PRODUCT VERSION OF RECIPROCAL DEGREE DISTANCE OF GRAPHS

K. Pattabiraman

Abstract

In this paper, we present the various upper and lower bounds for the product version of reciprocal degree distance in terms of other graph inavriants. Finally, we obtain the upper bounds for the product version of reciprocal degree distance of the composition, Cartesian product and double of a graph in terms of other graph invariants including the Harary index and Zagreb indices. .

1. Introduction

All the graphs considered in this paper are simple and connected. For vertices $u, v \in V(G)$, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G and let $d_{G}(v)$ be the degree of a vertex $v \in V(G)$. A topological index of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index; for other related topological indices see [17].

Let G be a connected graph. Then Wiener index of G is defined as $W(G)=$ $\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)$ with the summation going over all pairs of distinct vertices of G. Similarly, the Harary index of G is defined as $H(G)=\frac{1}{2} \sum_{u, v \in V(G)} \frac{1}{d_{G}(u, v)}$.

[^0]Gutman et al. $[\mathbf{7}, \mathbf{8}]$ were introduced the product version of Wiener index which is defined as $W^{*}(G)=\prod_{\{u, v\} \subseteq V(G)} d_{G}(u, v)$.

Dobrynin and Kochetova [3] and Gutman [6] independently proposed a vertex-degree-weighted version of Wiener index called degree distance or Schultz molecular topological index, which is defined for a connected graph G as $D D(G)=$ $\frac{1}{2} \sum_{u, v \in V(G)}\left(d_{G}(u)+d_{G}(v)\right) d_{G}(u, v)$, where $d_{G}(u)$ is the degree of the vertex u in G. Note that the degree distance is a degree-weight version of the Wiener index. Hua and Zhang [10] introduced a new graph invariant named reciprocal degree distance, which can be seen as a degree-weight version of Harary index, that is, $H_{A}(G)=\frac{1}{2} \sum_{u, v \in V(G)} \frac{\left(d_{G}(u)+d_{G}(v)\right)}{d_{G}(u, v)}$. Hua and Zhang [10] have obtained lower and upper bounds for the reciprocal degree distance of graph in terms of other graph invariants including the degree distance, Harary index, the first Zagreb index, the first Zagreb coindex, pendent vertices, independence number, chromatic number and vertex and edge-connectivity. In this sequence, the product version of reciprocal degree distance is defined as $H_{A}^{*}(G)=\prod_{\{u, v\} \subseteq V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)}$.

The first Zagreb index and second Zagerb index are defined as $M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2}=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)$ and $M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)$. Similarly, the first Zagreb coindex and second Zagerb coindex are defined as

$$
\bar{M}_{1}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right)
$$

and

$$
\bar{M}_{2}(G)=\sum_{u v \notin E(G)} d_{G}(u) d_{G}(v) .
$$

The Zagreb indices are found to have appilications in QSPR and QSAR studies as well, see [4]. Various topological indices on tensor product, strong product have been studied various authors, see $[\mathbf{1}, \mathbf{2}, \mathbf{9}, \mathbf{1 1}-\mathbf{1 3}, \mathbf{1 5}, \mathbf{1 6}]$. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

2. Bounds for H_{A}^{*}

In this section, we obtain the lower and upper bounds for H_{A}^{*} for a connected graph.

Theorem 2.1. For any graph $G, H_{A}^{*}(G) \leqslant D D^{*}(G)$ with equality if and only if $G \cong K_{n}$.

Proof. Let $u, v \in V(G)$. Clearly, $\frac{1}{d_{G}(u, v)} \leqslant d_{G}(u, v)$ with equality if and only if $d_{G}(u, v)=1$. Therefore
$H_{A}^{*}(G)=\prod_{\{u, v\} \subseteq V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)} \leqslant \prod_{\substack{\{u, v\} \subseteq V(G) \\ 194}}\left(d_{G}(u)+d_{G}(v)\right) d_{G}(u, v)=D D^{*}(G)$.
equality holds if and only if $d_{G}(u, v)=1$, for any two vertices $u, v \in V(G)$. Hence $G \cong K_{n}$.

THEOREM 2.2. For any graph $G, H_{A}^{*}(G) \leqslant M_{1}^{*}(G) \bar{M}_{1}^{*}(G)$ with equality if and only if $G \cong K_{n}$.

Proof. One can see that $\frac{1}{d_{G}(u, v)} \leqslant 1$ with equality if and only if $d_{G}(u, v)=1$, for any two vertices $u, v \in V(G)$. Therefore

$$
\begin{aligned}
H_{A}^{*}(G) & =\prod_{\{u, v\} \subseteq V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)} \\
& \leqslant \prod_{\{u, v\} \subseteq V(G)}\left(d_{G}(u)+d_{G}(v)\right) \\
& =\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right) \prod_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right) \\
& =M_{1}^{*}(G) \bar{M}_{1}^{*}(G) .
\end{aligned}
$$

equality holds if and only if $d_{G}(u, v)=1$, for any two vertices $u, v \in V(G)$. Hence $G \cong K_{n}$.

TheOrem 2.3. For any connected graph $G, H_{A}^{*}(G) \leqslant M_{1}^{*}(G) \bar{M}_{1}^{*}(G)$ with either equality if and only if G is regular.

Proof. One can observe that $2 \delta \leqslant d_{G}(u)+d_{G}(v) \leqslant 2 \Delta$ for two vertices u and v in G. So

$$
\begin{aligned}
H_{A}^{*}(G) & =\prod_{\{u, v\} \subseteq V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)} \\
& \leqslant 2 \Delta \prod_{\{u, v\} \subseteq V(G)} \frac{1}{d_{G}(u, v)} \\
& =2 \Delta H^{*}(G) .
\end{aligned}
$$

Hence $2 \delta H^{*}(G) \leqslant H_{A}^{*}(G) \leqslant 2 \Delta H^{*}(G)$. This completes the proof.
THEOREM 2.4. For any graph $G, H_{A}^{*}(G) \geqslant \frac{\left(M_{1}^{*}(G) \bar{M}_{1}^{*}(G)\right)^{2}}{D D^{*}(G)}$ with equality if and only if $G \cong K_{n}$.

Proof. By the definitions of H_{A}^{*} and $D D^{*}$,

$$
\begin{aligned}
& H_{A}^{*}(G) D D^{*}(G) \\
= & \left(\prod_{\{u, v\} \subseteq V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)}\right)\left(\prod_{\{u, v\} \subseteq V(G)}\left(d_{G}(u)+d_{G}(v)\right) d_{G}(u, v)\right) \\
\geqslant & \left(\prod_{\{u, v\} \subseteq V(G)}\left(d_{G}(u)+d_{G}(v)\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right) \prod_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right)\right)^{2} \\
& =\left(M_{1}^{*}(G) \bar{M}_{1}^{*}(G)\right)^{2} .
\end{aligned}
$$

Thus $H_{A}^{*}(G) \geqslant \frac{\left(M_{1}^{*}(G) \bar{M}_{1}^{*}(G)\right)^{2}}{D D^{*}(G)}$ with equality if and only if $d_{G}(u, v)$ is a constant. Hence $G \cong K_{n}$.

Theorem 2.5. Let G be a connected graph. Then

$$
2 \delta(G)\left(H^{*}(G)+H^{*}(\bar{G})\right) \leqslant H_{A}^{*}(G)+H_{A}^{*}(\bar{G}) \geqslant 2 \Delta(G)\left(H^{*}(G)+H^{*}(\bar{G})\right)
$$

Proof. Consider

$$
\begin{aligned}
H_{A}^{*}(G)+H_{A}^{*}(\bar{G}) & =\prod_{\{u, v\} \subseteq V(G)} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)}+\prod_{\{u, v\} \subseteq V(\bar{G})} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)} \\
& \leqslant 2 \Delta(G) H^{*}(G)+2 \Delta(\bar{G}) H^{*}(\bar{G}) \\
& =2 \Delta(G) H^{*}(G)+2 \delta(G) H^{*}(\bar{G}) \\
& \leqslant 2 \Delta(G) H^{*}(G)+2 \Delta(G) H^{*}(\bar{G}) \\
& =2 \Delta(G)\left(H^{*}(G)+H^{*}(\bar{G})\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
H_{A}^{*}(G)+H_{A}^{*}(\bar{G}) & \geqslant 2 \delta(G) H^{*}(G)+2 \delta(\bar{G}) H^{*}(\bar{G}) \\
& =2 \delta(G) H^{*}(G)+2 \Delta(G) H^{*}(\bar{G}) \\
& =2 \delta(G)\left(H^{*}(G)+H^{*}(\bar{G})\right)
\end{aligned}
$$

3. Product graphs

In this section, we obtain the upper bounds for H_{A}^{*} of composition, Cartesian product and double of a graphs.

Remark 3.1. (Arithmetic Geometric Inequality) Let $a_{1}, a_{2}, \ldots, a_{n}$ be non negative n numbers. Then

$$
n \sqrt{a_{1} a_{2} \ldots a_{n}} \leqslant \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}
$$

3.1. Composition. The composition of G and H, denoted by $G[H]$, has vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$ is an edge whenever $g_{1} g_{2}$ is an edge in G or, $g_{1}=g_{2}$ and $h_{1} h_{2}$ is an edge in H. In this section, we obtain the product version of reciprocal degree distance of the composition of two graphs.

THEOREM 3.1. Let G_{i} be the connected graphs with n_{i} vertices and m_{i} edges, $i=1,2$. Then $H_{A}^{*}\left(G_{1}\left[G_{2}\right]\right) \leqslant\left(\frac{1}{n_{1} n_{2}}\right)^{3 n_{1} n_{2}}\left[n_{2} m_{1}\left(n_{2}^{2}+2 m_{2}-n_{2}\right)+\frac{n_{1}}{2}\left(2 M_{1}\left(G_{2}\right)+\right.\right.$
$\left.\left.\bar{M}_{1}\left(G_{2}\right)\right)\right]^{n_{1} n_{2}}\left[n_{2}^{2} H_{A}\left(G_{1}\right)+4 m_{2} H\left(G_{1}\right)\right]^{n_{1} n_{2}}\left[n_{2}^{2}\left(n_{2}-1\right) H_{A}\left(G_{1}\right)+2 H\left(G_{1}\right)\left(M_{1}\left(G_{2}\right)\right.\right.$ $\left.\left.+\bar{M}_{1}\left(G_{2}\right)\right)\right]^{n_{1} n_{2}}$.

Proof. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and let $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. Let $x_{i j}$ denote the vertex $\left(u_{i}, v_{j}\right)$ of $G_{1}\left[G_{2}\right]$. The degree of the vertex $x_{i j}$ in $G_{1}\left[G_{2}\right]$ is $n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)$. By the definition of H_{A}^{*}

$$
\begin{aligned}
& H_{A}^{*}\left(G_{1}\left[G_{2}\right]\right)=\prod_{x_{i j}, x_{k \ell} \in V\left(G_{1}\left[G_{2}\right]\right)} \frac{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}\right)+d_{G_{1}\left[G_{2}\right]}\left(x_{k \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k \ell}\right)} \\
& =\prod_{i=0}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}\right)+d_{G_{1}\left[G_{2}\right]}\left(x_{i \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{i \ell}\right)} \times \prod_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \prod_{j=0}^{n_{2}-1} \frac{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}\right)+d_{G_{1}\left[G_{2}\right]}\left(x_{k j}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k j}\right)} \\
& \quad \times \prod_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}\right)+d_{G_{1}\left[G_{2}\right]}\left(x_{k \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k \ell}\right)} .
\end{aligned}
$$

We shall calculate the above sums are separately. First we compute
$\prod_{i=0}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\ j \neq \ell}}^{n_{2}-1} \frac{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}\right)+d_{G_{1}\left[G_{2}\right]}\left(x_{i \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{i}\right)}$.

$$
\begin{aligned}
& \prod_{i=0}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}\right)+d_{G_{1}\left[G_{2}\right]}\left(x_{i \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{i \ell}\right)} \\
= & \prod_{i=0}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{2 n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)+d_{G^{\prime}}\left(v_{\ell}\right)}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)} \\
\leqslant & {\left[\frac{\sum_{\substack{i=0 \\
n_{1}-1, \ell=0 \\
j \neq \ell}}^{\frac{n_{2}-1}{n_{2}}} \frac{2 n_{2} d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{\ell}\right)}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)}}{n_{1} n_{2}}\right]^{n_{1} n_{2}} \text { by Remark 3.1 } } \\
= & {\left[\frac{S_{1}}{n_{1} n_{2}}\right]^{n_{1} n_{2}}, }
\end{aligned}
$$

where

$$
\begin{aligned}
S_{1} & =\frac{1}{2} \sum_{i=0}^{n_{1}-1} \sum_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{2 n_{2} d_{G_{1}}\left(u_{i}\right)}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)}+\frac{1}{2} \sum_{i=0}^{n_{1}-1} \sum_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{\ell}\right)}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)} \\
& =n_{2} \sum_{i=0}^{n_{1}-1} d_{G_{1}}\left(u_{i}\right)\left(\sum_{v_{j} v_{\ell} \in E\left(G_{2}\right)} \frac{1}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)}+\sum_{v_{j} v_{\ell} \notin E\left(G_{2}\right)} \frac{1}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sum_{i=0}^{n_{1}-1}\left(\sum_{v_{j} v_{\ell} \in E\left(G_{2}\right)} \frac{d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{\ell}\right)}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)}+\sum_{v_{j} v_{\ell} \notin E\left(G_{2}\right)} \frac{d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{\ell}\right)}{d_{G_{2}}\left(v_{j}, v_{\ell}\right)}\right) \\
= & 2 n_{2} m_{1}\left(\sum_{v_{j} \in V\left(G_{2}\right)} d_{G_{2}}\left(v_{j}\right)+\sum_{v_{j} \in V\left(G_{2}\right)} \frac{1}{2}\left(m-d_{G_{2}}\left(v_{j}\right)-1\right)\right) \\
& +\frac{1}{2} \sum_{i=0}^{n_{1}-1}\left(\sum_{v_{j} v_{\ell} \in E\left(G_{2}\right)}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{\ell}\right)\right)+\sum_{v_{j} v_{\ell} \notin E\left(G_{2}\right)} \frac{d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{\ell}\right)}{2}\right), \\
& \text { } \operatorname{since} \text { each row } \\
& \text { induces a copy of } G_{2} \text { and } d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{i \ell}\right)=\left\{\begin{array}{l}
1, \text { if } v_{j} v_{\ell} \in E\left(G_{2}\right) \\
2, \text { if } v_{j} v_{\ell} \notin E\left(G_{2}\right) .
\end{array}\right. \\
= & n_{2} m_{1}\left(n_{2}^{2}+2 m_{2}-n_{2}\right)+\frac{n_{1}}{2}\left(2 M_{1}\left(G_{2}\right)+\bar{M}_{1}\left(G_{2}\right)\right) .
\end{aligned}
$$

Next we obtain $\prod_{\substack{i, k=0 \\ i \neq k}}^{n_{1}-1} \prod_{j=0}^{n_{2}-1} \frac{d\left(x_{i j}\right)+d\left(x_{k j}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k j}\right)}$.

$$
\prod_{\substack{i, k=0 \\ i \neq k}}^{n_{1}-1} \prod_{j=0}^{n_{2}-1} \frac{d\left(x_{i j}\right)+d\left(x_{k j}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k j}\right)}=\prod_{\substack{i, k=0 \\ i \neq k}}^{n_{1}-1} \prod_{j=0}^{n_{2}-1} \frac{n_{2}\left(d\left(u_{i}\right)+d\left(u_{k}\right)\right)+2 d\left(v_{j}\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)}
$$

since the distance between a pair of vertices in a column is same as the distance between the corresponding vertices of other column

$$
\leqslant\left[\frac{S_{2}}{n_{1} n_{2}}\right]^{n_{1} n_{2}}, \text { by Remark } 3.1
$$

where

$$
\begin{aligned}
S_{2} & =\frac{1}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} \frac{n_{2}\left(d\left(u_{i}\right)+d\left(u_{k}\right)\right)+2 d\left(v_{j}\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)} \\
& =\frac{1}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} \frac{n_{2}\left(d\left(u_{i}\right)+d\left(u_{k}\right)\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)}+\frac{1}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} \frac{2 d\left(v_{j}\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)} \\
& =n_{2}^{2} H_{A}\left(G_{1}\right)+4 m_{2} H\left(G_{1}\right)
\end{aligned}
$$

Finally, we compute $\prod_{\substack{i, k=0 \\ i \neq k}}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\ j \neq \ell}}^{n_{2}-1} \frac{d\left(x_{i j}\right)+d\left(x_{k \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k \ell}\right)}$. Since $d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k \ell}\right)=d_{G_{1}}\left(u_{i}, u_{k}\right)$ for all j and k and further the distance between the corresponding vertices of the
layers is counted in previous sum. Hence

$$
\left.\begin{array}{rl}
\prod_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \prod_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{d\left(x_{i j}\right)+d\left(x_{k \ell}\right)}{d_{G_{1}\left[G_{2}\right]}\left(x_{i j}, x_{k \ell}\right)} & \leqslant\left[\frac{\substack{\frac{1}{2}, k=0 \\
i \neq k}}{\substack{n_{1}-1, \ell=0 \\
j \neq \ell}} n^{n_{2}-1} \frac{n_{2} d\left(u_{i}\right)+d\left(v_{j}\right)+n_{2} d\left(u_{k}\right)+d\left(v_{\ell}\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)}\right. \\
n_{1} n_{2}
\end{array}\right]^{n_{1} n_{2}} .
$$

where

$$
\begin{aligned}
S_{3} & =\frac{1}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \sum_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{n_{2}\left(d\left(u_{i}\right)+d\left(u_{k}\right)\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)}+\frac{1}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n_{1}-1} \sum_{\substack{j, \ell=0 \\
j \neq \ell}}^{n_{2}-1} \frac{d\left(v_{j}\right)+d\left(v_{\ell}\right)}{d_{G_{1}}\left(u_{i}, u_{k}\right)}, \\
& =n_{2}^{2}\left(n_{2}-1\right) H_{A}\left(G_{1}\right)+2 H\left(G_{1}\right)\left(M_{1}\left(G_{2}\right)+\bar{M}_{1}\left(G_{2}\right)\right) .
\end{aligned}
$$

Combine the aboves we get the desired result.
3.2. Cartesian product. The Cartesian product, $G \square H$, of graphs G and H has the vertex set $V(G \square H)=V(G) \times V(H)$ and $(u, x)(v, y)$ is an edge of $G \square H$ if $u=v$ and $x y \in E(H)$ or, $u v \in E(G)$ and $x=y$. To each vertex $u \in V(G)$, there is an isomorphic copy of H in $G \square H$ and to each vertex $v \in V(H)$, there is an isomorphic copy of G in $G \square H$. The following lemma follows from the structure of $G \square H$.

Lemma 3.1. Let G and H be two connected graphs with n_{1} and n_{2} vertices, respectively. Then
(i) The distance between two vertices of $G \square H$ is given by

$$
d_{G \square H}\left(\left(u_{i}, v_{j}\right),\left(u_{p}, v_{q}\right)\right)=d_{G}\left(u_{i}, u_{p}\right)+d_{H}\left(v_{j}, v_{q}\right) .
$$

(ii) The degree of a vertex $\left(u_{i}, v_{j}\right)$ of $G \square H$ is $d_{G}\left(u_{i}\right)+d_{H}\left(v_{j}\right)$.

Now we obtain the upper bound for product version of reciprocal degree distance of Cartesian product of two connected graphs.

ThEOREM 3.2. Let G_{i} be the connected graphs with n_{i} vertices and m_{i} edges, $i=1,2$. Then

$$
H_{A}^{*}\left(G_{1} \square G_{2}\right) \leqslant\left[\frac{n_{2} H_{A}\left(G_{1}\right)+n_{1} H_{A}\left(G_{2}\right)+4 m_{1} H\left(G_{2}\right)+4 m_{2} H\left(G_{1}\right)}{n_{1} n_{2}}\right]^{n_{1} n_{2}}
$$

Proof. By the definition of H_{A}^{*},

$$
H_{A}^{*}\left(G_{1} \square G_{2}\right)=\prod_{(u, x),(v, y) \in V\left(G_{1} \square G_{2}\right)} \frac{d_{G_{1} \square G_{2}}((u, x))+d_{G_{1} \square G_{2}}((v, x))}{d_{G_{1} \square G_{2}}((u, x),(v, y))} .
$$

By Lemma 3.1, we have

$$
H_{A}^{*}\left(G_{1} \square G_{2}\right)=\prod_{(u, x),(v, y) \in V\left(G_{1} \square G_{2}\right)} \frac{d_{G_{1}}(u)+d_{G_{2}}(x)+d_{G_{1}}(v)+d_{G_{2}}(y)}{d_{G_{1}}(u, v)+d_{G_{2}}(x, y)}
$$

$$
\begin{aligned}
& \left.\leqslant\left[\frac{\sum^{(u, x),(v, y) \in V\left(G_{1} \square G_{2}\right)}}{\frac{d_{G_{1}}(u)+d_{G_{2}}(x)+d_{G_{1}}(v)+d_{G_{2}}(y)}{d_{G_{1}}(u, v)+d_{G_{2}}(x, y)}}\right]^{n_{1} n_{2}}\right]^{n_{1} n_{2}} \text { by Remark } 3.1 \\
& =\left[\frac{A}{n_{1} n_{2}}\right]^{n_{1} n_{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
A= & \sum_{(u, x),(v, y) \in V\left(G_{1} \square G_{2}\right)} \frac{d_{G_{1}}(u)+d_{G_{2}}(x)+d_{G_{1}}(v)+d_{G_{2}}(y)}{d_{G_{1}}(u, v)+d_{G_{2}}(x, y)} \\
\leqslant & \sum_{r \in V\left(G_{1}\right)} \sum_{x, y \in V\left(G_{2}\right)}\left(\frac{d_{G_{1}}(u)+d_{G_{1}}(v)}{d_{G_{2}}(x, y)+t}+\frac{d_{G_{2}}(x)+d_{G_{2}}(y)}{d_{G_{2}}(x, y)+t}\right) \\
& +\sum_{u, v \in V\left(G_{1}\right)} \sum_{z \in V\left(G_{2}\right)}\left(\frac{d_{G_{1}}(u)+d_{G_{1}}(v)}{d_{G_{1}}(u, v)+t}+\frac{d_{G_{2}}(x)+d_{G_{2}}(y)}{d_{G_{1}}(u, v)+t}\right) \\
= & n_{2} H_{A}\left(G_{1}\right)+n_{1} H_{A}\left(G_{2}\right)+4 m_{1} H\left(G_{2}\right)+4 m_{2} H\left(G_{1}\right) .
\end{aligned}
$$

Hence

$$
H_{A}^{*}\left(G_{1} \square G_{2}\right) \leqslant\left[\frac{n_{2} H_{A}\left(G_{1}\right)+n_{1} H_{A}\left(G_{2}\right)+4 m_{1} H\left(G_{2}\right)+4 m_{2} H\left(G_{1}\right)}{n_{1} n_{2}}\right]^{n_{1} n_{2}}
$$

3.3. Double graph. Let us denote the double graph of a graphG by G^{*}, which is constructed from two copies of G in the following manner. Let the vertex set of G be $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and the vertices of G^{*} are given by the two sets $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Thus for each vertex $v_{i} \in V(G)$, there are two vertices x_{i} and y_{i} in $V\left(G^{*}\right)$. The double graph G^{*} includes the initial edge set of each copies of G, and for any edge $v_{i} v_{j} \in E(G)$, two more edges $x_{i} y_{j}$ and $x_{j} y_{i}$ are added. Now we obtain the H_{A}^{*} of double graph.

Theorem 3.3. Let G be a connected graph. Then

$$
H_{A}^{*}\left(G^{*}\right) \leqslant \frac{\left(H_{A}(G)\right)^{6 n}\left(M_{1}(G)\right)^{2 n}}{n^{8 n}} .
$$

Proof. From the structure of the double graph, the distance between two vertices of G^{*} are given as follows.
$d_{G^{*}}\left(x_{i}, x_{j}\right)=d_{G}\left(x_{i}, x_{j}\right), i, j \in\{1,2, \ldots, n\}$.
$d_{G^{*}}\left(x_{i}, y_{j}\right)=d_{G}\left(x_{i}, x_{j}\right), i, j \in\{1,2, \ldots, n\}$.
$d_{G^{*}}\left(x_{i}, y_{i}\right)=2, i \in\{1,2, \ldots, n\}$.
Similarly, the degree of the vertex of G^{*} is

$$
\begin{aligned}
& d_{G^{*}}\left(x_{i}\right)=d_{G^{*}}\left(y_{i}\right)=2 d_{G}\left(x_{i}\right), i \in\{1,2, \ldots, n\} . \\
& H_{A}^{*}\left(G^{*}\right)=\prod_{1 \leqslant i<j \leqslant n} \frac{d_{G^{*}}\left(v_{i}\right)+d_{G^{*}}\left(v_{j}\right)}{d_{G^{*}}\left(v_{i}, v_{j}\right)} \\
& 200
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{1 \leqslant i<j \leqslant n} \frac{d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(x_{j}\right)}{d_{G^{*}}\left(x_{i}, x_{j}\right)} \times \prod_{1 \leqslant i<j \leqslant n} \frac{d_{G^{*}}\left(y_{i}\right)+d_{G^{*}}\left(y_{j}\right)}{d_{G^{*}}\left(y_{i}, y_{j}\right)} \\
& \times \prod_{i, j=1, i \neq j}^{n} \frac{d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{j}\right)}{d_{G^{*}}\left(x_{i}, y_{j}\right)} \times \prod_{i=1}^{n} \frac{d_{G^{*}}\left(x_{i}\right)+d_{G^{*}}\left(y_{i}\right)}{d_{G^{*}}\left(x_{i}, y_{i}\right)} \\
& \leqslant\left[\frac{\sum_{i \leqslant i<j \leqslant n} \frac{2 d_{G}\left(x_{i}\right)+2 d_{G}\left(x_{j}\right)}{d_{G}\left(x_{i}, x_{j}\right)}}{2 n}\right]^{2 n}\left[\frac{\sum_{i \leqslant j \leqslant n} \frac{2 d_{G}\left(x_{i}\right)+2 d_{G}\left(x_{j}\right)}{d_{G}\left(x_{i}, x_{j}\right)}}{2 n}\right]^{2 n} \\
& {\left[\frac{\sum_{i, j=1, i \neq j}^{n} \frac{2 d_{G}\left(x_{i}\right)+2 d_{G}\left(x_{j}\right)}{d_{G}\left(x_{i}, x_{j}\right)}}{2 n}\right]^{2 n}\left[\frac{\sum_{i \in V(G)} \frac{2 d_{G}\left(x_{i}\right)+2 d_{G}\left(x_{i}\right)}{2}}{2 n}\right]^{2 n} \text { by Remark } 3.1} \\
& =\left(\frac{H_{A}(G)}{n}\right)^{2 n}\left(\frac{H_{A}(G)}{n}\right)^{2 n}\left(\frac{2 H_{A}(G)}{n}\right)^{2 n}\left(\frac{M_{1}(G)}{2 n}\right)^{2 n} \\
& =\frac{\left(H_{A}(G)\right)^{6 n}\left(M_{1}(G)\right)^{2 n}}{n^{8 n}} \text {. }
\end{aligned}
$$

References

[1] Y. Alizadeh, A. Iranmanesh and T. Doslić. Additively weighted Harary index of some composite graphs, Discrete Math., 313 (2013), 26-34.
[2] T. Doslić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp., 1(2008), 66-80.
[3] A.A. Dobrynin and A.A. Kochetova. Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci., 34 (1994), 1082-1086.
[4] J. Devillers and A.T. Balaban (Eds.). Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, The Netherlands, 1999.
[5] K. C. Das, B. Zhou and N. Trinajstić. Bounds on Harary index, J. Math. Chem. 46 (2009), 1369-1376.
[6] I. Gutman. Selected properties of the Schultz molecular topogical index, J. Chem. Inf. Comput. Sci., 34 (1994), 1087-1089.
[7] I. Gutman, W. Linert, I. Lukovits and Z. Tomović. On the multiplicative Wiener index and its possible chemical applications, Monatshefte for Chemie, 131 (2000), 421-427.
[8] I. Gutman, W. Linert, I. Lukovits and Z. Tomović. The multiplicative version of Wiener index, J. Chem. Inf. Comput. Sci., 40 (2000), 113-116.
[9] M. Hoji, Z. Luo and E. Vumar. Wiener and vertex PI indices of kronecker products of graphs, Discrete Appl. Math., 158(2010), 1848-1855.
[10] H. Hua and S. Zhang. On the reciprocal degree distance of graphs, Discrete Appl. Math. 160 (2012), 1152-1163.
[11] M.H. Khalifeh, H. Youseri-Azari and A.R. Ashrafi. Vertex and edge PI indices of Cartesian product of graphs, Discrete Appl. Math., 156(2008), 1780-1789.
[12] K. Pattabiraman and P. Paulraja. On some topological indices of the tensor product of graphs, Discrete Appl. Math., 160 (2012), 267-279.
[13] K. Pattabiraman and P. Paulraja. Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Thoery 32 (2012), 749-769.
[14] G. Su, I. Gutman, L. Xiong and L. Xu. Reciprocal product degree distance of graphs, Manuscript.
[15] K. Xu, K.C. Das, H. Hua and M.V. Diudea. Maximal Harary index of unicyclic graphs with given matching number, Stud. Univ. Babes-Bolyai Chem., 58 (2013), 71-86.
[16] K. Xu, J. Wang and H. Liu. The Harary index of ordinary and generalized quasi-tree graphs, J. Appl. Math. Comput. DOI 10.1007/s12190-013-0727-4.
[17] H. Yousefi-Azari, M.H. Khalifeh and A.R. Ashrafi. Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math., 235 (2011), 4866-4870.

Received by editors 07.10.2016; Available 14.11.2016.
Department of Mathematics, Annamalai University, Annamalainagar-608 002, India E-mail address: pramank@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C12; 05C76.
 Key words and phrases. degree distance of the composition, Cartesian product and double of a graph, Harary index and Zagreb indices.

