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A STUDY OF n-ARY SUBGROUPS

WITH RESPECT TO t-CONORM

D.R. Prince Williams

Abstract. In this paper, we introduce a notion of fuzzy n-ary subgroups with

respect to t-conorm(s-fuzzy n-ary subgroups) in an n-ary groups (G, f) and
have studied their related properties. The main contribution of this paper are
studying the properties of s-fuzzy n-ary subgroups over s-level n-ary subgroup
of (G, f) , n-ary homomorphism and reta(G, f). Moreover some results of

the S-product of s-fuzzy n-ary relations in an n-ary groups (G, f) are also
obtained.

1. Introduction

The theory of fuzzy set was first developed by Zadeh [29] and has been applied
to many branches in mathematics. Later fuzzification of the “group” concept into
“fuzzy subgroup” was made by Rosenfeld [28]. This work was the first fuzzification
of any algebraic structure and thus opened a new direction, new exploration, new
path of thinking to mathematicians, engineers, computer scientists and many others
in various tests.The study of n-ary systems was initiated by Kasner [26] in 1904,
but the important study on n-ary groups was done by Dörnte [3]. The theory of n-
ary systems have many applications. For example, in the theory of automata [23],
n-ary semigroup and n-ary groups are used. The n-ary groupoids are applied
in the theory of quantum groups [27]. Also the ternary structures in physics are
described by Kerner in [25]. The n-ary system dealt in detail [4-9,11,12,14-22]. The
first fuzzification of n-ary system was introduced by Dudek [10]. Moreover Davvaz
et. al [2] have studied fuzzy n-ary groups as a generalization of Rosenfeld’s fuzzy
groups and have investigated their related properties. The notion of intuitionistic
fuzzy sets, as a generalization of the notion of fuzzy set. Dudek [13] has introduced
intuitionistic fuzzy sets idea’s in n-ary systems and has discussed in detail.
Triangular norm(t-norm) and triangular conorm(t-conorm) are the most general
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families of binary operations that satisfy the requirement of the conjunction and
disjunction operators, respectively. Thus, the t-norm generalizes the conjunctive
(AND) operator and the t-conorm generalizes the disjunctive (OR) operator. In
application, t-norm T and t-conorm S are two functions that map the unit square
into the unit interval. To study more about t-conorm see [24]. In this paper,we
introduce the notion of fuzzy n-ary subgroups with respect to t-conorm ( s-fuzzy n-
ary subgroup ) in n-ary group (G, f) and have investigated their related properties.

2. Preliminaries

A non-empty set G together with one n-ary operation f : Gn → G,where
n > 2, is called an n-ary groupoid and is denoted by (G, f) . According to the
general convention used in the theory of n-ary groupoids the sequence of elements
xi, xi+1, ..., xj is denoted by xj

i . In the case j < i , it denoted the empty symbol.

If xi+1 = xi+2 = ... = xi+t = x, then instead of xi+t
i+1 and we write

(t)
x . In this

convention

f(x1, ..., xn) = f(xn
1 )

and

f(x1, ..., xi, x, ..., x︸ ︷︷ ︸
t

, xi+t+1, ..., xn) = f(xi
1,

(t)
x , xn

i+t+1).

An n-ary groupoid (G, f) is called an (i, j)-associative if

f
(
xi−1
1 , f(xn+i−1

i ), x2n−1
n+i

)
= f

(
xj−1
1 , f(xn+j−1

j ), x2n−1
n+j

)
hold for all x1, ..., x2n−1 ∈ G.If this identity holds for all 1 6 i 6 j 6 n,then we
say that the operation f is associative and (G, f) is called an n-ary semigroup. It
is clear that an n-ary groupoid is associative if and only if it is (1, j)-associative
for all j = 2, .., n. In the binary case (i.e. n=2)it is usual semigroup.If for all
x0, x1, ..., xn ∈ G and fixed i ∈ {1, ..., n} there exists an element z ∈ G such that

f
(
xi−1
1 , z, xn

i+1

)
= x0 (1)

then we say that this equation is i-solvable or solvable at the place i. If the solution
is unique,then we say that (1) is uniquely i-solvable. An n-ary groupoid (G, f)
uniquely solvable for all i = 1, ..., n is called an n-ary quasigroup . An associative
n-ary quasigroup is called an n-ary group .
Fixing an n-ary operation f , where n > 3, the elements an−2

2 we obtain the new
binary operation x ⋄ y = f(x, an−2

2 , y). If (G, f) is an n-ary group then (G, ⋄) is
a group. Choosing different elements an−2

2 we obtain different groups. All these
groups are isomorphic[8]. So, we can consider only group of the form

reta(G, f) = (G, ◦), where x ◦ y = f(x,
(n−2)
a , y).

In this group e = a, x−1 = f(a,
(n−3)
a , x, a).

In the theory of n-ary groups, the following Theorem plays an important role.
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Theorem 2.1. For any n-ary group (G, f) there exist a group (G, ◦), its auto-
morphism φ and an element b ∈ G such that

f(xn
1 ) = x1 ◦ φ(x2) ◦ φ2(x3) ◦ ... ◦ φn−1(xn) ◦ b (2)

holds for all xn
1 ∈ G.

In what follows, G is a non-empty set and (G, f) is an n-ary group unless
otherwise specified.

Definition 2.1. By a t-norm , a function T : [0, 1] × [0, 1] → [0, 1]satisfying
the following conditions is meant:

(T1) T (x, 1) = x;
(T2) T (x, y) 6 T (x, z) if y 6 z;
(T3) T (x, y) = T (y, x);
(T4) T (x, T (y, z)) = T (T (x, y), z);
for all x, y, z ∈ [0, 1].

Definition 2.2. By a t-conorm , a function S : [0, 1]× [0, 1] → [0, 1]satisfying
the following conditions is meant:

(S1) S(x, 0) = x;
(S2) S(x, y) 6 S(x, z) if y 6 z;
(S3) S(x, y) = S(y, x);
(S4) S(x, S(y, z)) = S(S(x, y), z);
for all x, y, z ∈ [0, 1].

Replacing 0 by 1 in condition (S1), we obtain the concept of t-norm T .

Definition 2.3. Given a t-norm T and a t-conorm S, T and S are dual (with
respect to the negation ′) if and only if (T (x, y))′ = S(x′, y′).

Now we generalize the domain of S to
n∏

i=1

[0, 1] as follows:

Definition 2.4. The function Sn :
n∏

i=1

[0, 1] → [0, 1] is defined by:

Sn(α
n
1 ) = Sn(α1, α2, ..., αn) = S(αi, Sn−1(α1, ..., αi−1, αi+1, ..., αn))

(3)
for all 1 6 i 6 n,n > 2.

For a t-conorm S on
n∏

i=1

[0, 1], it is denoted by

△t= {α ∈ [0, 1] |S(α, α, ..., α) = α}.

It is clear that every t-conorm has the following property:

S(αn
1 ) > max{α1, α2, ..., αn}

for all αn
1 ∈ [0, 1].
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3. s-fuzzy n-ary subgroups

Definition 3.1. A fuzzy set µ in G is called a s-fuzzy n-ary subgroup of (G, f)
if the following axioms holds:

(SFnS1) (∀xn
1 ∈ G), (µ(f(xn

1 )) 6 S{µ(x1), ..., µ(xn)}),
(SFnS2) (∀x ∈ G), (µ(x) 6 µ(x)).

Example 3.1. Let (Z4, f) be a 4-ary subgroup derived from additive group
Z4. Define a fuzzy subset µ in Z4 as follows:

µ(x) =

{
0.1 if x = 0,
0.7 if x = 1, 2, 3.

and let S :
4∏

i=1

[0, 1] −→ [0, 1] be a function defined by as follows:

S(x4
1) = min {x1 + x2 + x3 + x4, 1}

for all x4
1 ∈ [0, 1] and a function f is defined by

f(x4
1) = x1 +4 x2 +4 x3 +4 x4, ∀x4

1 ∈ Z4.

By routine calculations, we know that µ is a s-fuzzy 4-ary subgroup of (Z4, f).

Theorem 3.1. If {µi|i ∈ I} is an arbitrary family of s-fuzzy n-ary subgroup of
(G, f) then

∪
µi is s-fuzzy n-ary subgroup of (G, f), where

∪
Ai =

∨
µi, where∨

µi(x) = sup{µi(x)|x ∈ G and i ∈ I}.

Proof. The proof is trivial. �

Theorem 3.2. If µ is a fuzzy set in G is a s-fuzzy n-ary subgroup of (G, f),
then so is µ′, where µ′ = 1− µ.

Proof. It is sufficient to show that µ′ satisfies conditions (SFnS1) and (SFnS2).
Let xn

1 ∈ G. Then

µ′(f(xn
1 )) = 1− µ(f(xn

1 ))

6 1− S{µ(x1), ..., µ(xn)}
6 S{1− µ(x1), ..., 1− µ(xn)}
= S{µ′(x1), ..., µ

′(xn)}.

and

µ′(x) = 1− µ(x) 6 1− µ(x) = µ′(x).

Hence µ′ is a s-fuzzy n-ary subgroup of (G, f). �

The following Lemma gives the relation between T and S.

Lemma 3.1. Let T be a t-norm. Then the t-conorm S can be defined as

S(xn
1 ) = 1− T (1− x1, 1− x2, ..., 1− xn),∀xn

1 ∈ G.

Proof. Straightforward. �



A STUDY OF n-ARY SUBGROUPS WITH RESPECT TO t-CONORM 107

The following Theorem gives the relation between t-fuzzy n-ary subgroup and
s-fuzzy n-ary subgroup of G.

Theorem 3.3. A fuzzy set µ of G is a t-fuzzy n-ary subgroup of (G, f) if and
only if its complement µ′ is a s-fuzzy n-ary subgroup of (G, f) .

Proof. Let µ be a t-fuzzy n-ary subgroup of (G, f) . For all xn
1 ∈ G, we have

µ′(f(xn
1 ) = 1− µ(f(xn

1 ))

6 1− T{µ(x1), µ(x2), ..., µ(xn)}
= 1− T{1− µ′(x1), 1− µ′(x2), ..., 1− µ′(xn)}
= S{µ′(x1), µ

′(x2), ..., µ
′(xn)}.

For all x ∈ G, we have

µ′(x) = 1− µ(x) 6 1− µ(x) = µ′(x).

The converse is proved similarly. �

Definition 3.2. Let µ be a fuzzy set in G and let t ∈ [0, 1]. Then the set

L(µ; t) := {x ∈ G|µ(x) 6 t}

is called anti-level subset µ of G.

The following Theorem is a consequence of the Transfer Principle described in
[26].

Theorem 3.4. A fuzzy set µ in G, is a s-fuzzy n-ary subgroup of (G, f) if
and only if the anti-level subset L(µ; t) of G is an n-ary subgroup of (G, f) for every
t ∈ [0, 1], which is called s-level n-ary subgroup of (G, f) .

Proof. Let µ be a s-fuzzy n-ary subgroup of (G, f). If xn
1 ∈ G and t ∈

[0, 1],then µ(xi) 6 t for all i = 1, 2, ..., n. Thus

µ(f(xn
1 ) 6 S{µ(x1), ..., µ(xn)} 6 t,

which implies f(xn
1 ) ∈ L(µ; t). Moreover, for some x ∈ L(µ; t), we have

µ((x) 6 µ(x)) 6 t,

which implies x ∈ L(µ; t). Thus L(µ; t) is an n-ary subgroup of (G, f) .
Conversely, assume that L(µ; t) is an n-ary subgroup of (G, f). Let us define

t0 = S{µ(x1), ..., µ(xn)},

for some xn
1 ∈ G.Then obviously xn

1 ∈ L(µ; t0) , consequently f(xn
1 ) ∈ L(µ; t0).

Thus

µ(f(xn
1 )) 6 t0 = S{µ(x1), ..., µ(xn)}.

Now, let x ∈ L(µ; t). Then µ(x) = t0 6 t. Thus x ∈ L(µ; t0). Since ,by the
assumption, x ∈ L(µ; t0). Whence µ(x) 6 t0 = µ(x). This complete the proof. �

Using the above theorem, we can prove the following characterization of s-fuzzy
n-ary subgroups.
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Theorem 3.5. A fuzzy set µ in G, is a s-fuzzy n-ary subgroup of (G, f) if
and only if the anti-level subset L(µ; t) of G is an n-ary subgroup of (G, f) for all
i = 1, 2, ..., n and all xn

1 ∈ G, µ satisfies the following conditions:

(i) µ(f(xn
1 ) 6 S{µ(x1), ..., µ(xn)},

(ii) µ(xi) 6 S{µ(x1), ..., µ(xi−1), µ(f(x
n
1 )), µ(xi−1), ..., µ(xn)}.

Proof. Assume that µ is a s-fuzzy n-ary subgroup of (G, f) . Similarly as in
the proof of Theorem 3.4, we can prove the non-empty level subset L(µ; t) under
the operation f , that is xn

1 ∈ L(µ; t) implies f(xn
1 ) ∈ L(µ; t).

Now let x0, x
i−1
1 , xn

i+1, where x0 = f(xi−1
1 , z, xn

i+1) for some i = 1, 2, ..., n and
z ∈ G which implies x0 ∈ L(µ; t). Then, according to (ii), we have µ(z) 6 t. So,
the the equation (1) has a solution z ∈ µ(t). This mean that level subset L(µ; t) is
an n-ary subgroups.

Conversely, assume that level subset L(µ; t) is an n-ary subgroups of (G, f) .
Then it is easy to prove the condition (i).
For xn

1 ∈ G, we define

t0 = S{µ(x1), ..., µ(xi−1), µ(f(x
n
1 )), µ(xi−1), ..., µ(xn)}.

Then xi−1
1 , xn

i+1, f(x
n
1 ) ∈ L(µ, t0). Whence, according to the definition of n-ary

group, we conclude xi ∈ L(µ, t0). Thus µ(xi) 6 t0. This proves the conditions
(ii). �

Definition 3.3. Let (G, f) and (G′, f) be an n-ary groups. A mapping
g : G → G′ is called an n-ary homomorphism if g(f(xn

1 )) = f(gn(xn
1 )), where

gn(xn
1 ) = (g(x1), ..., g(xn)) for all xn

1 ∈ G.

For any fuzzy set µ in G′, we define the preimage of µ under g, denoted by
g−1(µ), is a fuzzy set in G defined by

g−1(µ) = µg−1(x) = µ(g(x)), ∀x ∈ G.

For any fuzzy set µ in G, we define the image of µ under g, denoted by g(µ),
is a fuzzy set in G′ defined by

g (µ) (y) =

{
inf

x∈g−1(y)

µ(x), if g−1(y) ̸= ϕ,

0, otherwise.

for all x ∈ G and y ∈ G′.

Theorem 3.6. Let g be a n-ary homomorphism mapping from G into G′ with
g(x) = g(x) for all x ∈ G and µ is a s-fuzzy n-ary subgroup of (G′, f). Then g−1(µ)
is a s-fuzzy n-ary subgroup of (G, f).

Proof. Let xn
1 ∈ G, we have

µg−1(f(xn
1 )) = µ(g(f(xn

1 )) = µ(f(gn(xn
1 )))

6 S{µ(g(x1), ..., µ(g(xn)}
= S{µg−1(x1), ..., µg−1(xn)}.
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and

µg−1(x) = µ(g(x)) 6 µ(g(x)) = µg−1(µ)(x).

This completes the proof. �

If we strengthen the condition of g, then we can construct the converse of
Theorem 3.6 as follows.

Theorem 3.7. Let g be a n-ary homomorphism from G into G′ and g−1(µ) is
a s-fuzzy n-ary subgroup of (G, f). Then µ is a s-fuzzy n-ary subgroup of (G′, f).

Proof. For any x1 ∈ G′, there exists a1 ∈ G such that g(a1) = x1 and for any
f(xn

1 ) ∈ (G′, f), there exists f(an1 ) ∈ (G, f) such that g(f(an1 )) = f(xn
1 ). Then

µ(f(xn
1 )) = µ(g(f(an1 )) = µg−1(f(an1 ))

6 S{µg−1(a1), µg−1(a2), ..., µg−1(an)}
= S{µ(g(a1), ..., µ(g(an)}
= S{µ(x1), ..., µ(xn)}.

For any x ∈ G′, there exists a ∈ G such that g(a) = x, we have

µ(x) = µ(g(a)) = µg−1(a) 6 µg−1(a) = µ(a) = µ(x).

This completes the proof. �

Theorem 3.8. Let g : G −→ G′ be an onto mapping. If µ is a s-fuzzy n-ary
subgroup of (G, f) , then g(µ) is a s-fuzzy n-ary subgroup of (G′, f).

Proof. Let g be a mapping from G onto G′ and let xn
1 ∈ G, yn1 ∈ G′. Noticing

that

{xi(i = 1, 2, ..., n)|xi ∈ g−1(f(yn1 ))} ⊆
{f(xn

1 ) ∈ G|x1 ∈ g−1(y1), x2 ∈ g−1(y2), ..., xn ∈ g−1(yn))}.

we have

g(µ)(f(yn1 )

= inf{µ(xn
1 )|xi ∈ g−1(f(yn1 ))}

6 inf{µ(f(xn
1 )|x1 ∈ g−1(y1), x2 ∈ g−1(y2), ..., xn ∈ g−1(yn))}

6 inf{max{µ(x1), µ(x2), ..., µ(xn)}|x1 ∈ g−1(y1), x2 ∈ g−1(y2), ..., xn ∈ g−1(yn))}
= max{inf{µ(x1)|x1 ∈ g−1(y1)}, inf{µ(x2)|x1 ∈ g−1(y2)}, ..., inf{µ(xn)|x1 ∈ g−1(yn)}}
6 S{g(µ)(y1), g(µ)(y2), ..., g(µ)(yn)}.

and

g(µ)(x) = inf{µ(x)|x ∈ g−1(f(y))} 6 inf{µ(x)|x ∈ g−1(f(y))} = g(µ)(x).

This completes the proof. �
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Corollary 3.1. A fuzzy subset µ defined on group (G, .) is a s-fuzzy subgroup
if and only if
(1) µ(xy) 6 S{µ(x), µ(y)},
(2) µ(x) 6 S{µ(y), µ(xy)},
(3) µ(y) 6 S{µ(x), µ(xy)}.
holds for all x, y ∈ G.

Theorem 3.9. Let µ be a s-fuzzy subgroup of (G, .). If there exists an element
a ∈ G such that µ(a) 6 µ(x) for every x ∈ G, then µ is a s-fuzzy subgroup of a
group reta(G, f).

Proof. For all x, y, a ∈ G, let if possible µ is not a s-fuzzy subgroup of a
group reta(G, f). Then we have µ(x ◦ y) > S{µ(x), µ(y)}. That is

S{µ(x), µ(x)} < µ(x ◦ x)

= µ(f(x,
(n−2)
a , x))

6 S{µ(x),
(n−2)

µ (a), µ(x)}
S{µ(x), µ(x)} < S{µ(x), µ(a)}.

This holds only if µ(a) > µ(x), which is contradiction to our assumption µ(a) 6
µ(x).

Also, we have µ is a s-fuzzy subgroup of (G, .). Thus µ(x−1) 6 µ(x) is obvious
for all x ∈ G.

which complete the proof. �

In Theorem 3.9, the assumption that µ(a) 6 µ(x) cannot be omitted.

Example 3.2. Let (Z4, f) be a 4-ary group from Example 3.1.
Define a fuzzy set µ as follows:

µ(x) =

{
0.4, if x = 0,
1, if x = 1, 2, 3.

Clearly, µ is a s-fuzzy 4-ary subgroup of (Z4, f). For ret1(Z4, f), define

S(x, y) =

{
max(x, y) if x = y,
min(x+ y, 1) if x ̸= y.

we have

µ(0 ◦ 0) = µ((f(0, 1, 1, 0)) = µ(2) = 1�0.4 = µ(0) = S{µ(0), µ(0)}.

Hence the assumptions µ(a) 6 µ(x) cannot be omitted.

Theorem 3.10. Let (G, f) be an n-ary group. If µ is a s-fuzzy n-ary subgroup
of a group reta(G, f) and µ(a) 6 µ(x) for all a, x ∈ G, then µ is a s-fuzzy n-ary
subgroup of (G, f) .
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Proof. According to Theorem 2.1, any n-ary group can be represented of the

form (2), where (G, ◦) = reta(G, f), φ(x) = f(a, x,
(n−2)
a ) and b = f(a, ..., a). Then

we have

µ(φ(x)) = µ(f(a, x,
(n−2)
a )) 6 S{µ(a), µ(x), µ(a)} 6 µ(x).

µ(φ2(x)) = µ(f(a, φ(x),
(n−2)
x )) 6 S{µ(a), µ(φ(x)), µ(a)} 6 S{µ(a), µ(x), µ(a)} 6 µ(x).

Consequently, µ(φk(x)) 66 µ(x). for all x ∈ G and k ∈ N.
Similarly, for all x ∈ G we have

µ(b) = µ(f(a, ..., a)) 6 µ(a) 6 µ(x).

Thus

µ(f(xn
1 )) = µ(x1 ◦ φ(x2) ◦ φ2(x3) ◦ ... ◦ φn−2(xn) ◦ b)

6 S{µ(x1), µ(φ(x2)), µ(φ
2(x3)), ..., µ(φ

n−2(xn)), µ(b)}
6 S{µ(x1), µ(x2), µ(x3), ..., µ(xn), µ(b)}
6 S{µ(x1), µ(x2), µ(x3), ..., µ(xn)}.

From (4) and (7) of [3], we have

x =
(
µ(a ◦ φ(x) ◦ φ2(x) ◦ ... ◦ φn−2(x) ◦ b

)−1

Thus

µ(x) = µ
((

a ◦ φ(x) ◦ φ2(x) ◦ ... ◦ φn−2(x) ◦ b
)−1

)
6 µ

(
a ◦ φ(x) ◦ φ2(x) ◦ ... ◦ φn−2(x) ◦ b

)
6 S{µ(a, µ(φ(x)), µ(φ2(x)), ..., µ(φn−2(x)), µ(b)}
6 S{µ(x), µ(b)} = µ(x).

This completes the proof. �

Corollary 3.2. If (G, f) is a ternary group, then any s-fuzzy subgroup of
reta(G, f) is a s-fuzzy ternary subgroup of (G, f).

Proof. Since a is a neutral element of a group reta(G, f) then µ(a) 6 µ(x),
for all x ∈ G. Thus µ(a) 6 µ(a). But in ternary group a = a for any a ∈ G, whence
µ(a) = µ(a) 6 µ(a) 6 µ(x). So, µ(a) = µ(a) 6 µ(x), for all x ∈ G. This means
that the assumption of Theorem 3.10 is satisfied. Hence reta(G, f) is a s-fuzzy
ternary subgroup of (G, f). This completes the proof. �

Example 3.3. Consider the ternary group (Z12, f), derived from the additive
group Z12. Let µ be a s-fuzzy subgroup of the group of ret1(G, f) induced by
subgroups S1 = {11}, S2 = {5, 11} and S3 = {1, 3, 5, 7, 9, 11}. Define a fuzzy set µ
as follows:

µ (x) =


0.1 if x = 11,
0.3 if x = 5,
0.5 if x = 1, 3, 7, 9,
0.9 if x /∈ S3.
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Then

µ(5) = µ(7) = 0.5 � 0.3 = µ(5).

Hence µ is not a s-fuzzy ternary subgroup of (Z12, f).

Observations. From the above Example 3.3 it follows that:

(1) There are s-fuzzy subgroups of reta(G, f) which are not s-fuzzy n-ary subgroups
of (G, f) .

(2) In Theorem 3.10 the assumption µ(a) 6 µ(x) can not be omitted. In the above
example we have µ(1) = 0.5 � 0.3 = µ(5).

(3) The assumption µ(a) 6 µ(x) cannot be replaced by the natural assumption
µ(a) 6 µ(x). (a is the identity of reta(G, f)). In the above example 1 = 11, then
µ(11) 6 µ(x) for all x ∈ Z12.

Theorem 3.11. Let (G, f) be an n-ary group of b-derived from the group
(G, ◦). Any fuzzy set µ of (G, ◦) such that µ(b) 6 µ(x) for every x ∈ G is a s-fuzzy
n-ary subgroup of (G, f) .

Proof. The condition (SFnS1) is obvious. To prove (SFnS2), we have n-ary
group (G, f) b-derived from the group (G, ◦), which implies

x = (xn−2 ◦ b)−1,

where xn−2 is the power of x in (G, ◦)[4] .
Thus, for all x ∈ G

µ(x) = µ((xn−2 ◦ b)−1) 6 µ(xn−2 ◦ b)−1 6 S{µ(xn−2), µ(b)} = µ(x).

This complete the proof. �
Corollary 3.3. Any s-fuzzy subgroup of a group (G, ◦) is a s-fuzzy n-ary

subgroup of an n-ary group (G, f) derived from (G, ◦).

Proof. If n-ary group (G, f) is derived from the group (G, ◦) then b = e.
Thus µ(e) 6 µ(x) for all x ∈ G. �

4. S-product of s-fuzzy n-ary relations

Definition 4.1. A fuzzy n-ary relation on any set G is a fuzzy set

µ : Gn = G×G× ...×G (n times) → [0, 1].

Definition 4.2. Let µ be fuzzy n-ary relation on any set G and ν is a fuzzy
set on G. Then µ is called s-fuzzy n-ary relation on ν if

µ(xn
1 ) 6 S(ν(x1), ν(x2), ..., ν(xn)),

for all xn
1 ∈ G.

Definition 4.3. Let µn
1 = µ1, µ2, ..., µn be a fuzzy sets in G. Then direct

S-product of µn
1 is defined by

(µ1 × µ2 × ...× µn)(x
n
1 ) = S(µ1(x1), µ2(x2), ..., µn(xn)), ∀xn

1 ∈ G.
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Lemma 4.1. Let S be a function induced by t-conorm and let µn
1 be a fuzzy sets

in G. Then
(i) µ1 ×S µ2 ×S ...×S µn is a s-fuzzy n-ary relation on G,
(ii) L(µ1 × µ2 × ...× µn; t) = L(µ1; t)× L(µ2; t)× ...× L(µn; t), ∀t ∈ [0, 1].

Proof. The proof is obvious. �

Definition 4.4. Let S be a function induced by t-conorm. If ν is a fuzzy set
in G, the strongest s-fuzzy n-ary relation on G that is a s-fuzzy n-ary relation on
ν is µν , given by

µν(x
n
1 ) = S(ν(x1), ν(x2), ..., ν(xn)), ∀xn

1 ∈ G.

Lemma 4.2. For a given fuzzy set ν in G, let µ be the strongest s-fuzzy n-ary
relation of G. Then for t ∈ [0, 1], L(µν ; t) = L(ν; t)× L(ν; t)× ...× L(ν; t).

Proof. The proof is obvious. �

Proposition 4.1. Let S be a function induced by t-conorm and let µ1, µ2, ..., µn

be s-fuzzy n-ary subgroup of (G, f) . Then, µ1 × µ2 × ... × µn is a s-fuzzy n-ary
subgroup of (Gn, f).

Proof. For xn
1 ∈ G and f(xn

1 ) = (f1(x
n
1 ), ..., fn(x

n
1 )) ∈ (Gn, f),we have

(µ1 × µ2×, ...,×µn)(f(x
n
1 ))

= (µ1 × µ2×, ...,×µn)(f1(x
n
1 ), ..., fn(x

n
1 ))

= S{µ1(f(x
n
1 )), µ2(f(x

n
1 ))..., µn(f(x

n
1 ))}

6 S{S{µ1(x1), µ1(x2), ..., µ1(xn)}, ..., S{µn(x1), µn(x2), ..., µn(xn)}}
= S{(µ1 × µ2 × ...× µn)(x1, ..., x1), ..., (µ1 × µ2 × ...× µn)(xn, ..., xn)}
= S{(µ1 × µ2 × ...× µn)(x1), ..., (µ1 × µ2 × ...× µn)(xn)}.

and for all x = xn
1 , x = xn

1 ∈ Gn, we have

(µ1 × µ2×, ...,×µn)(x) = (µ1 × µ2×, ...,×µn)(x1, ..., xn)

= S{µ1(x1), ..., µn(xn)}
6 S{(µ1(x1), ..., µn(xn))}
= (µ1 × µ2 × ...× µn)(x

n
1 )

= (µ1 × µ2 × ...× µn)(x).

This completes the proof. �

The following Corollary is the immediate consequence of Proposition 4.1.

Corollary 4.1. Let S be a function induced by t-conorm and let
n∏

i=1

(Gi, f)

be the finite collection of n-ary subgroups and G =
n∏

i=1

Gi the S-product of Gi. Let
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µi be a s-fuzzy n-ary subgroup of (Gi, f), where 1 6 i 6 n. Then,µ =
n∏

i=1

µi defined

by

µ(xn
1 ) =

n∏
i=1

µi(x
n
1 ) = S(µ(x1), µ(x2), ..., µ(xn)).

Then µ is a s-fuzzy n-ary subgroup of (G, f). �

Definition 4.5. Let µn
1 be fuzzy sets in G. Then, the S-product of µn

1 , written
as [µ1 · µ2 · ... · µn]S, is defined by:

[µ1 · µ2 · ... · µn]S(x) = S(µ1(x), µ2(x), ..., µn(x)) ∀x ∈ G.

Theorem 4.1. Let µn
1 be s-fuzzy n-ary subgroup of (G, f) . If S∗ is a function

induced by t-conorm dominates S, that is,

S∗(S(xn
1 ), S(y

n
1 ), ..., S(z

n
1 )) 6 S(S∗(x1, y1, ..., z1), ..., S

∗(xn, yn, ..., zn))

for all xn
1 , y

n
1 , ..., z

n
1 ∈ [0, 1]. Then S∗-product of µn

1 , [µ1 ·µ2 · ... ·µn]S
∗
n, is a s-fuzzy

n-ary subgroup of (G, f).

Proof. Let xn
1 ∈ G, we have

[µ1 · µ2 · ... · µn]S∗(f(xn
1 ))

= S∗(µ1(f(x
n
1 )), µ2(f(x

n
1 )), ..., µn(f(x

n
1 )))

6 S∗(S(µ1(x1), µ1(x2), ..., µ1(xn)), ..., S(µn(x1), µn(x2), ..., µn(xn))

6 S(S∗(µ1(x1), µ2(x1), ..., µn(x1)), ..., S
∗(µ1(xn), µ2(xn), ..., µn(xn))

= S([µ1 · µ2 · ... · µn]S∗(x1), ..., [µ1 · µ2 · ... · µn]S∗(xn))

and for all x ∈ G, we have

[µ1 · µ2 · ... · µn]S∗(x) = S∗(µ1(x), µ2(x), ..., µn(x))

6 S∗(µ1(x), µ2(x), ..., µn(x))

= [µ1 · µ2 · ... · µn]S∗(x).

Hence, [µ1 · µ2 · ... · µn]S∗ is a s-fuzzy n-ary subgroup of (G, f) . This completes
the proof. �

Let (G, f) and (G′, f) be an n-ary groups. A mapping g : G → G′ is
an onto homomorphism. Let S and S∗ be functions induced by t-conorm such
that S∗ dominates S. If µn

1 are s-fuzzy n-ary subgroup of (G, f) , then the
S∗-product of µn

1 , [µ1 · µ2 · ... · µn]S∗ is a s-fuzzy n-ary subgroup . Since every
onto homomorphic inverse image of a s-fuzzy n-ary subgroup , the inverse images
g−1(µ1), g

−1(µ2), ..., g
−1(µn) and g−1 ([µ1 · µ2 · ... · µn]S∗) are s-fuzzy n-ary sub-

group (G, f).

The following theorem provides the relation between g−1 ([µ1 · µ2 · ... · µn]S∗)
and S∗-product ([g−1(µ1)·g−1(µ2)·...·g−1(µn)]S∗) of g−1(µ1), g

−1(µ2) and g−1(µn).
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Theorem 4.2. Let (G, f) and (G′, f) be an n-ary groups. A mapping g : G →
G′ is an onto n-ary homomorphism . Let S∗ be a function induced by t-conorm
such that S∗ dominates S. Let µn

1 be s-fuzzy n-ary subgroups of (G, f) . If
[µ1 ·µ2 ·...·µn]S∗ and is the S∗- product of µn

1 , and ([g−1(µ1)·g−1(µ2)·...·g−1(µn)]S∗)
is the S∗-product of g−1(µ1), g

−1(µ2), ...g
−1(µn) then

g−1([µ1 · µ2 · ... · µn]S∗) = [g−1(µ1) · g−1(µ2) · ... · g−1(µn)]S∗ .

Proof. Let x ∈ G, we have

g−1([µ1 · µ2 · ... · µn]S∗)(x) = ([µ1 · µ2 · ... · µn]S∗)(g(x))

= S∗(µ1(g(x)) · µ2(g(x)) · ... · µn(g(x)))

= S∗(g−1(µ1)(x) · g−1(µ2)(x) · ... · g−1(µn)(x))

= [g−1(µ1) · g−1(µ2) · ... · g−1(µn)]S∗ .

This completes the proof. �

Acknowledgement: The author is extremely grateful to the learned referee’s
for their valuable comments and suggestions which helped me a lot for improving
the standard of this paper.

References

[1] M.Akram and J.Zhan. On sensiable fuzzy ideals of BCK-algebras with respect to t-conorm.

Int. J. Math. Math. Sci. Volume 2006, Article ID 35930, Pages 112.
[2] B.Davvaz and W.A. Dudek. Fuzzy n-ary groups as a generalization of Rosenfeld’s fuzzy

groups. Journal of Multiple-Valued Logic and Soft Computing 15(5-6)(2009), 451-469.
[3] W. Dörnte. Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z.,

29(1928), 1-19.
[4] W.A. Dudek. Remarks on n-groups. Demonstratio Math., 13 (1980), 165-181.
[5] W.A. Dudek. Autodistributive n-groups. Commentationes Math. Annales Soc. Math.

Polonae Prace Matematyczne, 23(1983), 1-11.

[6] W.A. Dudek. On (i, j)-associative n-groupoids with the non-empty center. Ricerche Mat.
(Napoli), 35(1986), 105-111.

[7] W.A. Dudek. Medial n-groups and skew elements, in: Proc. V Universal Algebra Symp.
”Universal and Applied Algebra” (pp. 55-80). Turawa 1988, World Scientic, Singapore 1989.

[8] W.A. Dudek. On n-ary group with only one skew element. Sarajevo J. Math. (Formerly:
Radovi mat., 6(2)(1990), 171-175.

[9] W.A. Dudek. Varieties of polyadic groups. Filomat, 9(3)(1995), 657-674.
[10] W.A. Dudek. Fuzzification of n-ary groupoids. Quasigroups and Related Systems, 7(2000),

45-66.
[11] W. A, Dudek. Idempotents in n-ary semigroups. Southeast Asian Bull. Math., 25(2001),

97-104.

[12] W.A. Dudek. On some old and new problems in n-ary groups. Quasigroups and Related
Systems, 8(2001), 15-36.

[13] W.A. Dudek. Intuitionistic fuzzy approach to n-ary systems. Quasigroups and Related Sys-
tems, 15(2005), 213-228.

[14] W.A. Dudek. Remarks to Glazeks results on n-ary groups, Discussiones Mathematicae,
General Algebra and Applications, 27(2)(2007), 199-233.

[15] W. A. Dudek and K. GAlazek. Around the Hossz’u-Gluskin Theorem for n-ary groups.
Discrete Math., 308(21)(2008), 4861-4876.



116 D.R. PRINCE WILLIAMS

[16] W.A. Dudek and J.Michalski. On a generalization of Hosszú theorem, Demonstratio Math-
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