. 
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