International Journal of Computer Science A International Academy of Science,

and Engineering (IJCSE) <
ISSN(P): 2278-9960; ISSN(E): 2278-9979 Engineering and Technology

Vol. 5, Issue 4, Jun - Jul 2016; 11-22 Connecting Researchers; Nurturing Innovations
© IASET IASET

MUTATION TESTING TOOLS FOR JAVA PROGRAMS - A SURVEY

DANA H HALABI * & ADNAN SHAOUT ?
'Department of Computer Science Princess Sumayaeksiiy for Technology Amman, Jordan

“Sabbatical from the ECE Department at the UnivesitViichigan, Dearborn

ABSTRACT

Mutation testing is a white-box technique that barused in software testing to ensure programsfifoee syntax
errors. Systems based on Java are widely used seedais independent-platform language. When tgsiamva programs,
you should keep in mind that Java is an objectiamogning language which combine the features ofgutoral languages
and the features of object oriented languagesdting software all features should be accountedriahis paper we will
present a study for the Java program different ktutaTesting Tools and focus on the following cluaeaistics: the
mutation operators supported by a tool, mutant gdimm methods, speedup techniques, and other aisopa
specifications. This survey will be useful for sadire engineers who are interested in testing adéweloping new testing

tools or expand existing ones.
KEYWORDS: Java, Mutation Operators, Mutatin Testing Toolsje@bOriented, Survey

INTRODUCTION

Java as an object oriented (OO) language that l@amsy mseful features, including: inheritance, enukgtm®n,
polymorphism and others. These features enableslajgrs to develop efficient systems in more flexidnd systematic

ways.

Java combines the features of procedural languagdeoaject oriented language. So the faults that imay
detected in the Java programs will also includeféludts related to procedural and OO languagesHadi.testing tools, the

testing should apply to both the procedural andf€@ures [2, 3, 4 and 5].

Mutation testing [6] is a white-box fault-basedtiteg technique that measures the effectivenesgif duite.
Faults are generated against the original prognardating a set of mutant versions. These mutaetsreated from the
original program by applying mutation operators,chhgenerate syntactic changes to the programan gkeerate test
cases and execute them against the original anantnpitograms. The aim of testing is to producecaejgtable output that

will discover the errors and faults in the origipabgram [7, and 8].

To apply mutation testing to object-oriented pragsathe developers of these tools have facilitidstiag for
mutation operators, which were developed for pracaldanguage programs, to OO programs. They adseldped class

mutation operators to detect OO specific faults.

The rest of the paper is organized as follows:i@e@: will present the mutation testing, sectionndl present
the mutation testing in Java programs, section ifl:present the mutation testing tools For Javagpams, and finally

conclusion will be presented in section 5.

www.iaset.us anli@iaset.us

12 Dana H Halabi & Adnan Shaout

MUTATION TESTING

Mutation testing is a white-box fault injection kedque used to finds errors and faults in a progsanrce code
[9]. The effectiveness of a test suite is meastetiow much it can find errors. It is defined by thercentage of faults
that can be detected by the test cases. The mutasting create the mutants (a mutant is theraigirogram with simple
syntactic changes, see Table 1 for examples). Tlaedts (mutants) are injected in the code throoghation operators,

which are based on common programmers' mistakepiogramming language.

Table 1: Example of Mutant Code

Original Code Mutant Code
if (x>5){ if (x<5{

System.out.printin("x > 5"); | System.out.printin("x > 5");

The purpose of mutation testing is to ensure thigst suite can detect and find all developerstakés when
comparing the output of the original code with thegput of the mutated code against the same tesscéccording to the
results, a mutant is considered as killed mutarenMie output of mutant is differ from the outpfitooiginal, but it is
considered alive if they both have the same oufpluén to handle the alive mutant, a new test chseld be generate to
find the fault or the mutant code is completely igglent to the original code [10]. Table 2 shows eample for

equivalent mutant.

Table 2: Example of Equivalent Mutant

Original Code Equivalent Mutant Code
for (int i=0; i<10; i++) | for (inti=0; i!=10; i++)
{ {
System.out.printin(i); System.out.printin(i);
} }

The process of applying the mutation testing stytconstructing the mutants test program [11 a2jd The
detailed testing process is shown in Figure 1 [13].

Program ¢
| 1 ==="~"""3
1 Input Test Create I Input Test |
: Program :_" Mutant 1 Cases : -
b 1 ! 1

A 70U
femme | ___

I Analyze and mark
Run test cases | equivalent mmtants
on program 1

_______ e

1
1
1
1
1

y : ! - - T Run test cases
: ™ [F- Program (test) ~>—p»| oneachlive
1

TOZram s ? -
prog 1 . Cormect _- utant

Figure 1: Mutation Testing Process [13]

Impact Factor (JCC): 4.6723 NAAS Rating.89

Mutation Testing Tools for Java Programs — A Survey 13

MUTATION TESTING FOR JAVA PROGRAMS

To apply mutation testing to object-oriented progga(Java, C++, C#,..etc), mutation operators simiuloe
limited to traditional mutation operators of prooeal language programs. It should support new riautatperators that
apply mutation testing against the object orierfiemtures that are class mutation operators to detgect oriented
specific faults [14 and 15].

The two types of mutation operators are presengéaib
Traditional Mutation Operators

The traditional mutation operators are presentefil@ and aims to supply the equivalence operatomneng
different languages. The traditional mutation opmsaare based on the operators defined for Addanglan, and they are

used by Mothra tool [17]. These operators are shiowrable 3.

Table 3: Traditional Mutation Operators [18]

LEEITEL Description
Operator P
array reference for array reference
AAR
replacement
ABS absolute value insertion
ACR array reference for constant
replacement
AOR arithmetic operator replacement
array reference for scalar variable
ASR
replacement
CAR constant for array reference
replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable
replacement
DER DO statement alterations
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis
scalar variable for array reference
SAR
replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOl unary operator insertion

Examples of some traditional mutation operators liated in Table 4.

www.iaset.us anli@iaset.us

14 Dana H Halabi & Adnan Shaout

Table 4: Examples of Some Traditional Mutation Opeators

Operator Description Example

ABS Absolute Value Insertion a=b+ctoa=p0
Arithmetic Operator a=b+ctoa=b

AOR
Replacement -C

LCR Logical Connector a=b&ctoa= bl
Replacement

ROR Relational Operator while(a < b) to
Replacement while(a > b)

UOl Unary Operator Insertion a=btoa=-b

Class Mutation Operators

According to Java language features, there aredoaups of class mutation operators [36]. Theseigsare as

follows:
e Encapsulation
* Inheritance
e Polymorphism
» Java-Specific Features

The useful mutation operator is the operator that ltandle all the possible syntactic changes fmogramming

language. Generally, the mutation operators casrdsed by one of the following ways [33 and 34]:
* delete,
+ insert, and
» change a target syntactic element

For Java language, 29 class mutation operators iderdgified [36] for testing object-oriented andegration
issues. The class mutation operators are listg@alite 5.

Table 5: Summary Class Mutation Operators for Javd36]

Language o
Feature Operator Description
Encapsulation| AMC Access modifier

change

IHD H|d|n_g variable
deletion
Hiding variable

IHI . -
insertion

0D Ovemdmg method
deletion

Inheritance Overriding method

IOP . "
calling position change

IOR Overriding method
rename
super keyword

ISI ; .
insertion

ISD super keyword

Impact Factor (JCC): 4.6723 NAAS Rating.89

Mutation Testing Tools for Java Programs — A Survey

deletion

Explicit call to a

t

N

IPC parent’s constructor
deletion
PNC new method call with
child class type
Member variable
PMD declaration with paren
class type
Parameter variable
PPD declaration with child
class type
PCl _Type cast operator
insertion
PCC Cast type change
Polymorphism Type cast operator
PCD .
deletion
Reference assignmen
PRV with other comparable|
variable
OMR Overloading method
contents replace
OMD Over!oadlng method
deletion
Arguments of
OAC overloading method
call change
JTI this keyword insertion
JTD this keyword deletion
IS _statlc_m0d|f|er
insertion
JSD static modifier deletio
JID Member variable
initialization deletion
Java-supported defau
JDC :
constructor deletion
Java-Specific Re;erenf[:e ?SS|gnmen
Features EOA and conten
assignment
replacement
Reference comparisorn
EOC and content
comparison
replacement
EAM Accessor method
change
EMM Modifier method
change

Examples of class mutation operators are listéithivie 6.

www.iaset.us

15

anli@iaset.us

16

Table 6: Example of Some Class Mutation Operators

Dana H Halabi & Adnan Shaout

Category Operator | Description Example
Access public Stack s;
Inheritance AMC Modifier to
Change private Stack s;
new method | a = new A();
. call with to
Polymorphism| - PNC child class | a = new B(); where
type B is subclass of A
Argument s.Push(0.5,2);
Overloading OAN number to
change s.Push(2);
. this.size = size;
Java-specific JTD ths k_eyword to
eletion L
size = size;
Reference
Common assignment | list2 = list1;
Programming | EOA and content | to
Mistakes assignment | list2 = listl.clone();
replacement

According to the nature of object oriented langsagéass mutation operator should be applied &rdifit levels.
The object oriented languages are class-basedytsdiom operators should take care of mutatiortedi#o in-class and out-

class language behavior [7 and 19]. These levelprasented as follows:
» Unit level: at this level apply traditional operegdo function or method of class, checking itsectiness.
e Class level: This level deals with the mutatiombfect oriented features.
* Integration level: Intermediate level between thi and the system levels, checking the functimo@ations.

e Multi-class level: Operators at this level are imited to test a complete program: interactions anfongtions,

classes, etc.
MUTATION TESTING TOOLS FOR JAVA PROGRAMS

An important characteristics of mutation testinglsocare the mutation operators supported by a Towh types of
mutation operators for object-oriented languages lwa distinguished, as suggested by [20]. The tgpegresented as

follows:
* Traditional mutation operators adapted from procaidanguages and
» Object oriented (or class) mutation operators dgpead to handle specific features in object orieptegiramming.

Other characteristics of mutation testing tools ametant generation methods (via bytecode or souome
modification) and time reducing techniques (e.gutant schemata generation (MSG)) [21]. The MSG otk used to

generate multi-one-mutant programs at the souked that each one can handle more than one my@gijts

A comparison among Java mutation testing toolisied in Tables 7.

Impact Factor (JCC): 4.6723 NAAS Rating.89

Mutation Testing Tools for Java Programs — A Survey 17

Table 7: Comparison of Mutation Testing Tools for &va

Characteristic Mujava Mueclips Jester Jumble RI Judy PIT
Open-source Commercia Open source Open sour:eOpensourc Open | Open | Open
e source | source | source
OO mutation Yes Yes No No No Yes No
operators
Mutant Source code Source
generation level Bytecode and byte code Source code Bytecode NA code Byte code
Produces nont
executable Yes Yes Yes Yes NA Yes Yes
mutant
Meta-mutant Yes Yes No No Yes Yes NA
groupe
Separate Separate Separate . d in S_eparat_e
Mutants format . source and) in-memory | NA file in
class file ! source files source
class files files memory
JUnit support No Yes Yes Yes Yes Yes Yes
Comm command
Interface GUI Echpse Plug- Command line Ecllpge NA and I|ne_ &
in Plug-in line Eclipseplu
gin
Suppor_t Batch No No Yes No NA Yes Yes
Execution
Speed 2 3 1 3 NA 1 1
Mujava

MuJdava [22, 23 and 24] has a large set of traditiamd class mutation operators specific for Janguage. To
speed up the mutant generation time, MuJava hadeingmted an advanced translation methods, 1) bg#eco
transformations and 2) MSG. Using these methodsemadaster than using separate compilation appro@2].

Disadvantages of MuJava are as follows [25]:
e The final report of mutants are not shown in anrappate way,
e The tool does not support batch mode, and
e Itdoesn't support JUnit test.

Muclipse

MuClipse [26] is a plugin within eclipse [27] forutant generation and for JUnit testing. It is basedViuJava
[23]. MuClipse supports 15 traditional operatorsl @8 class mutation operators. It has useful GUtlwiprovide mutant
viewer to view the mutant, and test case executfier selecting the class to mutant, MuClips autticadly generates
mutants and for each mutant it runs JUnit tesesuitts report summarize the number of live ankkdimutants with the
mutation score for the test suite. MuClips gener#te parse tree for a java program. The mutatgmnaies on the source

code, and should be compiled before running Jiésitguite. It doesn't run equivalent mutants.
Disadvantages of the tools MuClipse are as follows:
» It can't test the whole program by one-click,

» The test is done class by class and the user Hait@select more than one class at each time, and

www.iaset.us anli@iaset.us

18 Dana H Halabi & Adnan Shaout

e The test become more complex when the program dasages.
Jester

Jester [29] use oversimplified mechanism of mutagéneration. It is considered as a useful toddye testers

[28], but it is a very slow tool.

Actually, Jester depends on extending the defatilbf mutation operations, but this can cause problrelated
to performance and reliability. Jester supportdtlimnge of mutation operators, based only on gtgnbstitution. The

mutants are not strongly generated, and can lebcetk the code.
Disadvantages [25] of Jester are as follows:
e It generate, compile and run unit tests against eattant,
» Ittakes a long time to finish a run, and
» The final report can't be generated automatically.
Jumble

To reduce the testing time, Jumble [30] implemeriigttcode transformation technique. It supportsititést.

Jumble is used in testing industrial applications.

Jumble does not support all mutation operators. litnited to the following operators: AOR, ASR, EQOLOR,
ROR and SOR. The operators in Jumble are implerdesitieh that only one of the mutations defined kg riutation
operators is applied. For example, the AOR is imgeted by replacing { with “+', and not by eadhtlee other

arithmetic operators (**, /', and "%").
Disadvantages [25] of Jumble are as follows:
* It does not support the class mutation operatois, a
» It provides the fixed replacements of mutation apans, e.g. AOR mutant operator.
Response Injection (Ri)

RI is a prototype [31] based on the aspect oriemedhanisms to generate mutants. It has simplétitraal
mutation operators which are changing primitiveety@and two class mutation operators that applyriiegsclass objects
and null value to objects. RI checks only the restih method, and throw exceptions.

Disadvantages of RI are as follows:
» It doesn't support mutants for testing objects @addy parameters of a method,
* The resources of documentation and source codeoaeevailable, and
» It could be better if it can use all the facilitieaspect oriented programming.
Judy

Judy [32] is implemented using Java and AspecEnsitns based on the FAMTA Light approach.

Impact Factor (JCC): 4.6723 NAAS Rating.89

Mutation Testing Tools for Java Programs — A Survey 19

The most important features of Judy are as follows:

e The high performance of mutation testing process,

» Advanced mutant generation methods,

* Integration with professional development environtrteols,
* Full automation of testing, and

* Support the latest version of Java. These feaemable the tool to enforce mutation testing to mesent

Java application.
Judy Supports the Following

¢ Traditional mutation operators: ABS, AOR, LCR, RCQRd UOI. These operators are selected from
procedural languages to minimize the number of trartaoperators, and at the same time maximizingyngs

strength, and

« Class mutation operators of Java language, e.g.,l8B0IR, LOR, COR, and AS. Judy supports the EOA and
EOC mutation operators [32] that model object-dgdrfaults that are difficult to detect [20].

PIT

PIT [35] is an open source mutation testing tooWwadrks fast for mutant generation. PIT has fouag#s: mutant
generation, test selection, mutant insertion andantudetection in PIT. PIT uses mutation operaties conditional
boundary, negate conditionals, conditions remor@th mutator and more. Mutation is performed aelgade level.
Initially, mutants are generated and test datasakected to run over mutants. Then mutants arestbato the JVM and
detected by the test set. Along with mutants dgt#tilalso generates line coverage and mutatioerege, thus requires

some overhead.
CONCLUSIONS

It can be concluded that the MuJava, MuEclips army &re more efficient tools, as compared to therst since
these tools support class mutation operators. idudly far the most efficient mutation testing tbelcause it supports batch

execution that yields fast performance. It alsdgrer the mutation at the bytecode level.

Regarding to GUI, every tool supports its own tégha and there is a lack of common interface antbegools

which makes it difficult to compare.

There are many factors other than the executioe timat effects the performance of the presentels$.t&uch

factors are as follows:

. Number of mutation operations each tool has (ti@uil and class mutations),
. The implementation for these operations (simpleamnplex, and
. Testing result reports.

There is a lake of information available about ¢éhémctors from the presented tools that makesfficdit to

determine their performance.

www.iaset.us anli@iaset.us

20

Dana H Halabi & Adnan Shaout

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. khinson. A fault model for subtype inheritance and
polymorphism. In Proceedings of the 12th IntermalaSymposium on Software Reliability Engineeripgges
84-93, November 2001.

R. T. Alexander, J. M. Bieman, S. Chosh, and BMlilitation of Java objects. In 13th Internationafrfppsium on
Software Reliability Engineering, pages 341-351yé&nber 2002.

P. Chevalley and P. Th’evenod-Fosse. A mutatiotysisaool for Java programs. Journal on Softwanel3 for
Technology Transfer (STTT), pages 1-14, Decemb@g20

S. Kim, J. Clark, and J. McDermid. Class mutatidlutation testing for object-oriented programs. OOG8Bject-
Oriented Software Systems, October 2000.

Y. S. Ma, Y. R. Kwon, and J. Offutt. Inter-class taion operators for Java. Proceedings of 13thrhatéonal
Symposium on Software Reliability Engineering, Nioneer 2002.

R. J. Lipton, R. A. DeMillo, and F. G. Sayward. Hiron test data selection: help for the practigirmgrammer.
IEEE Computer, 11(4):34—-41, November April. 1978

Marcio E. Delamaro, Marcos L. Chaim and Auri M.\Rncenzi “Twenty five years of research in struetuand
Mutation testing”in 25th Brazilian Symposium on Sedre Engineering,978-0-7695-4603-2/11, IEEE 2011.

Fevzi Belli, MutluBeyazit*A Formal framework for ntation testing” in proceeding of: Fourth Internatib

Conference on Secure Software Integration and Bbfialmprovement, SSIRI 2010, Singapore, 2010.

M. R. Woodward, “Mutation testing - its origin aedolution,” Information and Software Technology,l.v85,
no. 3, Mar. 1993, pp. 163-169. [Online]. Availalitp://dx.doi.org/10.1016/0950-5849(93)90053-6

Y. Jia and M. Harman, “An analysis and survey & tlevelopment of mutation testing,” Software Engiirey,
IEEE Transactions on, vol. 37, no. 5, Oct. 2011,649 —678.

Offutt A., A Practical System for Mutation Testingelp for the Common Programmer, Twelfth Internaib
Conference on Testing Computer Software, 99-10%hvigton D.C. June 1995.

DeMillo R., Constraint-Based Automatic Test Datan€mtion, IEEE Transactions on Software Engineering
17(9): 900-910, 1991.

Scholivé, M., Beroulle, V., Robach, C., Flottes,LM.Rouzeyre, B., "Mutation Sampling Technique tbe

Generation of Structural Test Data", publishedrimcpeding

Sunwoo Kim John A. Clark John A. McDermid“Class Mitivn: Mutation Testing for Object-Oriented Progedm
In the Proceedings of the FMES 2000. October 2000.

Y.-S. Ma, “Object-Oriented Mutation Testing for 3gvPhD Thesis, KAIST University in Korea, 2005

J. Boubeta-Puig, A. Garc'la-Dom’inguez, and |. MaeBulo, “Analogies and differences between mutatio
operators for WS-BPEL 2.0 and other languages,Pinceedings of the 2011 IEEE Fourth International
Conference on Software Testing, Verification andidéion Workshops (ICSTW), IEEE. Berlin, Germany:

Impact Factor (JCC): 4.6723 NAAS Rating.89

Mutation Testing Tools for Java Programs — A Survey 21

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

IEEE, 2011, p. 398-407, print ISBN: 978-1-4577-0@19 [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2011.52

K. N. King and A. J. Offutt, “A FORTRAN language stgm for mutation-based software testing,” Software
Practice and Experience, vol. 21, no. 7, 199168p—718.

Yue Jia and Mark Harman, "An Analysis and Surveytiod Development of Mutation Testing", |IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, Digital Objet¢dentifier 10.1109/TSE.2010.62, 0098-
5589/10/$26.00 © 2010 IEEE

Y.-S. Ma, Y.-R. Kwon, and A. J. Offutt,” Inter-clssMutation Operators for Java,” in Proceedingshef 13th
International Symposium on Software Reliability Eegring (ISSRE02). Annapolis, Maryland: IEEE
Computer Society, 12-15 November 2002, p. 352.

Ma, Y.S., Harrold, M.J., and Kwon, Y.R.: "Evaluatiof Mutation Testing for Object-Oriented Progranfsoc.
28th Int. Conf. on Software Engineering, ShangBGaina, May 2006

Untch, R.H., Offutt A.J., and Harrold, M.J.: "Mutat Analysis Using Mutant Schemata'. Proc. Int. ymn
Software Testing and Analysis, Cambridge, USA, J18@3, pp. 139-148

Ma, Y., Offutt, J., Kwon, Y.R.: "MuJava: an automafclass mutation system’, Software Test Verif R@05, 15,
(2)

Offutt, J., Ma, Y.S., and Kwon, Y.R.: "An ExperintahMutation System for Java', SIGSOFT Software .Eng
Notes, 2004, 29, (5)

Ma, Y.S., Offutt, J., and Kwon, Y.R.: "MuJava: A ktion System for Java'. Proc. 28th Int. Conf. aftare
Engineering, Shanghai, China, May 2006

Madhuri Sharma, Neha Bajpai, Automatic Generatimd &xecution of Mutants, International Journal of
Computer Applications (0975 — 8887) Volume 44— Né@ril 2012

H. Smith and L. Williams, "An Empirical Evaluatiasf the MuJava Mutation Operators," in Testing: Aeaic
and Industrial Conference Practice and Researchnigues-MUTATION,'07, 2007

Eclipse. [Online]. https://www.eclipse.org/

Moore, |.: “Jester - a JUnit test tester'. Proa Brt. Conf. on Extreme Programming and Flexibledesses in

Software Engineering, Sardinia, Italy, May 2001

Offutt, J.: "An analysis of Jester based on publishapers'. http://cs.gmu.edu/~o_utt/jester-amal,faccessed
September 2006

Irvine, S. A., Tin, P., Trigg L., Cleary, J. G.glis, S., and Utting, M.: “Jumble Java Byte Codavtmasure the
Effectiveness of Unit Tests'. Proc. Testing: Acaieand Industrial Conf. Practice and Research Tigcies,
Windsor, UK, September 2007

Bogacki, B., and Walter, B.: "Aspect-Oriented ResmInjection: An Alternative to Classical Mutatidesting'.
Proc. IFIP Work. Conf. on Software Engineering Treghes, Warsaw, Poland, October 2006

www.iaset.us anli@iaset.us

22

32.

33.

34.

35.

36.

Dana H Halabi & Adnan Shaout

Judy, http://www.e-informatyka.pl/sens/Wiki.jsp?pagrojects.Judy, accessed June 2007

Ma, Y.S., Kwon, Y.R., and Offutt, J.: “Inter-Clabéutation Operators for Java'. Proc. 13th Int. Sysipm
Software Reliability Engineering, Washington, US¥gvember 2002

Offutt, A.J., Lee, A., Rothermel, G., Untch, R.ldnd Zapf, C.: "An Experimental Determination of fRuiént
Mutant Operators', ACM Trans. Software. Eng. andiVel996, 5, (2)

Henry Coles. (2012) PIT Mutation Testing. [Onlinkftp://pitest.org/

Yu-Seung Ma and Jeff Offutt, " Description of Clagatation Operators for Java", August 1, 2014

Impact Factor (JCC): 4.6723 NAAS Rating.89

