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GENERALIZED DUAL CONNECTIONS ON
PARA-KENMOTSU MONIFOLDS

Adara M. Blaga

Abstract. In the context of para-Kenmotsu geometry properties of the gen-
eralized dual connections of some canonical linear connections (Levi-Civita,
para-Kenmotsu canonical, Golab and Zamkovoy canonical paracontact con-
nections) are established.

1. Introduction

Consider M a (2n+ 1)-dimensional smooth manifold, φ a tensor field of (1, 1)-
type, ξ a vector field, η a 1-form and g a pseudo-Riemannian metric on M of
signature (n + 1, n).

Definition 1.1. [23] We say that (φ, ξ, η, g) defines an almost paracontact
metric structure on M if:

φξ = 0, η ◦ φ = 0, η(ξ) = 1, φ2 = I − η ⊗ ξ, g(φ·, φ·) = −g + η ⊗ η

and φ induces on the 2n-dimensional distribution D := ker η an almost paracomplex
structure P i.e. P 2 = I and the eigensubbundles D+, D−, corresponding to the
eigenvalues 1, −1 of P respectively, have equal dimension n; hence D = D+ ⊕D−.

In this case, (M,φ, ξ, η, g) is called almost paracontact metric manifold, φ the
structure endomorphism, ξ the characteristic vector field, η the paracontact form
and g compatible metric.

Examples of almost paracontact metric structures can be found in [12] and [6].
From the definition it follows that η is the g-dual of the unitary vector field ξ:

η(X) = g(X, ξ)
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and φ is a g-skew-symmetric operator:

g(φX, Y ) = −g(X,φY ).

Remark that the canonical distribution D is φ-invariant since D = Imφ and the
vector field ξ is orthogonal to D, therefore the tangent bundle splits orthogonally:

TM = D ⊕ ⟨ξ⟩.

An analogue of the Kenmotsu manifold [13] in paracontact geometry will be
further considered.

Definition 1.2. [18] We say that the almost paracontact metric structure
(φ, ξ, η, g) is para-Kenmotsu if the Levi-Civita connection ∇ of g satisfies
(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, for any X, Y ∈ χ(M).

Example 1.1. Let M = {(x, y, z) ∈ R3 : z ̸= 0} where (x, y, z) are the standard
coordinates in R3. Set

φ :=
∂

∂y
⊗ dx +

∂

∂x
⊗ dy, ξ := − ∂

∂z
, η := −dz,

g := dx⊗ dx− dy ⊗ dy + dz ⊗ dz.

Then (φ, ξ, η, g) defines a para-Kenmotsu structure on R3.

Note that the para-Kenmotsu structure was introduced by J. We lyczko in [22]
for 3-dimensional normal almost paracontact metric structures. A similar notion
called P -Kenmotsu structure appears in the paper of B. B. Sinha and K. L. Sai
Prasad [20].

Properties of this structure are stated in the next Proposition.

Proposition 1.1. [2] On a para-Kenmotsu manifold (M,φ, ξ, η, g), the follow-
ing relations hold:

∇ξ = I − η ⊗ ξ

η(∇Xξ) = 0,

R∇(X,Y )ξ = η(X)Y − η(Y )X,

η(R∇(X,Y )W ) = −η(X)g(Y,W ) + η(Y )g(X,W ),

∇η = g − η ⊗ η,

Lξφ = 0, Lξη = 0, Lξg = 2(g − η ⊗ η),

where R∇ is the Riemann curvature tensor field of the Levi-Civita connection ∇
associated to g. Moreover, D is involutive, η is closed and the Nijenhuis tensor
field of φ vanishes identically.
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2. Generalized dual connections

Dualistic structures are closely related to statistical mathematics. They consist
of pairs of affine connections compatible with a pseudo-Riemannian metric [1].
Their importance in statistical physics is underlined by many authors [8], [19],
[21] etc. Also, geometrical applications can be found in affine differential geometry
[7], [14], [10], [11].

As a generalization of dual connections, Norden introduced the notion of gen-
eralized dual connection, which is used in Weyl geometry to characterize Weyl
connections [17].

Definition 2.1. (Norden) Two linear connections ∇̄ and ∇̄∗ are called gen-
eralized dual connections with respect to the pseudo-Riemannian metric g by the
1-form η if:

(2.1) X(g(Y,W )) = g(∇̄XY,W ) + g(Y, ∇̄∗
XW ) + η(X)g(Y,W ),

for any X, Y , W ∈ χ(M).

From a direct computation follows that (∇̄∗)∗ = ∇̄ and

(2.2) g(Y, (∇̄∗ − ∇̄ + η ⊗ I)(X,W )) = (∇̄Xg)(Y,W ),

for any X, Y , W ∈ χ(M).
In particular, if ∇̄ is a g-metric connection, then its generalized dual ∇̄∗ equals

to
∇̄∗ = ∇̄ − η ⊗ I.

Proposition 2.1. On a para-Kenmotsu manifold (M,φ, ξ, η, g), (∇̄, ∇̄∗) sat-
isfy:

g((∇̄∗
Xφ)Y,W ) = −g((∇̄Xφ)W,Y )

g(∇̄∗
Xξ, Y ) = g(∇̄Xξ, Y ) + (∇̄Xg)(Y, ξ) − η(X)η(Y )

(∇̄∗
Xη)Y = (∇̄Xη)Y − (∇̄Xg)(Y, ξ) + η(X)η(Y )

∇̄∗g = −∇̄g + 2η ⊗ g.

Proof. They follow by replacing the expressions

(∇̄∗
Xφ)Y := ∇̄∗

XφY − φ(∇̄∗
XY )

(∇̄∗
Xη)Y := X(η(Y )) − η(∇̄∗

XY )

(∇̄∗
Xg)(Y,W ) := X(g(Y,W )) − g(∇̄∗

XY,W ) − g(Y, ∇̄∗
XW )

in (2.1) and taking into account (2.2). �
In addition, the torsion and the curvature tensor fields of the generalized dual

connection ∇̄∗ of the linear connection ∇̄ satisfy:

(2.3) T∇̄∗ = T∇̄ − (η ⊗ I − I ⊗ η), g(R∇̄∗(X,Y )W,U) = −g(W,R∇̄(X,Y )U).

In particular, if ∇̄ is symmetric, then ∇̄∗ is semi-symmetric (as its torsion is of
the form I ⊗ η − η ⊗ I).

Another important feature of the notion of generalized connections is the in-
variance under gauge transformations. Precisely, (∇̄, ∇̄∗) is a pair of generalized
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dual connections with respect to g and η if and only if they are generalized dual
connections with respect to efg and η − df , for any smooth function f on M [5].

Remark that different generalizations of the notion of standard dual (or con-
jugate) connections are considered in [5]: generalized conjugate connections [16],
[15], semi-conjugate connections [16] and dual semi-conjugate connections [5], the
first arising in Weyl geometry and the second ones in affine hypersurface theory.

3. Canonical connections

In what follows we shall underline the properties of the generalized dual connec-
tions of the Levi-Civita connection ∇, of the para-Kenmotsu canonical connection
∇̃, of the Golab connection ∇G and of the Zamkovoy canonical paracontact con-
nection ∇Z associated to the para-Kenmotsu structure (φ, ξ, η, g).

i) The Levi-Civita connection ∇ satisfies [2]:

(3.1) ∇φ = g(φ·, ·) ⊗ ξ − φ⊗ η, ∇ξ = I − η ⊗ ξ, ∇η = g − η ⊗ η, ∇g = 0,

its torsion and curvature being given by:

(3.2) T∇ = 0

η(R∇(X,Y )W ) = −η(X)g(Y,W ) + η(Y )g(X,W ).

Being a g-metric connection, its generalized dual connection ∇∗ with respect
to g and η is:

∇∗ = ∇− η ⊗ I.

Proposition 3.1. On a para-Kenmotsu manifold (M,φ, ξ, η, g), the general-
ized dual connection ∇∗ of the Levi-Civita connection ∇ satisfies:

∇∗φ = ∇φ, ∇∗ξ = I − 2η ⊗ ξ, ∇∗η = ∇η + η ⊗ η, ∇∗g = 2η ⊗ g

T∇∗ = −(η ⊗ I − I ⊗ η), R∇∗(X,Y )ξ = η(X)Y − η(Y )X.

Proof. They follow from the relations (3.1), (3.2) and (2.3). �

ii) The para-Kenmotsu canonical connection ∇̃ equals to [3]:

∇̃ := ∇− I ⊗ η + g ⊗ ξ

and satisfies [3]:

(3.3) ∇̃φ = 0, ∇̃ξ = 0, ∇̃η = 0, ∇̃g = 0,

its torsion and curvature being given by:

(3.4) T∇̃ = η ⊗ I − I ⊗ η

(3.5) R∇̃(X,Y )W = R∇(X,Y )W − g(W,X)Y + g(Y,W )X − η(W )g(X,Y )ξ.

Being a g-metric connection, its generalized dual connection ∇̃∗ with respect
to g and η is:

∇̃∗ = ∇̃ − η ⊗ I.
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Proposition 3.2. On a para-Kenmotsu manifold (M,φ, ξ, η, g), the general-

ized dual connection ∇̃∗ of the para-Kenmotsu canonical connection ∇̃ satisfies:

∇̃∗φ = 0, ∇̃∗ξ = −η ⊗ ξ, ∇̃∗η = η ⊗ η, ∇̃∗g = 2η ⊗ g

T∇̃∗ = 0, R∇̃∗(X,Y )ξ = g(X,Y )ξ.

Proof. They follow from the relations (3.3), (3.4), (3.5) and (2.3). �

iii) The Golab connection ∇G equals to [9]:

∇G := ∇− η ⊗ φ

and satisfies [4]:

(3.6) ∇Gφ = ∇φ, ∇Gξ = ∇ξ, ∇Gη = ∇η, ∇Gg = ∇g = 0,

its torsion and curvature being given by:

(3.7) T∇G = φ⊗ η − η ⊗ φ

(3.8)
R∇G(X,Y )W = R∇(X,Y )W + g(T,W )ξ − g(ξ,W )T, where T := −T∇G(X,Y ).

Being a g-metric connection, its generalized dual connection (∇G)∗ with respect
to g and η is:

(∇G)∗ = ∇G − η ⊗ I.

Proposition 3.3. On a para-Kenmotsu manifold (M,φ, ξ, η, g), the general-
ized dual connection (∇G)∗ of the Golab connection ∇G satisfies:

(∇G)∗φ = ∇φ, (∇G)∗ξ = I − 2η ⊗ ξ, (∇G)∗η = g, (∇G)∗g = 2η ⊗ g

T(∇G)∗ = −η⊗(φ+I)+(φ+I)⊗η, R(∇G)∗(X,Y )ξ = η(X)(Y−φY )−η(Y )(X−φX).

Proof. They follow from the relations (3.6), (3.7), (3.8) and (2.3). �

iv) The Zamkovoy canonical paracontact connection ∇Z equals to [23]:

∇Z
XY := ∇XY + η(X)φY − η(Y )∇Xξ + (∇Xη)Y · ξ

equivalent to:

∇Z = ∇− I ⊗ η + g ⊗ ξ + η ⊗ φ

and satisfies [23]:

(3.9) ∇Zφ = 0, ∇Zξ = 0, ∇Zη = 0, ∇Zg = 0,

its torsion and curvature being given by:

(3.10) T∇Z = η ⊗ (φ + I) − (φ + I) ⊗ η(= −T(∇G)∗)

(3.11) R∇Z (X,Y )W = R∇(X,Y )W + g(Y,W )X − g(X,W )Y.

Being a g-metric connection, its generalized dual connection (∇Z)∗ with respect
to g and η is:

(∇Z)∗ = ∇Z − η ⊗ I.
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Proposition 3.4. On a para-Kenmotsu manifold (M,φ, ξ, η, g), the general-
ized dual connection (∇Z)∗ of the Zamkovoy canonical paracontact connection ∇Z

satisfies:

(∇Z)∗φ = ∇φ + φ⊗ η + g(·, φ·) ⊗ ξ, (∇Z)∗ξ = −η ⊗ ξ, (∇Z)∗η = η ⊗ η,

(∇Z)∗g = 2η ⊗ g

T(∇Z)∗ = η ⊗ φ− φ⊗ η(= −T∇G), R(∇Z)∗(X,Y )ξ = 0.

Proof. They follow from the relations (3.9), (3.10), (3.11) and (2.3). �

Remark 3.1. Remark that the Golab connection ∇G is obtained perturbing
the Levi-Civita connection ∇ with η ⊗ φ, so they coincide on D. The same thing
happens for the para-Kenmotsu canonical connection ∇̃ and the Zamkovoy canonical
paracontact connection ∇Z . Therefore:

(∇G)∗ = ∇∗ − η ⊗ φ, ∇̃∗ = (∇Z)∗ − η ⊗ φ,

the four connections satisfying:

∇∗ + ∇̃∗ = (∇G)∗ + (∇Z)∗.

Also notice that if the manifold is of constant curvature, through the four con-
nections, only the Zamkovoy canonical paracontact connection ∇Z is flat. Indeed,
form Proposition 1.1, we deduce that a para-Kenmotsu manifold of constant cur-
vature (i.e. R∇(X,Y )W = k[g(Y,W )X − g(X,W )Y ], for a constant k) is locally
isomorphic to a hyperbolic space (i.e. k = −1), therefore R∇Z = 0.
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