
International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 9

RESEARCH ARTICLE

IP Address Lookup in an IP Router Based On a

Reorganized Binary Prefixes Value Tree (RBPVT)

Haouassi Hichem

Univ Khenchela, Fac. ST, ICOSI Lab., BP 1252 El Houria, 40004 Khenchela, Algeria.

Houassi_h@yahoo.fr

Maarouk Toufik Mesaaoud

Univ Khenchela, Fac. ST, ICOSI Lab., BP 1252 El Houria, 40004 Khenchela, Algeria.

toomaarouk@yahoo.fr

Mahdaoui Rafik

Univ Khenchela, Fac. ST, ICOSI Lab., BP 1252 El Houria, 40004 Khenchela, Algeria.

Mehdaoui.rafik@yahoo.fr

Abstract – IP address lookup to route data packets is an important

function in a router and improving this function improves the

overall performance of the router. From the data structures used

for the prefixes representation, there are the trees that represent

prefixes with their binary values. However, this data structure

requires an improvement because of the longest prefix function

search complexity. Our approach is used to improve the routing

information search time in the prefixes values binary tree by

periodically reorganizing the tree according to the use of prefixes;

the most recently used prefixes are stored in the higher levels of

the reorganized binary prefixes value tree (RBPVT) which

improves the data packets routing time. The tests and evaluation

of the access memory number of the longest prefix match search

algorithm shows that the IP address lookup algorithm based on

our RBPVT tree improves the performance of the IP routers in

terms of average memory access number.

Index Terms – IP routers, IP address lookup algorithm, CIDR,

binary prefixes value tree.

1. INTRODUCTION

On the Internet, the communication between machines is

performed by packets of information [1] [2][3]. Once the

machines transmit their packets in the network, there are the

routers that forward the packets on network links to their final

destinations. The rapid growth in the number of Internet users

results the increase in the size of routing tables and complicate

the data packets routing operation.

To forward packets, the routers must determine where to send

each incoming packet. More exactly, the routers must be finds

for each incoming packet, the next-hop address of the router

and their output port number through which the packet should

be sent. We call these concepts the "routing information".

The router use the destination IP address of each incoming

packet and searches the routing information in its forwarding

table for decide where to send it next, this operation is called

IP address lookup. More specifically, the router searches in

their forwarding table to find the longest prefix matching the

destination IP address of the incoming packet. To do this, the

prefixes are compared bit by bit to the IP address of incoming

packets and that the routing information associated with the

longest of the matching prefixes should be used to forward the

packet.

The entries in the forwarding tables have been increasing as the

number of Internet users is increasing, the longest prefix

matching search operation becomes very complicated, and for

this, several researches and studies have been proposed in the

literature that have addressed this problem and improve the

router's performance which is directly related to packet

processing time.

In this paper, we propose a data structure for presenting the

prefixes of a routing table in order to improve the time search

of the longest prefix matching IP address in routers. Our data

structure is called reorganized binary prefixes value tree

(RBPVT) and it is based on the principle of reorganization of

the binary prefixes value tree proposed in the literature [4], our

tree is restructured periodically to store the most recently used

prefixes in the nodes of higher levels of the tree to accelerate

the prefixes research operation.

The rest of the paper is organized as follows. Section 2 reviews

the previous works. In section3, we present our detailed data

structure and IP address lookup algorithm, and finally, Section

4 presents the performance evaluations and comparisons with

other previous works followed by conclusion and future works.

mailto:toomaarouk@yahoo.fr

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 10

RESEARCH ARTICLE

2. RELATED WORK

In the following sections we introduce and classify some

software approaches that are proposed to tackle the IP address

lookup operation problem.

The majority of all recent algorithms use trees data structures

to represent the prefixes stored in the routing table [5], [6], [7],

we have classified the existing trees data structure according to

the principle of prefixes representation in the trees into binary

representation of the prefix, transformation and representation

prefixes in the form of IP address ranges, and binary prefixes

values tree.

2.1. Binary trees prefixes

The prefixes are bit strings of varying lengths [8]; they can be

naturally represented by a binary tree [11].

Binary tree is a simple data structure which represents prefixes

with paths from the root to the leaf; the next hops are stored in

the internal nodes or the leaves, however the number of

memory accesses required evaluating the next hop is much

higher. In order to reduce the depth of the tree, Multibit trees

[9], [10], [11] are one way to reduce the memory accesses

number and to optimize the time needed to find the longest

prefix.

In the inner of the binary tree may exist internal nodes with

only one-child nodes, these nodes must be traveled even though

no branching decision is made which remove the search speed.

A levels compression and paths compression techniques are

used to remove this problem, such as LC-trie [12], [13] and

patricia trie [14].

On the other hand, most tree data structures include many

empty internal nodes i.e. to not store any information. The

authors of the paper [15] propose a longest prefix search

algorithm based on a data structure called priority trie. This

algorithm exploits the empty internal nodes of the binary tree

to store the longest prefix among the prefixes belonging to a

sub-tree rooted by this empty node. Hence the memory space

occupied by the tree is reduced. In [16], the authors propose a

longest prefix matching search algorithm using a binary tree

with dynamic content, the content of this tree varies according

to the IP addresses handled by the router. This algorithm

exploits the empty internal nodes of the binary tree by placing

prefixes copies of the least recently used nodes in the higher

levels empty node of the tree. The binary trees prefixes does

not depend on the length of prefixes, it can be readily migrated

to IPv6.

2.2. Prefix Range Search

As prefixes are of arbitrary lengths and can be represented by

intervals (the start point and end point), some algorithms have

been proposed to search with these endpoints. The authors of

[17] use a binary search on the end points representing the

prefixes, but pre-computation is necessary for the data structure

updates operations. In [18], an algorithm is proposed to

improve the performance by using a B-tree structure to prevent

pretreatment of the data structure in [17], but each prefix may

be stored in multiple nodes. In [19], a new algorithm is

proposed to improve performance by storing one node for each

prefix. In [20] another tree data structure is used to store the

end points of the ranges of IP addresses (height-balanced

inorder-threaded binary search tree).

All these range-based algorithms can achieve the worst case

lookup performance of O(logN) (N is the number of prefixes in

a routing table) [21]. These algorithms are expected to be good,

with respect to the scalability to a large routing table or to the

migration to IPv6, since are performs the balanced binary

search and does not depends on the length of prefixes [5].

2.3. Binary search based on prefix value

The binary search algorithms based on prefixes values are used

to provide trees without empty nodes i.e., all nodes in the tree

stores data. In order to search on the binary values of the

prefixes, the latter should be sorted according to their binary

values. The mechanisms based on the binary prefixes values

provide a technique for comparison of different prefix lengths

[22]. To reduce the depth of the tree, the weighted prefix tree

(WPT) [23] considers the number of descendents in the choice

of the root of each level. The WPT tree constructed has a

shorter depth and is more balanced than the binary tree

prefixes. The multiple balanced prefix trees (MBPT) [24]

constructs more balanced trees with disjoint prefixes only [25].

The longest prefix first search (LPFST) [26] place the longest

prefixes in the upper levels of the tree such that the length of

the prefix stored in each node is greater than or equal to the

lengths of prefixes of his child, by this technique the routing

information search process ends when the destination address

of the incoming packet matches a prefix before arriving at a

leaf. The authors of [26] propose a balanced binary search

algorithm based on the binary search tree. This algorithm

builds a binary search tree with only the leaves of the classical

binary tree and create in every node a vector for contains a

nested prefixes.

Most of these proposed techniques use balanced trees that

uniform search time in the tree, but the problem is that the depth

of these trees generally depends on the number of prefixes in

the routing table, and then it is possible arriving at a complexity

which exceeds O(w) where w is the maximum length of

prefixes.

In this paper we proposed an IP address lookup algorithm that

uses a Binary tree where the most recently used prefixes are

firstly founds in the tree. In our proposed algorithm, the most

recently used prefixes for previous forwarded packet are stored

in the upper levels of the tree which speeds generally the IP

address lookup operation in the forwarding table. Our tree can

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 11

RESEARCH ARTICLE

be classified in the last class of data structures presented above

in the state of the art.

3. PROPOSED ALGORITHM

In the classical binary tree each prefix is represented by a path

from the root to a node of the tree, but the tree contains empty

nodes that do not store any information which consumes more

memory space. Empty nodes increase the height of the tree, and

consequently increase the search speed. To eliminate these

problems the binary search algorithms on the prefix values are

used to provide trees without empty nodes i.e. all tree nodes

stores useful data. In this kind of tree, prefixes should be sorted

according to their binary values [22].

The objective of our proposition is to accelerate the longest

prefix search operation in the tree by storing the most recently

used prefixes in high levels of the prefix value tree. To

determine the most recently used prefixes, we propose a

mechanism to evaluate the use of prefixes stored in the tree, our

mechanism associated with each prefix a variable containing a

value called “priority value” that is reduced (evaporated) with

the passage of time and increased by a constant value when

accessing the node that contains this prefix, This value is

updated with the longest prefix match search operation. Our

longest prefix search algorithm updates the priority value using

the formula 1. Then we compare the prefixes according to this

value, if this value is higher, the prefix is considered mostly

used and must be placed in a high level in tree.

On the other hand we have proposed a periodic evaluation and

reorganizing of the prefix tree in order to take account of the

new priority values of prefixes. Our algorithm has to

reconstruct the tree of prefixes again if the majority of prefixes

are located in positions not meeting its priority values. To

decide a reorganization of the tree, it must firstly, evaluate the

organization of prefixes in tree using the formula 2. For

reorganize the tree, firstly, sort the prefixes according to their

priority values, and then insert the prefixes one by one in the

tree according to the comparative relationship proposed in [22]

and initialize their priority values.

3.1. Structure of a tree node

The figure 3 illustrates the structure of a node in the

reorganized binary prefixes value tree proposed. The tree node

stores the prefix, the output port (OP), the priority value (PV)

of the prefix, the last priority value updates time (LPVUT), and

two pointers to the left and right child of the node.

Prefix OP VP LPVUT Child_ L Child_ R

Figure 1 Node structure

Prefix: The prefix of the routing table

OP: The output port matching the prefix in the routing table.

Child_L and Child_R: Pointers to the left and right childs of

the node respectively, or Null.

PV: The priority value of the prefix.

LPVUT: The time of the last priority value updates.

3.2. Calculation of the prefix priority value

To search the output port to an IP address of an incoming

packet, the algorithm traverses the tree that represents all

prefixes in the routing table using the bits of the IP address to

find the longest prefix in one of the tree node that matches the

IP address.

In our proposition the longest prefix search algorithm has

updates the priority value field associated with each node

contains a prefix in the tree that allows us to take an idea on the

use of prefixes in the routing table by the router.

The priority value associated with a prefix reduced

(evaporated) with the passing of time and increased by a

constant value when accessing the node containing the prefix

in the tree. The priority value is updated according to the

following formula:

 QtPv
t

ttPv

1

Where,

 1,0 : Is the evaporation coefficient which defines the

decrease rate (evaporation) of the priority value between time t

and t+∆t.

∆t: Is the time interval between two successive prefix accesses.

 tVP : Is the priority value of the prefix P at time t.

Q: is a constant value added to the old priority value when

accessing the prefix.

The choice of ρ is important, because if ρ gets too close to 1,

then priority value stagnation is observed. Similarly, choosing

ρ ≈ 0 implies too rapid decrease (evaporation) of the priority

value, then, leads to select the most used prefix but not the most

recently used.

3.3. Tree organization quality

The tree organization quality depends on the prefixes positions

in the different levels of the tree, the tree is good organized if

the most recently used prefixes are in the upper levels of the

tree and the least recently used prefixes in the lower levels. To

better understand the evaluation technique of the tree

organization quality we provide the following definitions:

Definition1: Prefixes priority value

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 12

RESEARCH ARTICLE

The prefix priority value Pv is a real value associated with the

prefix in the tree, this value represents the density of the recent

prefix uses by the router.

Definition2: level priority value

The level priority value of the prefixes tree LPV(i) is the mean

of the priority values of the prefixes stored in the nodes of a

level i in the tree.

Definition3: tree organization quality

The tree organization quality is calculated using the following

formula:

1

1
1

N

iLPViLPV

TOQ

N

i

Where,

TQO: Is a value representing the tree organization quality.

LPV(i): Is the priority value of a level i in the prefixes tree.

N: Is the levels number of the prefixes tree (tree depth).

The prefix tree is of perfect quality if and only if, whatever two

prefixes Pi and Pj stored in the nodes of two levels i and j such

as i is less than j implies that the Pi priority value is greater than

Pj priority value.

Really almost impossible to organize the prefixes in a perfect

quality tree since during construction of the prefix tree must be

taken into account two parameters: the priority value and the

comparison between prefixes defined in [22].

3.4. Building the proposed reorganized tree

The proposed tree is initially constructed as a binary tree of

prefixes proposed in [22], is a tree without empty nodes i.e., all

nodes in the tree store useful data. To search on the binary

values of the prefixes, the latter must be sorted according to

their binary values.

In our prefix tree, prefixes priority values are modified over

time, our algorithm periodically evaluate the tree organization

quality based on formula 2, if the organizational quality value

exceeds a threshold α, it causes the shaft rebuild operation as

follows: firstly, sorted in descending order every tree prefixes

according to its priority values, then insert the prefixes one by

one in the new tree based on the comparison of relationship

between the binary values of prefixes defined in [22].

/* O_Tree and N_Tree: The old and new tree respectively */

Procedure Construction_Tree(O_Tree,N_Tree)

 { List← Sort_Tree(O_Tree)

 While (List<>Null)

 {Insert_element(N_Tree,

 Head_List(List))

 List Next (List)}

 }

 /* the function Sort_Tree sort the elements of the old tree

in descending order according to priority value PV */

Procedure Insert_element(Tree, Prefix)

 {If (Tree = Null) {

 Create_Node(Tree)

 Tree↑.Prefix←Prefix;

 Tree↑.PV ← 0 /*PV is a

 priority value */}

 Else

 If Prefix < Tree↑.Prefix

 Insert_element(Tree

 ↑.Child_L, Prefix)

 Else

 Insert_element(Tree ↑.Child_R, Prefix)}

Figure 2 shows the initial binary tree applied to the prefixes of

table 1. The prefixes priority values are initialized to 0.

Table 1 Example of routing table

Figure 2 The RBPVT initial tree created from Table 1

Figure 3 RBPVT tree with modified priority values

Prefix Lengt

h

Out

put

port

Prefix Length Output

port
00* 2 A 111111

*

6 F

010* 3 B 110100

*

6 G

101* 3 C 110101

*

6 H

1* 1 D 111100

*

6 I

111* 3 E 1100* 4 J

110100

0

101

0
111100

0.5

010

0

00

0

1

0

111

0
111111

0

110101

0

110100

1

101

0.2
111100

0.5

010

3

00

1

1

2

111

2
111111

3

110101

5

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 13

RESEARCH ARTICLE

It is assumed that after a period, prefixes priority values are

modified as shown in the tree in Figure 3.

Assuming that the maximum of the organization quality

threshold value of the tree α = 0.5, the organization quality

value is 0.66, this value is calculated by the formula 2 based on

the priority values of the tree in figure 2, then the tree must be

rebuilt again as shown in figure 4.

Figure 4 The RBPVT tree rebuilt from the tree of figure 3

We note in the tree of figure 4 that the prefixes have high

priority values are mounted to higher levels in the tree.

3.5. The longest prefix search

The search procedure is simple, recursive and similar to the

search procedure in a binary search tree. The procedure returns

the longest prefix match if it exists and NULL otherwise.

It is important to note that the search procedure always starts

with the most recently used prefixes that are stocked in the

higher levels of the tree which improves the overall search

time. The search procedure is as follows:

Tree: Is the RBPVT Tree.

ADR_IP: Is the IP address of the input packet.

PV: The priority value of the prefix.

LP: The longest prefix.

Q and ρ: Are constants.

∆t: Is the time interval between the time of the last update and

the current time.

Procedure Search (Tree, Adr_IP)

 {If Tree = NULL then Return

 NULL

 Else

 If (Adr_IP match

 Tree↑.prefix)then

 LP ← Tree↑.prefix;

 Return LP ;

 Tree↑.PV← ρ *(1/∆t)*PV+Q

 Else

 If (Adr_IP<Tree↑.prefix)then

 LP←Search(Tree↑.Child_G,

 Adr_IP)

 Else

 LP←Recherche(Tree↑.

 Child_D, Adr_IP); }

4. TESTS AND RESULTS ANALYSIS

During testing of our algorithm, we used 3 routing table of

different sizes:

Table 2 Size of routing tables used during the tests.

We implemented the data structure and the proposed algorithm

and we simulate the longest prefix search operation in an IP

router. During the simulation we consider the following two

criteria: average number of memory access and total number of

memory access.

For each simulation scenario we test our algorithm with a

manufacturing routing table and multiple data streams (set of

data packets).

Scenario 1

In the first scenario we used the routing table1 contains 5000

prefixes and it tested for the search algorithm using three data

streams in the form of packets tables. The sizes of the packets

tables used are the following in table 3:

Table 3 Packets tables sizes used in the first scenario.

Scenario 2

In this scenario the second routing table of Table 2 is used

(10000 prefixes) and the search algorithm is tested with three

data stream, where, the sizes are as follows:

Table 4 Packet tables size used in the second scenario.

Scenario 3

In the third scenario it used the third routing table contains

15000 prefixes, so we tested our search algorithm on three

other data stream, where, the sizes are as follows:

Routing tables Sizes

Table 1 5000 prefixes

Table 2 10000 prefixes

Table 3 15000 prefixes

Paquets tables Sizes

Table 1 1100 paquets

Table 2 1300 paquets

Table 3

1500 paquets

Paquets tables Sizes

Table 1 3100 paquets

Table 2 3200 paquets

Table 3 3300 paquets

110101

0

101

0

111100

0

010

0

00

0

1

0
111

0

111111

0
110101

0

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 14

RESEARCH ARTICLE

Table 5 Packet tables sizes used in the third scenario.

Figure 5 Results of the first scenario with a routing table 1.

Figure 6 Results of the second scenario with a routing table 2.

The figures 5, 6 and 7 shows the comparison results of our data

structure before and after reorganization with the classical

binary tree data structure of prefixes [1] testes in the three

previous scenarios. The comparison is in terms of average and

total memory access number of the longest prefix search

algorithm using several routing tables and several data streams

(packets tables).

Figure 7 Results of the third scenario with a routing table 3.

In all scenarios we noticed that our tree presents considerable

improvement of two tested criteria (average number of memory

accesses and total number of memory access) before and after

reorganization compared with the classical binary tree[1], on

the other hand we found that our tree after reorganization has a

small improvement in terms of average memory access number

from the same tree before reorganization and since the most

recently used prefixes are stored after reorganization of the tree

in the nodes of the high levels of the tree which improves the

prefix search time.

Once a prefix is used for forwarding the first packet of a data

stream, it is sure that the router reuses the same prefix for

routing packets of the same flow remaining, and then the prefix

is found after reorganization in higher levels of the tree.

5. CONCLUSION

An IP address lookup algorithm in the IP routers based on

reorganized binary tree has been proposed. The data structure

used for representing the prefixes is in the form of a prefixes

values binary tree, this tree is reorganized periodically to

improve the longest prefix match search time, the tests and

Paquets tables Sizes

Table 1 8000 paquets

Table 2 8050 paquets

Table 3 8100 paquets

International Journal of Computer Networks and Applications

Volume 3, Issue 1, January – February (2016)

ISSN: 2395-0455 ©EverScience Publications 15

RESEARCH ARTICLE

evaluation of our approach demonstrates that the search time of

an IP address match search algorithm based on the prefixes

values binary tree after reorganization is better than the same

search algorithm using the tree before reorganization. Our

proposed approach improves search time by storing the most

recently used prefixes in higher levels of the tree after

reorganization.

REFERENCES

[1] Y.P. Dalal, U.D. Jha, R.K., "Security Comparison of Wired and Wireless
Network with Firewall and Virtual Private Network (VPN)," in Recent

Trends in Information, Telecommunication and Computing (ITC), 2010.

[2] B. Ramakrishnan , S. R. Sreedivya , M. Selvi , “Adaptive Routing
Protocol based on Cuckoo Search algorithm (ARP-CS) for secured

Vehicular Ad hoc network (VANET)”, International Journal of Computer

Networks and Applications (IJCNA) Volume 2, Issue 4, pp 173—178,
2015.

[3] R. Vinuraj, SJ. Weta, “Application of Modified ACO Meta heuristic in

Spray and Wait Routing”, International Journal of Computer Networks
and Applications (IJCNA) Volume 2, Issue 5, pp. 232—241. 2015.

[4] Antos, D.: Overview of data structures in IP lookups. CESNET Tchnical
Report, (2002).

[5] Hyesook, L., and Nara L.: Survey and Proposal on Binary Search

Algorithms for Longest Prefix Match, IEEE COMMUNICATIONS
SURVEYS & TUTORIALS, Vol. 14, No. 3, pp. 681—697, (2012).

[6] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy. Guarantee

IP Lookup Performance with FIB Explosion. In ACM SIGCOMM, pp.
39–50, 2014.

[7] H. Lim, K. Lim, N. Lee, and K.-H. Park. On adding bloom filters to

longest prefix matching algorithms. IEEE Transactions on Computers
(TC), 63(2): pp.411–423, 2014.

[8] S. V. Limkar, R. K. Jha, and S. Pimpalkar, “Ipv6: issues and solution for

next millennium of internet,” in Proceedings of the International

Conference & Workshop on Emerging Trends in Technology, ser.

ICWET ’11. New York, NY, USA: ACM, 2011, pp. 953–954.

[9] Wuu, L.C., Liu, T.J., Chen, K.M.: A longest prefix first search tree for IP
lookup. Computer Networks, Vol. 51, Issue. 12, pp. 3354--3367 (2007).

[10] Moestedt, A., Sjodin, P.: IP address lookup in hardware for high speed

routing. Hot Interconnects VI, (1998).
[11] Srinivasan, V., Varghese, G.: Fast address lookups using controlled

prefix Expansion. Proceedings of ACM Sigmetrics, Vol. 17, Issue. 1, pp.

1--40. (1999).
[12] Nilsson, S., Karlsson, G.: IP-address lookup using LC-Tries. IEEE

Journal on selected areas in communications, Vol.17, Issue. 6, pp. 1083-

-1092. (1999).
[13] Ravikumar, V.C., Mahapatra, R., Liu, J.C.: Modified LC-Trie based

efficient routing lookup. Proceedings of the 10th IEEE MASCOTS 02,

pp. 177 --182. (2002).
[14] Morrison, D.R.: PATRICIA - practical algorithm to retrieve information

coded in alphanumeric. ACM, Vol. 15, No. 14, pp. 514--34. (1968).

[15] Lim, H., Mun, J.: An efficient IP address lookup algorithm using a

priority-trie. IEEE, Global Telecommunications Conference, pp. 1--5.

(2006).

[16] Houassi, H., Bilami, A.: IP address lookup algorithm using a dynamic
content binary trie. IRECOS, Vol. 5, NO 3, pp. 337--341. (2010).

[17] Lampson, B. Srinivasan, V., Varghese, G.: IP lookups using multiway

and multicolumn search. IEEE/ACM Networking, Transactions, Vol. 7,
Issue. 3, pp. 1248--1256. (1999)

[18] Suri, S., Varghese, Warkhede, G. P.: Multiway range trees: Scalable IP

lookup with fast updates. IEEE, GLOBECOM '01. Vol. 3, pp. 1610--
1614. (2001).

[19] Lu, H., Sahni, S.: A B-Tree dynamic router-table design. IEEE

Computers Transactions, Vol.54, Issue: 7, pp. 813--823. (2005).
[20] Li, Y.K., Pao, D.: Address lookup algorithms for IPv6., IEE Proceding

on Communication, Vol. 153, Issue. 6, pp. 909 --918. (2006).

[21] Sun, Q., Zhao, X., Huang, X., Jiang, W., Ma1, Y.: Scalable exact

matching in balance tree scheme for IPv6 lookup. IPv6'07, Kyoto, Japan,
Copyright ACM 978-1-59593-713. (2007).

[22] Yazdani N., Min, P.S.: Fast and scalable schemes for the IP address

lookup problem. Proceedings of the IEEE Conference on High
Performance Switching and Routing, Vol.3, pp. 1610--1614. (2000).

[23] Yim, C., Lee, B., Lim, H.: Efficient binary search for IP address lookup.

IEEE Communications Letters, Vol. 9, No. 7, pp. 652--654. (2005).
[24] Lim, H., Lee, B., Kim, W. J.: Binary searches on multiple small trees for

IP address lookup. IEEE Communications Letters, Vol. 9, No. 1, pp. 75-

-77. (2005).
[25] Lim, H., Kim,W., Lee, B.: Binary search in a balanced tree for IP address

lookup. Proceding of IEEE HPSR2005, pp. 490--494. (2005).

[26] Wuu, L.C., Liu,T.J., Chen, K.M.: A longest prefix first search tree for IP
lookup. Computer Networks, Vol. 51, Issue. 12, pp. 3354--3367. (2007).

[27] Lim, H., Kim, H. G.: IP address lookup for Internet routers using

balanced binary search with prefix vector. IEEE Transactions on

communications, Vol. 57, No. 3, pp. 618--621. (2009).

Authors

Hichem Haouassi holds the Engineer Diploma from the Computer Science
department, HadjLAkhdhar University of Batna, Algeria in 2001, has received

Magister and PHD degree on 2004 and 2012 from the Department of Computer
Science, University of Batna, Algeria. He is a lecturer at currently a lecturer in

the Department of Computer Science, University of Khenchela, Algeria. He is

a member of Software engineering Group, at ICOSI Laboratory, ABBAS
LAGROUR Khenchela University. His research interests include router

architecture, mobile network, Data Mining and computational Intelligence.

ToufikMessaoud MAAROUK holds the engineer Diploma from the
Computer Science department, University of ANNABA, Algeria; he obtained

the degree of Magister in 2005 at Batna University in Computer science. And

he obtained His PHD in 2012 at Constatnine University in Computer science
he is an assistant Professor at Computer Science department of Khenchela

University Algeria, where he teaches: Programming languages, graph theory,

script languages and others matters. He supervises engineers and masters
students on their final projects. He is a member of Formal methods Group, at

ICOSI Laboratory, ABBAS LAGROUR Khenchela university,. He’s research

interests are in formal methods in programming and their applications,
Artificial intelligence, emergent technologies.

Rafik MAHDAOUI holds the engineer Diploma from the Computer Science

department, HadjLAkhdhar University of Batna, Algeria in 2001; he obtained
the degree of Magister in 2008 at Batna University in Industrial engineering.

And he obtained His PHD in 2013 at Batna University in Industrial engineering

he is an assistant Professor at Computer Science department of Khenchela
University Algeria, where he teaches: Programming languages, graph theory,

script languages and others matters. He supervises engineers and masters

students on their final projects. He is a member of computer security Group, at
ICOSI Laboratory, ABBAS LAGROUR Khenchela university,. He’s research

interests are in Neuro-Fuzzy systems, Artificial intelligence, emergent

technologies, prognosis and diagnosis,e-maintenance.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=16775
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4150629
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=16916
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7633
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=30887
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6916
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6916

