

www.iaset.us editor@iaset.us

MUTATION TESTING TOOLS FOR JAVA PROGRAMS – A SURVEY

DANA H HALABI 1 & ADNAN SHAOUT 2

1Department of Computer Science Princess Sumaya University for Technology Amman, Jordan
2Sabbatical from the ECE Department at the University of Michigan, Dearborn

ABSTRACT

Mutation testing is a white-box technique that can be used in software testing to ensure programs free from syntax

errors. Systems based on Java are widely used because it is independent-platform language. When testing Java programs,

you should keep in mind that Java is an object programming language which combine the features of procedural languages

and the features of object oriented languages. In testing software all features should be accounted for. In this paper we will

present a study for the Java program different Mutation Testing Tools and focus on the following characteristics: the

mutation operators supported by a tool, mutant generation methods, speedup techniques, and other comparisons

specifications. This survey will be useful for software engineers who are interested in testing and in developing new testing

tools or expand existing ones.

KEYWORDS: Java, Mutation Operators, Mutatin Testing Tools, Object Oriented, Survey

INTRODUCTION

Java as an object oriented (OO) language that has many useful features, including: inheritance, encapsulation,

polymorphism and others. These features enables developers to develop efficient systems in more flexible and systematic

ways.

Java combines the features of procedural language and object oriented language. So the faults that may be

detected in the Java programs will also include the faults related to procedural and OO languages [1]. For testing tools, the

testing should apply to both the procedural and OO features [2, 3, 4 and 5].

Mutation testing [6] is a white-box fault-based testing technique that measures the effectiveness of test suite.

Faults are generated against the original program by creating a set of mutant versions. These mutants are created from the

original program by applying mutation operators, which generate syntactic changes to the programs. Then generate test

cases and execute them against the original and mutant programs. The aim of testing is to produce an acceptable output that

will discover the errors and faults in the original program [7, and 8].

To apply mutation testing to object-oriented programs, the developers of these tools have facilities existing for

mutation operators, which were developed for procedural-language programs, to OO programs. They also developed class

mutation operators to detect OO specific faults.

The rest of the paper is organized as follows: section 2: will present the mutation testing, section 3: will present

the mutation testing in Java programs, section 4: will present the mutation testing tools For Java programs, and finally

conclusion will be presented in section 5.

International Journal of Computer Science
and Engineering (IJCSE)
ISSN(P): 2278-9960; ISSN(E): 2278-9979
Vol. 5, Issue 4, Jun - Jul 2016; 11-22
 © IASET

12 Dana H Halabi & Adnan Shaout

Impact Factor (JCC): 4.6723 NAAS Rating: 1.89

MUTATION TESTING

Mutation testing is a white-box fault injection technique used to finds errors and faults in a program source code

[9]. The effectiveness of a test suite is measured by how much it can find errors. It is defined by the percentage of faults

that can be detected by the test cases. The mutation testing create the mutants (a mutant is the original program with simple

syntactic changes, see Table 1 for examples). These faults (mutants) are injected in the code through mutation operators,

which are based on common programmers' mistakes in a programming language.

Table 1: Example of Mutant Code

Original Code Mutant Code
if (x > 5) {
System.out.println("x > 5");
}

if (x < 5) {
System.out.println("x > 5");
}

The purpose of mutation testing is to ensure that a test suite can detect and find all developers' mistakes when

comparing the output of the original code with the output of the mutated code against the same test cases. According to the

results, a mutant is considered as killed mutant when the output of mutant is differ from the output of original, but it is

considered alive if they both have the same output. Then to handle the alive mutant, a new test case should be generate to

find the fault or the mutant code is completely equivalent to the original code [10]. Table 2 shows an example for

equivalent mutant.

Table 2: Example of Equivalent Mutant

Original Code Equivalent Mutant Code
for (int i=0; i<10; i++)
{
System.out.println(i);
}

for (int i=0; i!=10; i++)
{
System.out.println(i);
}

The process of applying the mutation testing starts by constructing the mutants test program [11 and 12]. The

detailed testing process is shown in Figure 1 [13].

Figure 1: Mutation Testing Process [13]

Mutation Testing Tools for Java Programs – A Survey 13

www.iaset.us editor@iaset.us

MUTATION TESTING FOR JAVA PROGRAMS

To apply mutation testing to object-oriented programs (Java, C++, C#,..etc), mutation operators shouldn't be

limited to traditional mutation operators of procedural language programs. It should support new mutation operators that

apply mutation testing against the object oriented features that are class mutation operators to detect object oriented

specific faults [14 and 15].

The two types of mutation operators are presented below:

Traditional Mutation Operators

The traditional mutation operators are presented in [16] and aims to supply the equivalence operators among

different languages. The traditional mutation operators are based on the operators defined for Ada and Fortran, and they are

used by Mothra tool [17]. These operators are shown in Table 3.

Table 3: Traditional Mutation Operators [18]

Mutation
Operator

Description

AAR
array reference for array reference
replacement

ABS absolute value insertion

ACR
array reference for constant
replacement

AOR arithmetic operator replacement

ASR
array reference for scalar variable
replacement

CAR
constant for array reference
replacement

CNR comparable array name replacement
CRP constant replacement

CSR
constant for scalar variable
replacement

DER DO statement alterations
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis

SAR
scalar variable for array reference
replacement

SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Examples of some traditional mutation operators, are listed in Table 4.

14 Dana H Halabi & Adnan Shaout

Impact Factor (JCC): 4.6723 NAAS Rating: 1.89

Table 4: Examples of Some Traditional Mutation Operators

Operator Description Example
ABS Absolute Value Insertion a = b + c to a = 0

AOR
Arithmetic Operator
Replacement

a = b + c to a = b
− c

LCR
Logical Connector
Replacement

a = b&c to a = b|c

ROR
Relational Operator
Replacement

while(a < b) to
while(a > b)

UOI Unary Operator Insertion a = b to a = −b

Class Mutation Operators

According to Java language features, there are four groups of class mutation operators [36]. These groups are as

follows:

• Encapsulation

• Inheritance

• Polymorphism

• Java-Specific Features

The useful mutation operator is the operator that can handle all the possible syntactic changes for a programming

language. Generally, the mutation operators can be created by one of the following ways [33 and 34]:

• delete,

• insert, and

• change a target syntactic element

For Java language, 29 class mutation operators were identified [36] for testing object-oriented and integration

issues. The class mutation operators are listed in Table 5.

Table 5: Summary Class Mutation Operators for Java [36]

Language
Feature

Operator Description

Encapsulation AMC
Access modifier
change

Inheritance

IHD
Hiding variable
deletion

IHI
Hiding variable
insertion

IOD
Overriding method
deletion

IOP
Overriding method
calling position change

IOR
Overriding method
rename

ISI
super keyword
insertion

ISD super keyword

Mutation Testing Tools for Java Programs – A Survey 15

www.iaset.us editor@iaset.us

deletion

IPC
Explicit call to a
parent’s constructor
deletion

Polymorphism

PNC
new method call with
child class type

PMD
Member variable
declaration with parent
class type

PPD
Parameter variable
declaration with child
class type

PCI
Type cast operator
insertion

PCC Cast type change

PCD
Type cast operator
deletion

PRV
Reference assignment
with other comparable
variable

OMR
Overloading method
contents replace

OMD
Overloading method
deletion

OAC
Arguments of
overloading method
call change

Java-Specific
Features

JTI this keyword insertion
JTD this keyword deletion

JSI
static modifier
insertion

JSD static modifier deletion

JID
Member variable
initialization deletion

JDC
Java-supported default
constructor deletion

EOA

Reference assignment
and content
assignment
replacement

EOC

Reference comparison
and content
comparison
replacement

EAM
Accessor method
change

EMM
Modifier method
change

Examples of class mutation operators are listed in Table 6.

16 Dana H Halabi & Adnan Shaout

Impact Factor (JCC): 4.6723 NAAS Rating: 1.89

Table 6: Example of Some Class Mutation Operators

Category Operator Description Example

Inheritance AMC
Access
Modifier
Change

public Stack s;
to
private Stack s;

Polymorphism PNC

new method
call with
child class
type

a = new A();
to
a = new B(); where
B is subclass of A

Overloading OAN
Argument
number
change

s.Push(0.5,2);
to
s.Push(2);

Java-specific JTD
this keyword
deletion

this.size = size;
to
size = size;

Common
Programming
Mistakes

EOA

Reference
assignment
and content
assignment
replacement

list2 = list1;
to
list2 = list1.clone();

According to the nature of object oriented languages, class mutation operator should be applied at different levels.

The object oriented languages are class-based, so mutation operators should take care of mutation related to in-class and out-

class language behavior [7 and 19]. These levels are presented as follows:

• Unit level: at this level apply traditional operators to function or method of class, checking its correctness.

• Class level: This level deals with the mutation of object oriented features.

• Integration level: Intermediate level between the unit and the system levels, checking the function invocations.

• Multi-class level: Operators at this level are intended to test a complete program: interactions among functions,

classes, etc.

MUTATION TESTING TOOLS FOR JAVA PROGRAMS

An important characteristics of mutation testing tools are the mutation operators supported by a tool. Two types of

mutation operators for object-oriented languages can be distinguished, as suggested by [20]. The types are presented as

follows:

• Traditional mutation operators adapted from procedural languages and

• Object oriented (or class) mutation operators developed to handle specific features in object oriented programming.

Other characteristics of mutation testing tools are mutant generation methods (via bytecode or source code

modification) and time reducing techniques (e.g., mutant schemata generation (MSG)) [21]. The MSG method is used to

generate multi-one-mutant programs at the source level that each one can handle more than one mutants [22].

A comparison among Java mutation testing tools is listed in Tables 7.

Mutation Testing Tools for Java Programs – A Survey 17

www.iaset.us editor@iaset.us

Table 7: Comparison of Mutation Testing Tools for Java

Characteristic Mujava Mueclips Jester Jumble RI Judy PIT

Open-source Commercial Open source Open source
Opensourc
e

Open
source

Open
source

Open
source

OO mutation
operators

Yes Yes No No No Yes No

Mutant
generation level

Bytecode
Source code
and byte code

Source code Bytecode NA
Source
code

Byte code

Produces non-
executable
mutant

Yes Yes Yes Yes NA Yes Yes

Meta-mutant Yes Yes No No Yes Yes NA

Mutants format
Separate
class file

Separate
source and
class files

Separate
source files

in-memory NA

groupe
d in
source
files

Separate
file in
memory

JUnit support No Yes Yes Yes Yes Yes Yes

Interface GUI
Eclipse Plug-
in

Command line
Eclipse
Plug-in

NA
Comm
and
line

command
line &
Eclipseplu
gin

Support Batch
Execution

No No Yes No NA Yes Yes

Speed 2 3 1 3 NA 1 1

Mujava

MuJava [22, 23 and 24] has a large set of traditional and class mutation operators specific for Java language. To

speed up the mutant generation time, MuJava has implemented an advanced translation methods, 1) bytecode

transformations and 2) MSG. Using these methods made it faster than using separate compilation approach [22].

Disadvantages of MuJava are as follows [25]:

• The final report of mutants are not shown in an appropriate way,

• The tool does not support batch mode, and

• It doesn't support JUnit test.

Muclipse

MuClipse [26] is a plugin within eclipse [27] for mutant generation and for JUnit testing. It is based on MuJava

[23]. MuClipse supports 15 traditional operators and 28 class mutation operators. It has useful GUI which provide mutant

viewer to view the mutant, and test case executor. After selecting the class to mutant, MuClips automatically generates

mutants and for each mutant it runs JUnit test suites. Its report summarize the number of live and killed mutants with the

mutation score for the test suite. MuClips generates the parse tree for a java program. The mutation operates on the source

code, and should be compiled before running JUnit test suite. It doesn't run equivalent mutants.

Disadvantages of the tools MuClipse are as follows:

• It can't test the whole program by one-click,

• The test is done class by class and the user is unable to select more than one class at each time, and

18 Dana H Halabi & Adnan Shaout

Impact Factor (JCC): 4.6723 NAAS Rating: 1.89

• The test become more complex when the program has packages.

Jester

Jester [29] use oversimplified mechanism of mutant’s generation. It is considered as a useful tool by some testers

[28], but it is a very slow tool.

Actually, Jester depends on extending the default set of mutation operations, but this can cause problems related

to performance and reliability. Jester supports limit range of mutation operators, based only on string substitution. The

mutants are not strongly generated, and can lead to break the code.

Disadvantages [25] of Jester are as follows:

• It generate, compile and run unit tests against each mutant,

• It takes a long time to finish a run, and

• The final report can't be generated automatically.

Jumble

To reduce the testing time, Jumble [30] implemented bytecode transformation technique. It supports JUnit test.

Jumble is used in testing industrial applications.

Jumble does not support all mutation operators. It is limited to the following operators: AOR, ASR, COR, LOR,

ROR and SOR. The operators in Jumble are implemented such that only one of the mutations defined by the mutation

operators is applied. For example, the AOR is implemented by replacing `{' with `+', and not by each of the other

arithmetic operators (`*', `/', and `%').

Disadvantages [25] of Jumble are as follows:

• It does not support the class mutation operators, and

• It provides the fixed replacements of mutation operators, e.g. AOR mutant operator.

Response Injection (Ri)

RI is a prototype [31] based on the aspect oriented mechanisms to generate mutants. It has simple traditional

mutation operators which are changing primitive types and two class mutation operators that apply to string class objects

and null value to objects. RI checks only the result of a method, and throw exceptions.

Disadvantages of RI are as follows:

• It doesn't support mutants for testing objects passed by parameters of a method,

• The resources of documentation and source code are not available, and

• It could be better if it can use all the facilities of aspect oriented programming.

Judy

Judy [32] is implemented using Java and AspectJ extensions based on the FAMTA Light approach.

Mutation Testing Tools for Java Programs – A Survey 19

www.iaset.us editor@iaset.us

The most important features of Judy are as follows:

• The high performance of mutation testing process,

• Advanced mutant generation methods,

• Integration with professional development environment tools,

• Full automation of testing, and

• Support the latest version of Java. These features enable the tool to enforce mutation testing to most recent

Java application.

Judy Supports the Following

• Traditional mutation operators: ABS, AOR, LCR, ROR and UOI. These operators are selected from

procedural languages to minimize the number of mutation operators, and at the same time maximizing testing

strength, and

• Class mutation operators of Java language, e.g. UOD, SOR, LOR, COR, and AS. Judy supports the EOA and

EOC mutation operators [32] that model object-oriented faults that are difficult to detect [20].

PIT

PIT [35] is an open source mutation testing tool. It works fast for mutant generation. PIT has four phases: mutant

generation, test selection, mutant insertion and mutant detection in PIT. PIT uses mutation operators like conditional

boundary, negate conditionals, conditions removal, math mutator and more. Mutation is performed at byte code level.

Initially, mutants are generated and test data are selected to run over mutants. Then mutants are loaded into the JVM and

detected by the test set. Along with mutants details, it also generates line coverage and mutation coverage, thus requires

some overhead.

CONCLUSIONS

It can be concluded that the MuJava, MuEclips and Judy are more efficient tools, as compared to the others since

these tools support class mutation operators. Judy is by far the most efficient mutation testing tool because it supports batch

execution that yields fast performance. It also perform the mutation at the bytecode level.

Regarding to GUI, every tool supports its own technique and there is a lack of common interface among the tools

which makes it difficult to compare.

There are many factors other than the execution time that effects the performance of the presented tools. Such

factors are as follows:

• Number of mutation operations each tool has (traditional and class mutations),

• The implementation for these operations (simple or complex, and

• Testing result reports.

There is a lake of information available about these factors from the presented tools that makes it difficult to

determine their performance.

20 Dana H Halabi & Adnan Shaout

Impact Factor (JCC): 4.6723 NAAS Rating: 1.89

REFERENCES

1. J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson. A fault model for subtype inheritance and

polymorphism. In Proceedings of the 12th International Symposium on Software Reliability Engineering, pages

84–93, November 2001.

2. R. T. Alexander, J. M. Bieman, S. Chosh, and B. Ji. Mutation of Java objects. In 13th International Symposium on

Software Reliability Engineering, pages 341–351, November 2002.

3. P. Chevalley and P. Th´evenod-Fosse. A mutation analysis tool for Java programs. Journal on Software Tools for

Technology Transfer (STTT), pages 1–14, December 2002.

4. S. Kim, J. Clark, and J. McDermid. Class mutation: Mutation testing for object-oriented programs. OOSS: Object-

Oriented Software Systems, October 2000.

5. Y. S. Ma, Y. R. Kwon, and J. Offutt. Inter-class mutation operators for Java. Proceedings of 13th International

Symposium on Software Reliability Engineering, November 2002.

6. R. J. Lipton, R. A. DeMillo, and F. G. Sayward. Hints on test data selection: help for the practicing programmer.

IEEE Computer, 11(4):34–41, November April. 1978

7. Marcio E. Delamaro, Marcos L. Chaim and Auri M. R. Vincenzi “Twenty five years of research in structural and

Mutation testing”in 25th Brazilian Symposium on Software Engineering,978-0-7695-4603-2/11, IEEE 2011.

8. Fevzi Belli, MutluBeyazit“A Formal framework for mutation testing” in proceeding of: Fourth International

Conference on Secure Software Integration and Reliability Improvement, SSIRI 2010, Singapore, 2010.

9. M. R. Woodward, “Mutation testing - its origin and evolution,” Information and Software Technology, vol. 35,

no. 3, Mar. 1993, pp. 163–169. [Online]. Available: http://dx.doi.org/10.1016/0950-5849(93)90053-6

10. Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,” Software Engineering,

IEEE Transactions on, vol. 37, no. 5, Oct. 2011, pp. 649 –678.

11. Offutt A., A Practical System for Mutation Testing: Help for the Common Programmer, Twelfth International

Conference on Testing Computer Software, 99-109, Washington D.C. June 1995.

12. DeMillo R., Constraint-Based Automatic Test Data Generation, IEEE Transactions on Software Engineering,

17(9): 900-910, 1991.

13. Scholivé, M., Beroulle, V., Robach, C., Flottes, M.L., Rouzeyre, B., "Mutation Sampling Technique for the

Generation of Structural Test Data", published in proceeding

14. Sunwoo Kim John A. Clark John A. McDermid“Class Mutation: Mutation Testing for Object-Oriented Programs”

In the Proceedings of the FMES 2000. October 2000.

15. Y.-S. Ma, “Object-Oriented Mutation Testing for Java,” PhD Thesis, KAIST University in Korea, 2005

16. J. Boubeta-Puig, A. Garc´ıa-Dom´ınguez, and I. Medina-Bulo, “Analogies and differences between mutation

operators for WS-BPEL 2.0 and other languages,” in Proceedings of the 2011 IEEE Fourth International

Conference on Software Testing, Verification and Validation Workshops (ICSTW), IEEE. Berlin, Germany:

Mutation Testing Tools for Java Programs – A Survey 21

www.iaset.us editor@iaset.us

IEEE, 2011, p. 398–407, print ISBN: 978-1-4577-0019-4. [Online]. Available:

http://dx.doi.org/10.1109/ICSTW.2011.52

17. K. N. King and A. J. Offutt, “A FORTRAN language system for mutation-based software testing,” Software -

Practice and Experience, vol. 21, no. 7, 1991, pp. 685–718.

18. Yue Jia and Mark Harman, "An Analysis and Survey of the Development of Mutation Testing", IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, Digital Object Identifier 10.1109/TSE.2010.62, 0098-

5589/10/$26.00 © 2010 IEEE

19. Y.-S. Ma, Y.-R. Kwon, and A. J. Offutt,“ Inter-class Mutation Operators for Java,” in Proceedings of the 13th

International Symposium on Software Reliability Engineering (ISSRE‟02). Annapolis, Maryland: IEEE

Computer Society, 12-15 November 2002, p. 352.

20. Ma, Y.S., Harrold, M.J., and Kwon, Y.R.: `Evaluation of Mutation Testing for Object-Oriented Programs'. Proc.

28th Int. Conf. on Software Engineering, Shanghai, China, May 2006

21. Untch, R.H., Offutt A.J., and Harrold, M.J.: `Mutation Analysis Using Mutant Schemata'. Proc. Int. Symp. on

Software Testing and Analysis, Cambridge, USA, June 1993, pp. 139-148

22. Ma, Y., Offutt, J., Kwon, Y.R.: `MuJava: an automated class mutation system', Software Test Verif Rel, 2005, 15,

(2)

23. Offutt, J., Ma, Y.S., and Kwon, Y.R.: `An Experimental Mutation System for Java', SIGSOFT Software Eng.

Notes, 2004, 29, (5)

24. Ma, Y.S., Offutt, J., and Kwon, Y.R.: `MuJava: A Mutation System for Java'. Proc. 28th Int. Conf. on Software

Engineering, Shanghai, China, May 2006

25. Madhuri Sharma, Neha Bajpai, Automatic Generation and Execution of Mutants, International Journal of

Computer Applications (0975 – 8887) Volume 44– No.3, April 2012

26. H. Smith and L. Williams, "An Empirical Evaluation of the MuJava Mutation Operators," in Testing: Academic

and Industrial Conference Practice and Research Techniques-MUTATION,'07, 2007

27. Eclipse. [Online]. https://www.eclipse.org/

28. Moore, I.: `Jester - a JUnit test tester'. Proc. 2nd Int. Conf. on Extreme Programming and Flexible Processes in

Software Engineering, Sardinia, Italy, May 2001

29. Offutt, J.: `An analysis of Jester based on published papers'. http://cs.gmu.edu/~o_utt/jester-anal.html, accessed

September 2006

30. Irvine, S. A., Tin, P., Trigg L., Cleary, J. G., Inglis, S., and Utting, M.: `Jumble Java Byte Code to Measure the

Effectiveness of Unit Tests'. Proc. Testing: Academic and Industrial Conf. Practice and Research Techniques,

Windsor, UK, September 2007

31. Bogacki, B., and Walter, B.: `Aspect-Oriented Response Injection: An Alternative to Classical Mutation Testing'.

Proc. IFIP Work. Conf. on Software Engineering Techniques, Warsaw, Poland, October 2006

22 Dana H Halabi & Adnan Shaout

Impact Factor (JCC): 4.6723 NAAS Rating: 1.89

32. Judy, http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.Judy, accessed June 2007

33. Ma, Y.S., Kwon, Y.R., and Offutt, J.: `Inter-Class Mutation Operators for Java'. Proc. 13th Int. Symposium

Software Reliability Engineering, Washington, USA, November 2002

34. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., and Zapf, C.: `An Experimental Determination of Sufficient

Mutant Operators', ACM Trans. Software. Eng. and Meth., 1996, 5, (2)

35. Henry Coles. (2012) PIT Mutation Testing. [Online]. http://pitest.org/

36. Yu-Seung Ma and Jeff Offutt, " Description of Class Mutation Operators for Java", August 1, 2014

