MULTIPLICATIVE ZAGREB INDICES OF GENERALIZED TRANSFORMATION GRAPHS

B. Basavanagoud, Veena R. Desai and Shreekant Patil

Abstract. The first, second and modified first multiplicative Zagreb indices of a graph G are defined, respectively, as

$$
\Pi_{1}(G)=\prod_{u \in V(G)} d_{G}(u)^{2}, \prod_{2}(G)=\prod_{u v \in E(G)} d_{G}(u) d_{G}(v)
$$

and

$$
\prod_{1}^{*}(G)=\prod_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

where $d_{G}(w)$ is the degree of vertex w in G. In the present study, we obtain the expressions for \prod_{1}, Π_{2} and \prod_{1}^{*} of generalized transformation graphs $G^{a b}$.

1. Introduction

In this paper we are concerned with finite, simple, nontrivial and undirected graphs. Let G be such a graph with vertex set $V(G),|V(G)|=n$, and edge set $E(G),|E(G)|=m$. As usual, n is order and m is size of G. The degree of a vertex $w \in V(G)$ is the number of vertices adjacent to w and is denoted by $d_{G}(w)$. We use [7] for terminology and notations not defined here.

A graphical invariant is a number related to a graph, in other words, it is a fixed number under graph automorphisms. In chemical graph theory, these invariants are also called the topological indices. In 1984, Narumi and Katayama [9] considered the product index as

$$
N K(G)=\prod_{u \in V(G)} d_{G}(u)
$$

for representing the carbon skeleton of a saturated hydrocarbon, and named it as simple topological index. Tomović and Gutman, this molecular structure descriptor was renamed as Narumi-Katayama index [15]. In 2010, Todeshine et al. [13, 14]

2010 Mathematics Subject Classification. 05C07.
Key words and phrases. degree, multiplicative Zagreb indices, generalized transformation graphs $G^{a b}$.
have proposed the multiplicative variants of ordinary Zagreb indices, which are defined as follows:

$$
\prod_{1}(G)=\prod_{u \in V(G)} d_{G}(u)^{2}=[N K(G)]^{2} \text { and } \prod_{2}(G)=\prod_{u v \in E(G)} d_{G}(u) d_{G}(v) .
$$

These two graph invariants are called first and second multiplicative Zagreb indices by Gutman [5]. And recently, Eliasi et al. [4] introduced further multiplicative version of the first Zagreb index as

$$
\prod_{1}^{*}(G)=\prod_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

and in [6], Gutman called it as modified first multiplicative Zagreb index. The main properties of multiplicative Zagreb indices are summarized in $[\mathbf{2}, \mathbf{3}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 2}]$.

2. Generalized transformation graphs $G^{a b}$

The semitotal-point graph $T_{2}(G)$ of a graph G is a graph whose vertex set is $V\left(T_{2}(G)\right)=V(G) \cup E(G)$ and two vertices are adjacent in $T_{2}(G)$ if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and other is an edge of G incident with it. It was introduced by Sampathkumar and Chikkodimath [11]. Recently some new graphical transformations were defined by Basavanagoud et al. [1], which generalizes the concept of semitotal-point graph.

The generalized transformation graph $G^{a b}$ is a graph whose vertex set is $V(G) \cup E(G)$, and $\alpha, \beta \in V\left(G^{a b}\right)$. The vertices α and β are adjacent in $G^{a b}$ if and only if $(*)$ and $(* *)$ holds:
$(*) \alpha, \beta \in V(G), \alpha, \beta$ are adjacent in G if $a=+$ and α, β are not adjacent in G if $a=-.(* *) \alpha \in V(G)$ and $\beta \in E(G), \alpha, \beta$ are incident in G if $b=+$ and α, β are not incident in G if $b=-$.

One can obtain the four graphical transformations of graphs as G^{++}, G^{+-}, G^{-+}and G^{--}. The vertex v_{i} of $G^{a b}$ corresponding to a vertex v_{i} of G is referred to as point vertex and vertex e_{i} of $G^{a b}$ corresponding to an edge e_{i} of G is referred to as line vertex.
The following propositions will be useful in proof of our results.
Proposition 2.1. [1] Let G be a graph of order n and size m. Then the degree of point vertex u_{i} and line vertex e_{i} in $G^{a b}$ are
(i) $d_{G^{++}}\left(u_{i}\right)=2 d_{G}\left(u_{i}\right)$ and $d_{G^{+}}\left(e_{i}\right)=2$
(ii) $d_{G^{+-}}\left(u_{i}\right)=m$ and $d_{G^{+-}}\left(e_{i}\right)=n-2$
(iii) $d_{G^{-+}}\left(u_{i}\right)=n-1$ and $d_{G^{-+}}\left(e_{i}\right)=2$
(iv) $d_{G^{--}}\left(u_{i}\right)=n+m-1-2 d_{G}\left(u_{i}\right)$ and $d_{G^{--}}\left(e_{i}\right)=n-2$.

Proposition 2.2. [1] Let G be a graph of order n and size m. Then order of $G^{a b}$ is $n+m$ and
(i) Size of $G^{++}=3 m$
(ii) Size of $G^{+-}=m(n-1)$
(iii) Size of $G^{-+}=\binom{n}{2}+m$
(iv) Size of $G^{--}=\frac{n(n-1)}{2}+m(n-3)$.

In this paper, we obtain expressions for \prod_{1}, \prod_{2} and \prod_{1}^{*} of generalized transformation graphs.

3. Results

Theorem 3.1. Let G be a graph of order $n>2$ and size m. Then

$$
\prod_{1}\left(G^{+-}\right)=m^{2 n}(n-2)^{2 m}
$$

Proof. Since G^{+-}has $m+n$ vertices.

$$
\begin{aligned}
\prod_{1}\left(G^{+-}\right) & =\prod_{u \in V\left(G^{+-}\right)} d_{G^{+-}}(u)^{2} \\
& =\prod_{u \in V\left(G^{+-}\right) \cap V(G)} d_{G^{+-}}(u)^{2} \prod_{e_{i} \in V\left(G^{+-}\right) \cap E(G)} d_{G^{+-}}\left(e_{i}\right)^{2} .
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{1}\left(G^{+-}\right) & =\prod_{u \in V(G)} m^{2} \prod_{e_{i} \in E(G)}(n-2)^{2} \\
& =m^{2 n}(n-2)^{2 m}
\end{aligned}
$$

Theorem 3.2. Let G be a graph of order $n>2$ and size $m \geqslant 1$. Then

$$
\prod_{2}\left(G^{+-}\right)=m^{m n}(n-2)^{m(n-2)}
$$

Proof. Since G^{+-}has $m+n$ vertices and $m(n-1)$ edges.

$$
\begin{aligned}
\prod_{2}\left(G^{+-}\right) & =\prod_{u v \in E\left(G^{+-}\right)}\left[d_{G^{+-}}(u) d_{G^{+-}}(v)\right] \\
& =\prod_{u v \in E\left(G^{+-}\right) \cap E(G)}\left[d_{G^{+-}}(u) d_{G^{+-}}(v)\right] \prod_{u v \in E\left(G^{+-}\right)-E(G)}\left[d_{G^{+-}}(u) d_{G^{+-}}(v)\right] .
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{2}\left(G^{+-}\right) & =\prod_{u v \in E(G)} m m \prod_{u v \in E\left(G^{+-}\right)-E(G)} m(n-2) \\
& =m^{2 m}[m(n-2)]^{m(n-1)-m} \\
& =m^{m n}(n-2)^{m(n-2)}
\end{aligned}
$$

Theorem 3.3. Let G be a graph of order n and size $m \geqslant 1$. Then

$$
\prod_{1}^{*}\left(G^{+-}\right)=(2 m)^{m}(m+n-2)^{m(n-2)} .
$$

Proof. Since G^{+-}has $n+m$ vertices and $m(n-1)$ edges.

$$
\begin{aligned}
& \prod_{1}^{*}\left(G^{+-}\right)=\prod_{u v \in E\left(G^{+-}\right)}\left[d_{G^{+-}}(u)+d_{G^{+-}}(v)\right] \\
& \quad=\prod_{u v \in E\left(G^{+-}\right) \cap E(G)}\left[d_{G^{+-}}(u)+d_{G^{+-}}(v)\right] \prod_{u v \in E\left(G^{+-}\right)-E(G)}\left[d_{G^{+-}}(u)+d_{G^{+-}}(v)\right]
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{1}^{*}\left(G^{+-}\right) & =\prod_{u v \in E(G)}(m+m) \prod_{u v \in E\left(G^{+-}\right)-E(G)}(m+n-2) \\
& =(2 m)^{m}(m+n-2)^{m(n-2)}
\end{aligned}
$$

Theorem 3.4. Let G be a graph of order n and size m. Then

$$
\prod_{1}\left(G^{-+}\right)=4^{m}(n-1)^{2 n}
$$

Proof. Since G^{-+}has $m+n$ vertices.

$$
\begin{aligned}
\prod_{1}\left(G^{-+}\right) & =\prod_{u \in V\left(G^{-+}\right)} d_{G^{-+}}(u)^{2} \\
& =\prod_{u \in V\left(G^{-+}\right) \cap V(G)} d_{G^{-+}}(u)^{2} \prod_{e_{i} \in V\left(G^{-+}\right) \cap E(G)} d_{G^{-+}}\left(e_{i}\right)^{2} .
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{1}\left(G^{-+}\right)= & \prod_{u \in V(G)}(n-1)^{2} \prod_{e_{i} \in E(G)} 2^{2} \\
& =4^{m}(n-1)^{2 n}
\end{aligned}
$$

Theorem 3.5. Let G be a graph of order n and size m. Then

$$
\prod_{2}\left(G^{-+}\right)=4^{m}(n-1)^{n(n-1)} .
$$

Proof. Since G^{-+}has $m+n$ vertices and $\binom{n}{2}+m$ edges.

$$
\begin{aligned}
& \prod_{2}\left(G^{-+}\right)=\prod_{u v \in E\left(G^{-+}\right)}\left[d_{G^{-+}}(u) d_{G^{-+}}(v)\right] \\
& \quad=\prod_{u v \in E\left(G^{-+}\right) \cap E(\bar{G})}\left[d_{G^{-+}}(u) d_{G^{-+}}(v)\right] \prod_{u v \in E\left(G^{-+}\right)-E(\bar{G})}\left[d_{G^{-+}}(u) d_{G^{-+}}(v)\right] .
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{2}\left(G^{-+}\right) & =\prod_{u v \in E(\bar{G})}(n-1)(n-1) \prod_{u v \in E\left(G^{-+}\right)-E(\bar{G})} 2(n-1) \\
& =[n-1]^{[n(n-1)-2 m]} 2^{2 m}(n-1)^{2 m} \\
& =4^{m}(n-1)^{n(n-1)} .
\end{aligned}
$$

Theorem 3.6. Let G be a graph of order n and size m. Then

$$
\prod_{1}^{*}\left(G^{-+}\right)=[2(n-1)]^{\left[\binom{n}{2}-m\right]}(n+1)^{2 m}
$$

Proof. Since G^{-+}has $n+m$ vertices and $\left[\binom{n}{2}+m\right]$ edges.

$$
\begin{aligned}
& \prod_{1}^{*}\left(G^{-+}\right)=\prod_{u v \in E\left(G^{-+}\right)}\left[d_{G^{-+}}(u)+d_{G^{-+}}(v)\right] \\
& \quad=\prod_{u v \in E\left(G^{-+}\right) \cap E(\bar{G})}\left[d_{G^{-+}}(u)+d_{G^{-+}}(v)\right] \prod_{u v \in E\left(G^{-+}\right)-E(\bar{G})}\left[d_{G^{-+}}(u)+d_{G^{-+}}(v)\right] .
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{1}^{*}\left(G^{-+}\right) & =\prod_{u v \in E(\bar{G})}(n-1+n-1) \prod_{u v \in E\left(G^{-+}\right)-E(\bar{G})}(n-1+2) \\
& =[2(n-1)]^{\left[\binom{n}{2}-m\right]}(n+1)^{2 m} .
\end{aligned}
$$

Theorem 3.7. Let G be a graph of order n and size m. Then

$$
\prod_{1}\left(G^{--}\right)=(n-2)^{2 m} \prod_{u \in V(G)} \prod_{\text {and } d_{G}(u) \neq n-1}\left(n+m-1-2 d_{G}(u)\right)^{2} .
$$

Proof. Since G^{--}has $m+n$ vertices.

$$
\begin{aligned}
\prod_{1}\left(G^{--}\right) & =\prod_{u \in V\left(G^{--}\right)} d_{G^{--}}(u)^{2} \\
& =\prod_{u \in V\left(G^{--}\right) \cap V(G)} d_{G^{--}}(u)^{2} \prod_{e_{i} \in V\left(G^{--}\right) \cap E(G)} d_{G^{--}}\left(e_{i}\right)^{2} .
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
\prod_{1}\left(G^{--}\right)= & \prod_{u \in V(G)}\left(n+m-2 d_{G}(u)-1\right)^{2} \prod_{e_{i} \in E(G)}(n-2)^{2} \\
& \prod_{1}\left(G^{--}\right)=(n-2)^{2 m} \prod_{u \in V(G) \text { and } d_{G}(u) \neq n-1}\left[n+m-1-2 d_{G}(u)\right]^{2} .
\end{aligned}
$$

Theorem 3.8. Let G be a graph of order n and size m. Then

$$
\begin{gathered}
\prod_{2}\left(G^{--}\right)=\left[\prod_{u v \notin E(G)}\left[n+m-1-2 d_{G}(u)\right]\left[n+m-1-2 d_{G}(v)\right]\right] \\
{\left[(n-2)^{2 m} \prod_{v \in V(G)} \prod_{n d d_{G}(v) \neq n-1}\left[n+m-1-2 d_{G}(v)\right]^{m-d_{G}(v)}\right] .}
\end{gathered}
$$

Proof. Since G^{--}has $m+n$ vertices and $\frac{n(n-1)}{2}+m(n-3)$ edges.

$$
\begin{aligned}
& \prod_{2}\left(G^{--}\right)=\prod_{u v \in E\left(G^{--}\right)}\left[d_{G^{--}}(u) d_{G^{--}}(v)\right] \\
& \quad=\prod_{u v \in E\left(G^{--}\right) \cap E(\bar{G})}\left[d_{G^{--}}(u) d_{G^{--}}(v)\right] \prod_{u v \in E\left(G^{--}\right)-E(\bar{G})}\left[d_{G^{--}}(u) d_{G^{--}}(v)\right]
\end{aligned}
$$

From Proposition 2.1, we have

$$
\left.\left.\begin{array}{l}
\quad \prod_{2}\left(G^{--}\right)=\prod_{u v \in E(\bar{G})}\left[n+m-1-2 d_{G}(u)\right]\left[n+m-1-2 d_{G}(v)\right] \prod_{u v \in E\left(G^{--}\right)-E(\bar{G})}(n- \\
2)\left[n+m-1-2 d_{G}(v)\right] \\
\prod_{2}\left(G^{--}\right)=\left[\prod_{u v \notin E(G)}\left[n+m-1-2 d_{G}(u)\right]\left[n+m-1-2 d_{G}(v)\right]\right] \\
{\left[(n-2)^{2 m} \prod_{v \in V(G)} \prod_{n d} d_{G}(v) \neq n-1\right.}
\end{array}\right] n+m-1-2 d_{G}(v)\right]^{\left.m-d_{G}(v)\right] .}
$$

Theorem 3.9. Let G be a graph of order n and size m. Then
$\prod_{1}^{*}\left(G^{--}\right)=\prod_{u v \notin E(G)} 2\left[n+m-1-d_{G}(u)-d_{G}(v)\right] \prod_{v \in V(G)}\left[2 n+m-3-2 d_{G}(v)\right]^{m-d_{G}(v)}$.
Proof. Since G^{--}has $n+m$ vertices and $\frac{n(n-1)}{2}+m(n-3)$ edges. Then

$$
\begin{aligned}
& \prod_{1}^{*}\left(G^{--}\right)=\prod_{u v \in E\left(G^{--}\right)}\left[d_{G^{--}}(u)+d_{G^{--}}(v)\right] \\
&=\prod_{u v \in E\left(G^{--}\right) \cap E(\bar{G})}\left[d_{G^{--}}(u)+d_{G^{--}}(v)\right] \prod_{u v \in E\left(G^{--}\right)-E(\bar{G})}\left[d_{G^{--}}(u)+d_{G^{--}}(v)\right]
\end{aligned}
$$

From Proposition 2.1, we have

$$
\begin{aligned}
& =\prod_{\substack{u v \in E(\bar{G})}}\left[n+m-1-2 d_{G}(u)+n+m-1-2 d_{G}(v)\right] \prod_{u v \in E\left(G^{--}\right)-E(\bar{G})}[n-2+n+ \\
& \left.m-1-2 d_{G}(v)\right]
\end{aligned}
$$

and

$$
\prod_{1}^{*}\left(G^{--}\right)=\prod_{u v \notin E(G)} 2\left[n+m-1-d_{G}(u)-d_{G}(v)\right] \prod_{v \in V(G)}\left[2 n+m-3-2 d_{G}(v)\right]^{m-d_{G}(v)} .
$$

The expressions for \prod_{1}, \prod_{2} and \prod_{1}^{*} of semitotal point graph G^{++}was obtained in [2]. We nevertheless state it for the sake of completeness:

Theorem 3.10. [2]Let G be a graph of order n and size m. Then
(1) $\prod_{1}\left(G^{++}\right)=4^{n+m} \prod_{1}(G)$
(2) $\prod_{2}\left(G^{++}\right)=64^{m} \prod_{1}(G) \prod_{2}(G)$
(3) $\prod_{1}^{*}\left(G^{++}\right)=8^{m} \prod_{1}^{*}(G) \prod_{u \in V(G)}\left[1+d_{G}(u)\right]^{d_{G}(u)}$.

4. Acknowledgement

This research is supported by UGC-SAP DRS-III, New Delhi, India for 20162021: F.510/3/DRS-III/2016(SAP-I) Dated: $29^{t h}$ Feb. 2016. (B. Basavanagoud)

This research is supported by UGC- National Fellowship (NF) New Delhi. No. F./2014-15/NFO-2014-15-OBC-KAR-25873/(SA-III/Website) Dated: March2015. (Veena R. Desai)

References

[1] B. Basavanagoud, I. Gutman and V. R. Desai. Zagreb indices of generalized transformation graphs and their complements, Kragujevac J. Sci., 37(1)(2015), 99-112.
[2] B. Basavanagoud and S. Patil. Multiplicative Zagreb indices and coindices of some derived graphs, Opuscula Math., 36(3)(2016), 287-299.
[3] K. C. Das, A. Yurttas, M. Togan, A. S. Cevik and I. N. Cangul. The multiplicative Zagreb indices of graph operations, J. Ineq. Appl., 2013 2013:90. DOI: 10.1186/1029-242X-2013-90
[4] M. Eliasi, A. Iranmanesh and I. Gutman. Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68(2012), 217-230.
[5] I. Gutman. Multiplicative Zagreb indices of trees, Bull. Inter. Math. Virt. Inst. $\mathbf{1}(2011)$, 13-19.
[6] I. Gutman. Degree-based topological indices, Croat. Chem. Acta, 86(4)(2013), 351-361.
[7] F. Harary. Graph Theory, Addison-Wesely, Reading Mass 1969.
[8] J. Liu and Q. Zhang. Sharp upper bounds for multiplicative Zagreb indices, MATCH Commun. Math. Comput. Chem., 68(2012), 231-240.
[9] H. Narumi and M. Katayama. Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16(3)(1984), 209-214.
[10] T. Réti and I. Gutman. Relations between ordinary and multiplicative Zagreb indices, Bull. Inter. Math. Virt. Inst., 2(2)(2012), 133-140.
[11] E. Sampathkumar and S. B. Chikkodimath. Semitotal graphs of a graph-I, J. Karnatak Univ. Sci., 18(1973), 274-280.
[12] W. Shaohui and W. Bing. Multiplicative Zagreb indices of k-tree, Discrete Applied Math., 180(2015), 168-175.
[13] R. Todeschini and V. Consonni. New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64(2010), 359-372.
[14] R. Todeschini, D. Ballabio and V. Consonni. Novel molecular descriptors based on functions of new vertex degrees. In: I. Gutman and B. Furtula, (Eds.), Novel molecular structure descriptors - Theory and applications I. (pp. 73-100). Kragujevac: Univ. Kragujevac 2010.
[15] Ž. Tomović and I. Gutman. Narumi-Katayama index of phenylenes, J. Serb. Chem. Sco., 66(4)(2001), 243-247.

Received by editors 26.10.2016; Avalanche online 14.11.2016.
Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, India

E-mail address: b.basavanagoud@gmail.com
E-mail address: veenardesai6f@gmail.com
E-mail address: shreekantpatil949@gmail.com

