BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 139-151

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ω -TOPOLOGY AND *-TOPOLOGY

O. Ravi, P. Sekar, and K. Vidhyalakshmi

ABSTRACT. In this paper, we introduce some generalizations of ω -open sets in ideal topological spaces and investigate some properties of the sets. Moreover, we use them to obtain decompositions of continuity via idealization.

1. Introduction

By a space (X, τ) , we always mean a topological space (X, τ) with no separation properties assumed. If $H \subset X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X, τ) .

An ideal I ([19]) on a space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

(1) $H \in I$ and $G \subset H$ imply $G \in I$ and

(2) $H \in I$ and $G \in I$ imply $H \cup G \in I$.

Given a space (X, τ) with an ideal I on X if $\mathbb{P}(X)$ is the set of all subsets of X, a set operator $(.)^* : \mathbb{P}(X) \to \mathbb{P}(X)$, called a local function of H with respect to τ and I is defined as follows: for $H \subset X$,

 $H^*(I,\tau) = \{ x \in X : U \cap H \notin I \text{ for every } U \in \tau(x) \}$

where $\tau(x) = \{U \in \tau : x \in U\}$ ([14]). A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I,\tau)$, called the *-topology, finer than τ is defined by $cl^*(H) = H \cup H^*(I,\tau)$ ([18]). We will simply write H^* for $H^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. If I is an ideal on X, then (X,τ,I) is called an ideal topological space or an ideal space.

In this paper, we introduce and investigate the new notions called $b I_{\omega}$ -open sets, αI_{ω} -open sets and pre- I_{ω} -open sets which are weaker than ω -open sets. Moreover, we use these notions to obtain decompositions of continuity via idealization.

²⁰¹⁰ Mathematics Subject Classification. 26D05, 26D07.

Key words and phrases. ω -open set, α - I_{ω} -open set, pre- I_{ω} -open set, decomposition of continuity via idealization.

¹³⁹

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{Q} , \mathbb{Q}^* , \mathbb{N}) denotes the set of all real numbers (resp. the set of all rational numbers, the set of all irrational numbers, the set of all natural numbers).

DEFINITION 2.1. A subset H of a space (X, τ) is said to be

(1) α -open [16] if $H \subset int(cl(int(H)))$,

- (2) pre-open [15] if $H \subset int(cl(H))$,
- (3) β -open [1] if $H \subset cl(int(cl(H)))$,
- (4) b-open [5] if $H \subset int(cl(H)) \cup cl(int(H))$.

DEFINITION 2.2. [20] Let H be a subset of a space (X, τ) , a point p in X is called a condensation point of H if for each open set U containing p, $U \cap H$ is uncountable.

DEFINITION 2.3. [12] A subset H of a space (X, τ) is called ω -closed if it contains all its condensation points.

The complement of an ω -closed set is called ω -open.

It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by int_{ω} and cl_{ω} respectively.

LEMMA 2.1. [12] Let H be a subset of a space (X, τ) . Then

(1) *H* is ω -closed in *X* if and only if $H = cl_{\omega}(H)$.

(2) $cl_{\omega}(X \setminus H) = X \setminus int_{\omega}(H).$

- (3) $cl_{\omega}(H)$ is ω -closed in X.
- (4) $x \in cl_{\omega}(H)$ if and only if $H \cap G \neq \emptyset$ for each ω -open set G containing x.
- (5) $cl_{\omega}(H) \subset cl(H)$.
- (6) $int(H) \subset int_{\omega}(H)$.

REMARK 2.1. [3, 12] In a space (X, τ) , every closed set is ω -closed but not conversely.

DEFINITION 2.4. [17] A subset H of a space (X, τ) is said to be

- (1) α - ω -open if $H \subset int_{\omega}(cl(int_{\omega}(H)))$,
- (2) pre- ω -open if $H \subset int_{\omega}(cl(H))$,
- (3) β - ω -open if $H \subset cl(int_{\omega}(cl(H)))$,
- (4) b- ω -open if $H \subset int_{\omega}(cl(H)) \cup cl(int_{\omega}(H))$.

DEFINITION 2.5. [4] A space (X, τ) is said to be anti-locally countable if every non-empty open set is uncountable.

LEMMA 2.2. [4] If (X, τ) is an anti-locally countable space, then $int_{\omega}(H) = int(H)$ for every ω -closed set H of X and $cl_{\omega}(H) = cl(H)$ for every ω -open set H of X.

DEFINITION 2.6. A subset H of an ideal topological space (X, τ, I) is said to be (1) α -I-open [10] if $H \subset int(cl^*(int(H)))$,

(2) semi-*I*-open [10] if $H \subset cl^{\star}(int(H))$,

(3) pre-*I*-open [7] if $H \subset int(cl^{\star}(H))$,

(4) strongly β -*I*-open [11] if $H \subset cl^{\star}(int(cl^{\star}(H)))$,

(5) b-I-open [9] if $H \subset int(cl^*(H)) \cup cl^*(int(H))$.

REMARK 2.2. [8] The following diagram holds for a subset of an ideal topological space:

Diagram-1

 $open \longrightarrow \alpha$ -I-open \longrightarrow pre-I-open \longrightarrow strongly β -I-open

The converses of the implications in this diagram are not true, in general.

LEMMA 2.3. [2] Let (X, τ, I) be an ideal topological space and H a subset of X. Then the following properties hold:

(1) If O is open in (X, τ, I) , then $O \cap cl^*(H) \subset cl^*(O \cap H)$.

(2) If $H \subset X_0 \subset X$, then $cl_{X_0}^{\star}(H) = cl^{\star}(H) \cap X_0$.

PROPOSITION 2.1. [2] Let (X, τ, I) be an ideal topological space and H a subset of X. If $I = \{\phi\}$ (resp. $\mathbb{P}(X), \mathcal{N}$), then $H^* = cl(H)$ (resp. ϕ , cl(int(cl(H)))) and $cl^*(H) = cl(H)$ (resp. $H, H \cup cl(int(cl(H))))$ where \mathcal{N} is the ideal of all nowhere dense sets of (X, τ) .

LEMMA 2.4. [14] Let (X, τ) be a space with an arbitrary index set \triangle , I an ideal of subsets of X and $\mathbb{P}(X)$ the power set of X. If $\{H_{\alpha} : \alpha \in \Delta\} \subset \mathbb{P}(X)$, then the following property holds:

$$(\cup_{\alpha\in\triangle}H_{\alpha}^{\star})\subset(\cup_{\alpha\in\triangle}H_{\alpha})^{\star}$$

3. Weaker forms of ω -open sets

In this section we introduce the following notions.

DEFINITION 3.1. A subset H of an ideal topological space (X, τ, I) is said to be

(1) α - I_{ω} -open if $H \subset int_{\omega}(cl^{\star}(int_{\omega}(H)))$,

(2) pre- I_{ω} -open if $H \subset int_{\omega}(cl^{\star}(H))$,

(3) β - I_{ω} -open if $H \subset cl^{\star}(int_{\omega}(cl^{\star}(H))),$

(4) $b - I_{\omega}$ -open if $H \subset int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H))$.

THEOREM 3.1. For a subset of an ideal topological space (X, τ, I) , the following properties hold:

(1) Every ω -open set is α - I_{ω} -open.

- (2) Every α - I_{ω} -open set is pre- I_{ω} -open.
- (3) Every pre- I_{ω} -open set is b- I_{ω} -open.
- (4) Every b- I_{ω} -open set is β - I_{ω} -open.

PROOF. (1). If H is an ω -open set, then $H = int_{\omega}(H)$. Since

 $H \subset cl^{\star}(H), H \subset cl^{\star}(int_{\omega}(H)) \text{ and } int_{\omega}(H) \subset int_{\omega}(cl^{\star}(int_{\omega}(H))).$

Therefore $H \subset int_{\omega}(cl^{\star}(int_{\omega}(H)))$ and H is α - I_{ω} -open.

(2). If H is an α - I_{ω} -open set, then $H \subset int_{\omega}(cl^{\star}(int_{\omega}(H))) \subset int_{\omega}(cl^{\star}(H))$. Therefore H is pre- I_{ω} -open.

(3). If H is a pre- I_{ω} -open set, then

$$H \subset int_{\omega}(cl^{\star}(H)) \subset int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)).$$

Therefore H is b- I_{ω} -open.

(4). If H is a b- I_{ω} -open set, then

$$\begin{split} H \subset int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)) \subset cl^{\star}(int_{\omega}(cl^{\star}(H))) \cup cl^{\star}(int_{\omega}(H)) \subset \\ cl^{\star}(int_{\omega}(cl^{\star}(H))). \end{split}$$

Therefore H is β - I_{ω} -open.

EXAMPLE 3.1. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}\}$ and ideal $I = \{\phi\}$,

- (1) $H = \mathbb{Q} \cup \{\sqrt{2}\}$ is α - I_{ω} -open, since $int_{\omega}(cl^{\star}(int_{\omega}(H))) = int_{\omega}(cl^{\star}(\mathbb{Q})) = int_{\omega}(cl(\mathbb{Q})) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset H$. But $H = \mathbb{Q} \cup \{\sqrt{2}\}$ is not ω -open, since $int_{\omega}(H) = \mathbb{Q} \neq H$.
- (2) $H = \mathbb{Q}$ is pre- I_{ω} -open, since $int_{\omega}(cl^{\star}(H)) = int_{\omega}(cl(\mathbb{Q})) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset \mathbb{Q} = H$. But $H = \mathbb{Q}$ is not α - I_{ω} -open, since $int_{\omega}(cl^{\star}(int_{\omega}(H))) = int_{\omega}(cl^{\star}(\phi)) = int_{\omega}(\phi) = \phi \not\supseteq \mathbb{Q} = H$.
- (3) H = (0,1] is $b \cdot I_{\omega}$ -open, since $int_{\omega}(cl^{*}(H)) \cup cl^{*}(int_{\omega}(H)) = int_{\omega}(cl(H)) \cup cl^{*}((0,1)) = int_{\omega}([0,1]) \cup cl((0,1)) = (0,1) \cup [0,1] = [0,1] \supset H$. But H = (0,1] is not pre- I_{ω} -open, since $int_{\omega}(cl^{*}(H)) = int_{\omega}(cl(H)) = int_{\omega}([0,1]) = (0,1) \not\supseteq (0,1] = H$.
- (4) $H = [0,1) \cap \mathbb{Q} \text{ is } \beta \cdot I_{\omega} \text{-open, since } cl^{\star}(int_{\omega}(cl^{\star}(H))) = cl^{\star}(int_{\omega}(cl(H))) = cl^{\star}(int_{\omega}([0,1])) = cl^{\star}((0,1)) = cl((0,1)) = [0,1] \supset H. \text{ But } H = [0,1) \cap \mathbb{Q} \text{ is not } b \cdot I_{\omega} \text{-open, since } int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)) = int_{\omega}(cl(H)) \cup cl^{\star}(\phi) = int_{\omega}([0,1]) \cup \phi = (0,1) \cup \phi = (0,1) \not\supseteq H.$

THEOREM 3.2. For a subset of an ideal topological space (X, τ, I) , the following properties hold:

- (1) Every α -*I*-open set is α -*I* $_{\omega}$ -open.
- (2) Every pre-I-open set is pre- I_{ω} -open.
- (3) Every b-I-open set is b- I_{ω} -open.
- (4) Every strongly β -I-open set is β -I_{ω}-open.

PROOF. (1). If H is an α -I-open set, then

$$H \subset int(cl^{\star}(int(H))) \subset int_{\omega}(cl^{\star}(int_{\omega}(H))).$$

Hence H is α - I_{ω} -open.

(2). If H is a pre-I-open set, then $H \subset int(cl^{\star}(H)) \subset int_{\omega}(cl^{\star}(H))$. Therefore H is pre- I_{ω} -open.

(3). If H is a b-I-open set, then

 $H \subset int(cl^{\star}(H)) \cup cl^{\star}(int(H)) \subset int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)).$

Therefore H is b- I_{ω} -open.

(4). If H is a strongly β -I-open set, then

$$H \subset cl^{\star}(int(cl^{\star}(H))) \subset cl^{\star}(int_{\omega}(cl^{\star}(H))).$$

Therefore H is β - I_{ω} -open.

EXAMPLE 3.2. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}\}$ and ideal $I = \mathbb{P}(X)$. Then

- (1) $H = \{b\}$ is α - I_{ω} -open, since $int_{\omega}(cl^{\star}(int_{\omega}(H))) = int_{\omega}(cl^{\star}(H)) = int_{\omega}(H) = H \supset H.$ But $H = \{b\}$ is not α -I-open, since
 - $int(cl^{\star}(int(H))) = int(cl^{\star}(\phi)) = \phi \not\supseteq H.$
- (2) $H = \{b\}$ is pre- I_{ω} -open, since $int_{\omega}(cl^{*}(H)) = int_{\omega}(H) = H \supset H$. But $H = \{b\}$ is not pre-I-open, since $int(cl^{*}(H)) = int(H) = \phi \not\supseteq H$.
- (3) $H = \{b\}$ is $b \cdot I_{\omega}$ -open, since $int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)) = int_{\omega}(H) \cup cl^{\star}(H) = H \cup H = H \supset H$. But $H = \{b\}$ is not $b \cdot I$ -open, since $int(cl^{\star}(H)) \cup cl^{\star}(int(H)) = int(H) \cup cl^{\star}(\phi) = \phi \cup \phi = \phi \not\supseteq H$.
- (4) $H = \{b\}$ is β - I_{ω} -open, since $cl^{\star}(int_{\omega}(cl^{\star}(H))) = cl^{\star}(int_{\omega}(H)) = cl^{\star}(H) = H \supset H$. But $H = \{b\}$ is not strongly β -I-open, since $cl^{\star}(int(cl^{\star}(H))) = cl^{\star}(int(H)) = cl^{\star}(\phi) = \phi \not\supseteq H$.

PROPOSITION 3.1. For a subset of an ideal topological space (X, τ, I) , the following properties hold:

- (1) Every α -I-open set is α - ω -open.
- (2) Every pre-I-open set is pre- ω -open.
- (3) Every b-I-open set is b- ω -open.
- (4) Every strongly β -I-open set is β - ω -open.

PROOF. (1). Let H be an α -I-open set. Then

$$H \subset int(cl^{\star}(int(H))) \subset int_{\omega}(cl^{\star}(int_{\omega}(H))) \subset int_{\omega}(cl(int_{\omega}(H))).$$

This shows that H is α - ω -open.

(2). Let H be a pre-I-open set. Then

$$H \subset int(cl^{\star}(H)) \subset int_{\omega}(cl(H)).$$

This shows that H is pre- ω -open.

(3). Let H be a b-I-open set. Then

$$H \subset int(cl^{\star}(H)) \cup cl^{\star}(int(H)) \subset int_{\omega}(cl(H)) \cup cl(int_{\omega}(H)).$$

This shows that H is b- ω -open.

(4) Let H be a strongly β -I-open set. Then

$$H \subset cl^{\star}(int(cl^{\star}(H))) \subset cl(int_{\omega}(cl(H))).$$

This shows that H is β - ω -open.

EXAMPLE 3.3. In Example 3.2,

- (1) $H = \{b\}$ is α - ω -open, since $int_{\omega}(cl(int_{\omega}(H))) = int_{\omega}(cl(H)) = int_{\omega}(\{b,c\}) = \{b,c\} \supset H.$ But $H = \{b\}$ is not α -I-open by (1) of Example 3.2.
- (2) $H = \{b\}$ is pre- ω -open, since

$$int_{\omega}(cl(H)) = int_{\omega}(\{b,c\}) = \{b,c\} \supset H.$$

- But $H = \{b\}$ is not pre-I-open by (2) of Example 3.2.
- (3) $H = \{b\}$ is b- ω -open, since

$$int_{\omega}(cl(H)) \cup cl(int_{\omega}(H)) = int_{\omega}(\{b,c\}) \cup cl(H) = \{b,c\} \cup \{b,c\} = \{b,c\} \supset H.$$

But $H = \{b\}$ is not b-I-open by (3) of Example 3.2.

(4) $H = \{b\}$ is β - ω -open, since

$$cl(int_{\omega}(cl(H))) = cl(int_{\omega}(\{b,c\})) = cl(\{b,c\}) = \{b,c\} \supset H$$

But $H = \{b\}$ is not strongly β -I-open by (4) of Example 3.2.

PROPOSITION 3.2. For a subset of an ideal topological space (X, τ, I) , the following properties hold:

- (1) Every pre-I-open set is b-I-open.
- (2) Every b-I-open is strongly β -I-open.

PROOF. (1). Let H be a pre-I-open set. Then

$$H \subset int(cl^{\star}(H)) \subset int(cl^{\star}(H)) \cup cl^{\star}(int(H)).$$

This shows that H is b-I-open.

(2). Let H be a b-I-open set. Then

$$H \subset int(cl^{\star}(H)) \cup cl^{\star}(int(H)) \subset cl^{\star}(int(cl^{\star}(H))) \cup cl^{\star}(int(H)) = cl^{\star}(int(cl^{\star}(H))).$$

This shows that H is strongly β -I-open.

EXAMPLE 3.4. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{b\}\}$. Then $H = \{a, c\}$ is b-I-open, since $int(cl^*(H)) \cup cl^*(int(H)) = int(H \cup H^*) \cup cl^*(\{a\}) = int(H \cup H) \cup (\{a\} \cup \{a\}^*) = int(H) \cup (\{a\} \cup H) = \{a\} \cup H = H \supset H$. But $H = \{a, c\}$ is not pre-I-open, since $int(cl^*(H)) = \{a\} \not\supseteq H$.

EXAMPLE 3.5. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $I = \{\phi, \{b\}\}$. Then $H = \{a, b\}$ is strongly β -I-open, since $cl^*(int(cl^*(H))) = cl^*(int(H \cup H^*)) = cl^*(int(H \cup \{a, b, c\})) = cl^*(int(\{a, b, c\})) = cl^*(\{a, c\}) = \{a, c\} \cup \{a, c\}^* = \{a, c\} \cup \{a, b, c\} = \{a, b, c\} \supset H$. But $H = \{a, b\}$ is not b-I-open, since $int(cl^*(H)) \cup cl^*(int(H)) = int(\{a, b, c\}) \cup cl^*(\phi) = \{a, c\} \cup \phi = \{a, c\} \not\supseteq H$.

REMARK 3.1. Since every open set is ω -open [3, 12], we have the following diagram for properties of subsets.

Diagram-2

 $\begin{array}{ccc} \mathbf{open} \longrightarrow \alpha \text{-}I\text{-}\mathbf{open} \longrightarrow \mathbf{pre}\text{-}I\text{-}\mathbf{open} \longrightarrow \mathbf{b}\text{-}I\text{-}\mathbf{open} \longrightarrow \mathbf{strongly} \ \beta \text{-}I\text{-}\mathbf{open} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \omega \text{-}\mathbf{open} \longrightarrow \alpha \text{-}I_{\omega}\text{-}\mathbf{open} \longrightarrow \mathbf{pre}\text{-}I_{\omega}\text{-}\mathbf{open} \longrightarrow \mathbf{b}\text{-}I_{\omega}\text{-}\mathbf{open} \longrightarrow \beta \text{-}I_{\omega}\text{-}\mathbf{open} \end{array}$

The converses of the above implications are not true in general as can be seen from the above Examples.

THEOREM 3.3. If H is a pre- I_{ω} -open subset of an ideal topological space (X, τ, I) such that $U \subset H \subset cl^*(U)$ for a subset U of X, then U is a pre- I_{ω} -open set.

PROOF. Since $H \subset int_{\omega}(cl^{\star}(H)), U \subset int_{\omega}(cl^{\star}(H)) \subset int_{\omega}(cl^{\star}(U))$ since $cl^{\star}(H) \subset cl^{\star}(U)$. Thus U is a pre- I_{ω} -open set.

THEOREM 3.4. A subset H of an ideal topological space (X, τ, I) is semi-I-open if and only if H is β -I_{ω}-open and int_{ω}(cl^{*}(H)) \subset cl^{*}(int(H)).

PROOF. Let H be semi-I-open. Then $H \subset cl^*(int(H)) \subset cl^*(int_{\omega}(cl^*(H)))$ and hence H is β - I_{ω} -open. In addition $cl^*(H) \subset cl^*(int(H))$ and hence

 $int_{\omega}(cl^{\star}(H)) \subset cl^{\star}(int(H)).$

Conversely let H be β -I_{ω}-open and $int_{\omega}(cl^{\star}(H)) \subset cl^{\star}(int(H))$. Then

$$H \subset cl^{\star}(int_{\omega}(cl^{\star}(H))) \subset cl^{\star}(cl^{\star}(int(H))) = cl^{\star}(int(H))$$

and hence H is semi-I-open.

PROPOSITION 3.3. The intersection of a pre- I_{ω} -open set and an open set is pre- I_{ω} -open.

PROOF. Let H be a pre- I_{ω} -open set and U an open set. Then $H \subset int_{\omega}(cl^{*}(H))$. Since every open set is ω -open,

$$U \cap H \subset int_{\omega}(U) \cap int_{\omega}(cl^{\star}(H)) = int_{\omega}(U \cap cl^{\star}(H)) \subset int_{\omega}(cl^{\star}(U \cap H))$$

by Lemma 2.3(1). This shows that $U \cap H$ is pre- I_{ω} -open.

PROPOSITION 3.4. The intersection of a β - I_{ω} -open set and an open set is β - I_{ω} -open.

PROOF. Let H be a β - I_{ω} -open set and U an open set. Then

$$H \subset cl^{\star}(int_{\omega}(cl^{\star}(H))).$$

Since every open set is

$$\omega \text{-open}, \ U \cap H \subset U \cap cl^{\star}(int_{\omega}(cl^{\star}(H))) \subset cl^{\star}(U \cap int_{\omega}(cl^{\star}(H))) \subset cl^{\star}(int_{\omega}(U) \cap int_{\omega}(cl^{\star}(H))) = cl^{\star}(int_{\omega}(U \cap cl^{\star}(H))) \subset cl^{\star}(int_{\omega}(cl^{\star}(U \cap H)))$$

by Lemma 2.3(1). This shows that $U \cap H$ is β - I_{ω} -open.

PROPOSITION 3.5. The intersection of a b- I_{ω} -open set and an open set is b- I_{ω} -open.

PROOF. Let H be a b- I_{ω} -open and U an open set. Then

$$H \subset int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H)).$$

Since every open set is ω -open,

$$\begin{split} U \cap H \subset U \cap [int_{\omega}(cl^{\star}(H)) \cup cl^{\star}(int_{\omega}(H))] &= [U \cap int_{\omega}(cl^{\star}(H))] \cup [U \cap cl^{\star}(int_{\omega}(H))] = \\ [int_{\omega}(U) \cap int_{\omega}(cl^{\star}(H))] \cup [U \cap cl^{\star}(int_{\omega}(H))] \subset [int_{\omega}(U \cap cl^{\star}(H))] \cup [cl^{\star}(U \cap int_{\omega}(H))] \end{split}$$

by Lemma 2.3(1). Thus

$$U \cap H \subset [int_{\omega}(cl^{\star}(U \cap H))] \cup [cl^{\star}(int_{\omega}(U \cap H))].$$

This shows that $U \cap H$ is b- I_{ω} -open.

REMARK 3.2. The intersection of two pre- I_{ω} -open (resp. b- I_{ω} -open, β - I_{ω} -open) sets need not be pre- I_{ω} -open (resp. b- I_{ω} -open, β - I_{ω} -open) as can be seen from the following Example.

EXAMPLE 3.6. In \mathbb{R} with usual topology τ_u and ideal $I = \{\phi\}$,

- (1) $A = \mathbb{Q}$ is pre- I_{ω} -open, since $int_{\omega}(cl^{*}(A)) = int_{\omega}(cl(A)) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset A$. A. Also $B = \mathbb{Q}^{*} \cup \{1\}$ is pre- I_{ω} -open, since $int_{\omega}(cl^{*}(B)) = int_{\omega}(cl(B)) = int_{\omega}(cl(B)) = int_{\omega}(cl^{*}(B)) = int_{\omega}(cl^{*}(A \cap B)) = int_{\omega}(cl^{*}(\{1\})) = int_{\omega}(cl(\{1\})) = int_{\omega}(\{1\}) = \phi \not\supseteq A \cap B$.
- (2) $A = \mathbb{Q}$ and $B = \mathbb{Q}^* \cup \{1\}$ are $b \cdot I_\omega$ -open, by (1) of Example 3.6 and Theorem 3.1 (3). But $A \cap B = \{1\}$ is not $b \cdot I_\omega$ -open, since $int_\omega(cl^*(\{1\})) \cup cl^*(int_\omega(\{1\})) = \phi \cup cl^*(\phi) = \phi \cup \phi = \phi \not\supseteq \{1\} = A \cap B$.
- (3) $A = \mathbb{Q}$ and $B = \mathbb{Q}^* \cup \{1\}$ are β - I_{ω} -open by (2) of Example 3.6 and Theorem 3.1 (4). But $A \cap B = \{1\}$ is not β - I_{ω} -open, since $cl^*(int_{\omega}(cl^*(\{1\}))) = cl^*(int_{\omega}(cl(\{1\}))) = cl^*(int_{\omega}(\{1\}))) = cl^*(\phi) = \phi \not\supseteq \{1\} = A \cap B.$

PROPOSITION 3.6. The intersection of an α - I_{ω} -open set and an open set is α - I_{ω} -open.

PROOF. Let H be α -I_{ω}-open and U be open. Then

$$U = int_{\omega}(U) \text{ and } H \subset int_{\omega}(cl^{*}(int_{\omega}(H))).$$
$$U \cap H \subset int_{\omega}(U) \cap [int_{\omega}(cl^{*}(int_{\omega}(H))] = int_{\omega}[U \cap cl^{*}(int_{\omega}(H))] \subset int_{\omega}[cl^{*}(U \cap int_{\omega}(H))]$$

by Lemma 2.3(1). Thus

$$U \cap H \subset int_{\omega}[cl^{\star}(int_{\omega}(U) \cap int_{\omega}(H))] = int_{\omega}[cl^{\star}(int_{\omega}(U \cap H))]$$

which implies $U \cap H$ is α - I_{ω} -open.

PROPOSITION 3.7. If $\{H_{\alpha} : \alpha \in \Delta\}$ is a collection of pre- I_{ω} -open sets of an ideal topological space (X, τ, I) , then $\bigcup_{\alpha \in \Delta} H_{\alpha}$ is pre- I_{ω} -open.

PROOF. Since $H_{\alpha} \subset int_{\omega}(cl^{\star}(H_{\alpha}))$ for every $\alpha \in \Delta$,

$$\bigcup_{\alpha \in \triangle} H_{\alpha} \subset \bigcup_{\alpha \in \triangle} int_{\omega} (cl^{\star}(H_{\alpha})) \subset int_{\omega} (\bigcup_{\alpha \in \triangle} cl^{\star}(H_{\alpha})) = int_{\omega} (\bigcup_{\alpha \in \triangle} (H_{\alpha}^{\star} \cup H_{\alpha}))$$
$$= int_{\omega} ((\bigcup_{\alpha \in \triangle} H_{\alpha}^{\star}) \cup (\bigcup_{\alpha \in \triangle} H_{\alpha})) \subset int_{\omega} ((\bigcup_{\alpha \in \triangle} H_{\alpha})^{\star} \cup (\bigcup_{\alpha \in \triangle} H_{\alpha}))$$

146

by Lemma 2.4. Thus

$$\cup_{\alpha\in\triangle}H_{\alpha}\subset int_{\omega}[(\cup_{\alpha\in\triangle}H_{\alpha})^{\star}\cup(\cup_{\alpha\in\triangle}H_{\alpha})]=int_{\omega}(cl^{\star}(\cup_{\alpha\in\triangle}H_{\alpha}))$$

Therefore, $\cup_{\alpha \in \triangle} H_{\alpha}$ is pre- I_{ω} -open.

THEOREM 3.5. If $\{H_{\alpha} : \alpha \in \Delta\}$ is a collection of $b \cdot I_{\omega}$ -open (resp. $\beta \cdot I_{\omega}$ -open) sets of an ideal topological space (X, τ, I) , then $\cup_{\alpha \in \Delta} H_{\alpha}$ is $b \cdot I_{\omega}$ -open (resp. $\beta \cdot I_{\omega}$ -open).

PROOF. We prove only the first result since the other result follows similarly. Since H_{α} is b- I_{ω} -open for every $\alpha \in \Delta$, $H_{\alpha} \subset int_{\omega}(cl^{\star}(H_{\alpha})) \cup cl^{\star}(int_{\omega}(H_{\alpha}))$ for every $\alpha \in \Delta$.

$$Then \cup_{\alpha \in \bigtriangleup} H_{\alpha} \subset \cup_{\alpha \in \bigtriangleup} [int_{\omega}(cl^{*}(H_{\alpha})) \cup cl^{*}(int_{\omega}(H_{\alpha}))] \\ = [\cup_{\alpha \in \bigtriangleup} int_{\omega}(cl^{*}(H_{\alpha}))] \cup [\cup_{\alpha \in \bigtriangleup} cl^{*}(int_{\omega}(H_{\alpha}))] \\ \subset [int_{\omega}(\cup_{\alpha \in \bigtriangleup} cl^{*}(H_{\alpha}))] \cup [cl^{*}(\cup_{\alpha \in \bigtriangleup} int_{\omega}(H_{\alpha}))] \\ \subset [int_{\omega}(cl^{*}(\cup_{\alpha \in \bigtriangleup} H_{\alpha}))] \cup [cl^{*}(int_{\omega}(\cup_{\alpha \in \bigtriangleup} H_{\alpha}))].$$

Therefore, $\cup_{\alpha \in \triangle} H_{\alpha}$ is b- I_{ω} -open.

PROPOSITION 3.8. Let H be a b- I_{ω} -open set such that $int_{\omega}(H) = \phi$. Then H is pre- I_{ω} -open.

Recall that a space (X, τ) is called a door space if every subset of X is open or closed.

PROPOSITION 3.9. If (X, τ) is a door space, then every pre- I_{ω} -open set in (X, τ, I) is ω -open.

PROOF. Let H be a pre- I_{ω} -open set. If H is open, then H is ω -open. Otherwise, H is closed and hence $H \subset int_{\omega}(cl^{\star}(H)) \subset int_{\omega}(cl(H)) = int_{\omega}(H) \subset H$. Therefore, $H = int_{\omega}(H)$ and thus H is an ω -open set.

THEOREM 3.6. Let (X, τ) be an anti-locally countable space and H a subset of (X, τ, I) . Then the following properties hold:

(1) Let H be a pre- I_{ω} -open set. Then

- (1) if H is pre- I_{ω} -open, then it is pre-open.
- (2) if H is b-I $_{\omega}$ -open and ω -closed, then it is b-open.
- (3) if H is β -I_{ω}-open, then it is β -open.

Proof.

$$H \subset int_{\omega}(cl^{\star}(H)) \subset int_{\omega}(cl(H)) = int(cl(H))$$

by Lemma 2.2, since every closed set is ω -closed. This shows that H is pre-open.

- (2) Let H be a b- I_{ω} -open and ω -closed set. Since H and cl(H) are ω -closed, $int_{\omega}(cl^{*}(H)) \subset int_{\omega}(cl(H)) = int(cl(H))$ and $cl^{*}(int_{\omega}(H)) \subset cl(int(H))$ by Lemma 2.2. Since H is b- I_{ω} -open, $H \subset int_{\omega}(cl^{*}(H)) \cup cl^{*}(int_{\omega}(H)) \subset$ $int(cl(H)) \cup cl(int(H))$. This shows that H is b-open.
- (3) Let H be a β - I_{ω} -open set. Then

 $H \subset cl^{\star}(int_{\omega}(cl^{\star}(H))) \subset cl(int_{\omega}(cl(H))) = cl(int(cl(H)))$

by Lemma 2.2. This shows that H is β -open.

PROPOSITION 3.10. For an ideal topological space (X, τ, I) and $H \subset X$,

- (1) If $I = \{\phi\}$, then H is pre- I_{ω} -open (resp. b- I_{ω} -open) if and only if H is pre- ω -open (resp. b- ω -open).
- (2) If $I = \mathbb{P}(X)$, then H is pre- I_{ω} -open (resp. b- I_{ω} -open) if and only if H is ω -open.

PROOF. (1) It is obvious from Proposition 2.1.

(2) It is obvious from Proposition 2.1.

4. Decompositions of continuity via idealization

DEFINITION 4.1. A subset H of an ideal topological space (X, τ, I) is called

(1) a t- I_{ω} -set if $int(H) = int_{\omega}(cl^{\star}(H));$

(2) a B- I_{ω} -set if $H = U \cap V$, where $U \in \tau$ and V is an t- I_{ω} -set.

EXAMPLE 4.1. (1) In \mathbb{R} with usual topology τ_u and ideal $I = \{\phi\}, H = \mathbb{Q}$ is not a t- I_{ω} -set, since $int_{\omega}(cl^*(H)) = int_{\omega}(cl(H)) = int_{\omega}(\mathbb{R}) = \mathbb{R} \neq \phi = int(H)$.

(2) In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and ideal $I = \mathbb{P}(\mathbb{R}), H = \mathbb{Q}$ is a t- I_{ω} -set, since $int_{\omega}(cl^*(H)) = int_{\omega}(H) = \phi = int(H)$.

REMARK 4.1. In an ideal topological space (X, τ, I) ,

- (1) Every open set is a B- I_{ω} -set.
- (2) Every t- I_{ω} -set is a B- I_{ω} -set.

The converses of (1) and (2) in Remark 4.1 are not true in general as illustrated in the following Examples.

EXAMPLE 4.2. In Example 4.1 (2), $H = \mathbb{Q}$ is a t-I_{ω}-set and hence by (2) of Remark 4.1, $H = \mathbb{Q}$ is a B-I_{ω}-set. But $H = \mathbb{Q}$ is not open, since $\mathbb{Q} \notin \tau$.

EXAMPLE 4.3. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^{\star}\}$ and ideal $I = \{\phi\}$, $H = \mathbb{Q}^{\star}$ is open in \mathbb{R} and hence by (1) of Remark 4.1, H is a B- I_{ω} -set. But $int_{\omega}(cl^{\star}(H)) = int_{\omega}(cl(H)) = int_{\omega}(\mathbb{R}) = \mathbb{R} \neq \mathbb{Q}^{\star} = int(H)$. Thus $H = \mathbb{Q}^{\star}$ is not a t- I_{ω} -set.

EXAMPLE 4.4. In \mathbb{R} with usual topology τ_u and ideal $I = \{\phi\}, H = \mathbb{Q}$ is not a B- I_{ω} -set. If $H = U \cap V$, where $U \in \tau$ and V is t- I_{ω} -set, then $H \subset U$. But \mathbb{R} is the only open set containing H. Hence $U = \mathbb{R}$ and $H = \mathbb{R} \cap V = V$ which is a contradiction, since H = V is not a t- I_{ω} -set by Example 4.1 (1). This proves that $H = \mathbb{Q}$ is not a B- I_{ω} -set.

PROPOSITION 4.1. Let A and B be subsets of an ideal topological space (X, τ, I) . If A and B are t-I_{ω}-sets, then $A \cap B$ is a t-I_{ω}-set.

PROOF. Let A and B be t- I_{ω} -sets. Then we have $int(A \cap B) \subset int_{\omega}(cl^{*}(A \cap B)) \subset int_{\omega}(cl^{*}(A) \cap cl^{*}(B)) = int_{\omega}(cl^{*}(A)) \cap int_{\omega}(cl^{*}(B)) = int(A) \cap int(B) = int(A \cap B)$. Then $int(A \cap B) = int_{\omega}(cl^{*}(A \cap B))$ and hence $A \cap B$ is a t- I_{ω} -set. \Box

PROPOSITION 4.2. For a subset H of an ideal topological space (X, τ, I) , the following properties are equivalent:

(1) H is open;

(2) H is pre- I_{ω} -open and a B- I_{ω} -set.

PROOF. (1) \Rightarrow (2): Let H be open. Then $H = int(H) \subset int_{\omega}(cl^{\star}(H))$ and H is pre- I_{ω} -open. Also by Remark 4.1 H is a B- I_{ω} -set.

 $(2) \Rightarrow (1)$: Given H is a B- I_{ω} -set. So $H = U \cap V$ where $U \in \tau$ and $int(V) = int_{\omega}(cl^{\star}(V))$. Then $H \subset U = int(U)$. Also, H is pre- I_{ω} -open implies $H \subset int_{\omega}(cl^{\star}(H)) \subset int_{\omega}(cl^{\star}(V)) = int(V)$ by assumption. Thus $H \subset int(U) \cap int(V) = int(U \cap V) = int(H)$ and hence H is open. \Box

REMARK 4.2. The following Examples show that the concepts of pre- I_{ω} -openness and being a B- I_{ω} -set are independent.

EXAMPLE 4.5. In Example 4.4, $H = \mathbb{Q}$ is pre- I_{ω} -open, since $int_{\omega}(cl^{\star}(H)) = int_{\omega}(cl(H)) = int_{\omega}(\mathbb{R}) = \mathbb{R} \supset \mathbb{Q} = H$. But $H = \mathbb{Q}$ is not a B- I_{ω} -set.

EXAMPLE 4.6. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and ideal $I = \mathbb{P}(\mathbb{R})$, $H = \mathbb{Q}$ is a t- I_{ω} -set, by (2) of Example 4.1. Hence $H = \mathbb{Q}$ is a B- I_{ω} -set by (2) of Remark 4.1. But $H = \mathbb{Q}$ is not pre- I_{ω} -open, since $int_{\omega}(cl^*(H)) = int_{\omega}(H) = \phi \not\supseteq \mathbb{Q} = H$.

DEFINITION 4.2. A subset H of an ideal topological space (X, τ, I) is called

(1) a t_{α} - I_{ω} -set if $int(H) = int_{\omega}(cl^{\star}(int_{\omega}(H)));$

(2) a B_{α} - I_{ω} -set if $H = U \cap V$, where $U \in \tau$ and V is a t_{α} - I_{ω} -set.

EXAMPLE 4.7. In \mathbb{R} with usual topology τ_u and ideal $I = \mathbb{P}(\mathbb{R}), H = \mathbb{R} \setminus \{0\}$ is a t_α - I_ω -set, since $int_\omega(cl^*(int_\omega(H))) = int_\omega(cl^*(H)) = int_\omega(H) = H = int(H)$.

EXAMPLE 4.8. In \mathbb{R} with usual topology τ_u and ideal $I = \mathbb{P}(\mathbb{R}), H = \mathbb{Q}^*$ is not a t_α - I_α -set, since $int_\omega(cl^*(int_\omega(H))) = int_\omega(cl^*(H)) = int_\omega(H) = H \neq \phi = int(H)$.

REMARK 4.3. In an ideal topological space (X, τ, I) ,

(1) Every open set is a B_{α} - I_{ω} -set.

(2) Every t_{α} - I_{ω} -set is a B_{α} - I_{ω} -set.

EXAMPLE 4.9. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{N}, \mathbb{Q}^*, \mathbb{Q}^* \cup \mathbb{N}\}$ and ideal $I = \{\phi\}, H = \mathbb{Q}$ is a t_{α} - I_{ω} -set, since $int_{\omega}(cl^*(int_{\omega}(H))) = int_{\omega}(cl^*(\mathbb{N})) = int_{\omega}(cl^*(\mathbb{N})) = int_{\omega}(cl(\mathbb{N})) = int_{\omega}(\mathbb{Q}) = \mathbb{N} = int(H)$. Hence by (2) of Remark 4.3, $H = \mathbb{Q}$ is a B_{α} - I_{ω} -set. But $H = \mathbb{Q}$ is not open, since $\mathbb{Q} \notin \tau$.

EXAMPLE 4.10. In \mathbb{R} with the topology $\tau = \{\phi, \mathbb{R}, \mathbb{Q}^*\}$ and ideal $I = \{\phi\}$, $H = \mathbb{Q}^*$ is open, since $H \in \tau$ and hence $H = \mathbb{Q}^*$ is a B_α - I_ω -set by (1) of Remark 4.3. But $H = \mathbb{Q}^*$ is not a t_α - I_ω -set, since $int_\omega(cl^*(int_\omega(H))) = int_\omega(cl^*(H)) =$ $int_\omega(cl(H)) = int_\omega(\mathbb{R}) = \mathbb{R} \neq \mathbb{Q}^* = H = int(H).$

EXAMPLE 4.11. In \mathbb{R} with usual topology τ_u and ideal $I = \mathbb{P}(\mathbb{R})$, $H = \mathbb{Q}^*$ is not a B_{α} - I_{ω} -set. If $H = U \cap V$ where $U \in \tau$ and V is t_{α} - I_{ω} -set, then $H \subset U$. But \mathbb{R} is the only open set containing H. Hence $U = \mathbb{R}$ and $H = \mathbb{R} \cap V = V$ which is a contradiction, since H = V is not a t_{α} - I_{ω} -set by Example 4.8. This proves that $H = \mathbb{Q}^*$ is not a B_{α} - I_{ω} -set.

PROPOSITION 4.3. If A and B are t_{α} - I_{ω} -sets of an ideal topological space (X, τ, I) , then $A \cap B$ is a t_{α} - I_{ω} -set.

PROOF. Let A and B be t_{α} - I_{ω} -sets. Then we have

 $\begin{array}{l} int(A \cap B) \subset int_{\omega}(cl^{\star}(int_{\omega}(A \cap B))) \subset int_{\omega}[cl^{\star}(int_{\omega}(A)) \cap cl^{\star}(int_{\omega}(B))] = \\ int_{\omega}(cl^{\star}(int_{\omega}(A))) \cap int_{\omega}(cl^{\star}(int_{\omega}(B))) = int(A) \cap int(B) = int(A \cap B). \end{array}$

Then $int(A \cap B) = int_{\omega}(cl^{\star}(int_{\omega}(A \cap B)))$ and hence $A \cap B$ is a t_{α} - I_{ω} -set. \Box

PROPOSITION 4.4. For a subset H of an ideal topological space (X, τ, I) , the following properties are equivalent:

(1) H is open;

(2) H is α -I $_{\omega}$ -open and a B_{α} -I $_{\omega}$ -set.

PROOF. (1) \Rightarrow (2): Let H be open. Then $H = int_{\omega}(H) \subset cl^{\star}(int_{\omega}(H))$ and $H = int_{\omega}(H) \subset int_{\omega}(cl^{\star}(int_{\omega}(H)))$. Therefore H is α - I_{ω} -open. Also by (1) of Remark 4.3, H is a B_{α} - I_{ω} -set.

 $(2) \Rightarrow (1)$: Given H is a B_{α} - I_{ω} -set. So $H = U \cap V$ where $U \in \tau$ and $int(V) = int_{\omega}(cl^{\star}(int_{\omega}(V)))$. Then $H \subset U = int(U)$. Also H is α - I_{ω} -open implies $H \subset int_{\omega}(cl^{\star}(int_{\omega}(H))) \subset int_{\omega}(cl^{\star}(int_{\omega}(V))) = int(V)$ by assumption. Thus $H \subset int(U) \cap int(V) = int(U \cap V) = int(H)$ and H is open. \Box

REMARK 4.4. The following Examples show that the concepts of α - I_{ω} -openness and being a B_{α} - I_{ω} -set are independent.

EXAMPLE 4.12. In \mathbb{R} with usual topology τ_u and ideal $I = \mathbb{P}(\mathbb{R})$, $H = \mathbb{Q}^*$ is α - I_{ω} -open, since $int_{\omega}(cl^*(int_{\omega}(H))) = int_{\omega}(cl^*(H)) = int_{\omega}(H) = H \supset H$. But $H = \mathbb{Q}^*$ is not a B_{α} - I_{ω} -set by Example 4.11.

EXAMPLE 4.13. In \mathbb{R} with usual topology τ_u and ideal $I = \mathbb{P}(\mathbb{R})$, H = (0, 1] is a t_{α} - I_{ω} -set, since $int_{\omega}(cl^{\star}(int_{\omega}(H))) = int_{\omega}(cl^{\star}((0, 1))) = int_{\omega}((0, 1)) = (0, 1) = int(H)$. Hence H = (0, 1] is a B_{α} - I_{ω} -set by (2) of Remark 4.3. But H = (0, 1] is not α - I_{ω} -open, since $int_{\omega}(cl^{\star}(int_{\omega}(H))) = (0, 1) \not\supseteq (0, 1] = H$.

DEFINITION 4.3. A function $f : X \to Y$ is said to be ω -continuous [13] (resp. pre- I_{ω} -continuous, B- I_{ω} -continuous, α - I_{ω} -continuous, B_{α} - I_{ω} -continuous) if $f^{-1}(V)$ is ω -open (resp. pre- I_{ω} -open, a B- I_{ω} -set, α - I_{ω} -open, a B_{α} - I_{ω} -set) for each open set V in Y.

By Propositions 4.2 and 4.4 we have the immediate result.

THEOREM 4.1. For a function $f: X \to Y$, the following properties are equivalent:

(1) f is continuous.

(2) f is pre- I_{ω} -continuous and B- I_{ω} -continuous.

(3) f is α - I_{ω} -continuous and B_{α} - I_{ω} -continuous.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit Univ., 12(1)(1983), 77 - 90.
- [2] A. Acikgoz, T. Noiri and S. Yuksel, On α-I-continuous and α-I-open functions, Acta Math. Hungar., 105(1-2)(2004), 27 - 37.
- [3] A. Al-Omari and M. S. M. Noorani, Regular generalized ω-closed sets, Intern. J. Math. Math. Sci., Volume 2007, Article ID 16292, 11 pages, doi: 10.1155/2007/16292.
- [4] K. Al-Zoubi and B. Al-Nashef, The topology of ω -open subsets, Al-Manareh, 2003, $\mathbf{9}(2)(2003)$, 169 179.
- [5] D. Andrijević, On b-open sets, Mat. Vesnik, 1996, 48(1-2)(1996), 59 64.
- [6] J. Dontchev, Idealization of Ganster Reilly Decomposition Theorems, arXiv:math/9901017 [math.GN]
- [7] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).
- [8] E. Ekici and T. Noiri, ★-extremally disconnected ideal topological spaces, Acta Math. Hungar., 2009, 122(1-2)(2009), 81 - 90.
- [9] A. C. Guler and G. Aslim, b-I-open sets and decomposition of continuity via idealization, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 22(2005), 27 - 32.
- [10] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 2002, 96(4)(2002), 341 - 349.
- [11] E. Hatir, A. Keskin and T. Noiri, On a new decomposition of continuity via idealization, JP Jour. Geometry and Topology, 2003, 3(1)(2003), 53 - 64.
- [12] H. Z. Hdeib, ω-closed mappings, Revista Colomb. De Matem., 1982, 16(1-2)(1982), 65 78.
- [13] H. Z. Hdeib, $\omega\text{-continuous functions},$ Dirasat, 1989, $\mathbf{16}(2)(1989),$ 136 142.
- [14] K. Kuratowski, Topology, Vol I. Academic Press (New York) 1966.
- [15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 1982, 53(1982), 47 - 53.
- [16] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 1965, 15(1965), 961 970.
 [17] T. Noiri, A. Al-Omari and M. S. M. Noorani, Weak forms of ω-open sets and decompositions
- of continuity, Eur. J. Pure Appl. Math., 2(1)(2009), 73 84.
- [18] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51 - 61.
- [19] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, 1946.
- [20] S. Willard, General Topology, Addison-Wesley, Reading, Mass, USA, 1970.

Received by editors 24.06.2016; Available online 07.11.2016.

O. RAVI. VICE-PRINCIPAL, P. M. THEVAR COLLEGE, USILAMPATTI, MADURAI DISTRICT, TAMIL NADU, INDIA.

E-mail address: : siingam@yahoo.com

P. SEKAR. PRINCIPAL, C. KANDASWAMI NAIDU COLLEGE FOR MEN, ANNA NAGAR, CHENNAI-102, TAMIL NADU, INDIA.

E-mail address: cicesekar@yahoo.co.in

K. VIDHYALAKSHMI. RESEARCH SCHOLAR, UNIVERSITY OF MADRAS, CHENNAI-5, TAMIL NADU, INDIA

E-mail address: vidhusat22@yahoo.co.in