
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 7(2017), 85-92

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

A GENERAL FIXED POINT THEOREM

FOR PAIRS OF MAPPINGS IN ORBITALLY

0 - COMPLETE PARTIAL METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

Abstract. The purpose of this paper is to prove a general fixed point theorem
for two pairs of mappings satisfying implicit relations in orbitally 0 - complete

partial metric space, which include also a result of Hardy - Rogers type.

1. Introduction

In 1974, Ćirić [7] has first introduced orbitally complete metric spaces and
orbitally continuous function. Let f be a self mapping of a metric spaces (X, d).
If x0 ∈ X, every Cauchy sequence of the orbit Ox0

(f) = {x0, fx0, f
2x0, ...} is

convergent to a point y ∈ X, then X is said to be orbitally complete in x0. If f is
orbitally complete at each x ∈ X, then X is said to be f - orbitally complete. Every
complete metric space is f - orbitally complete for every function f . An orbitally
complete metric space may not be a complete metric space ([21], Example 4.5).

Some fixed point results for mappings in orbitally complete metric spaces are
obtained in [2], [8], [15], [16] and in other papers.

In 1994, Matthews [13] introduced the concept of partial metric space as a part
of the study of denotional semantics of dataflow networks and proved the Banach
contraction principle in such spaces. Recently, in [1], [4], [5], [11], [12] and in other
papers, some fixed point theorems under various contractive conditions are proved.

Romaguera [20] introduced the notion of 0 - Cauchy sequence, 0 - complete
partial metric space and proved some characterizations of partial metric spaces in
terms of completeness and 0 - completeness.

Some fixed point theorems for mappings in 0 - complete partial metric spaces
are proved in [3], [14], [22].
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Several classical fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit relation in [16], [17].

Some fixed point results for mappings satisfying implicit relations in partial
metric spaces are obtained in [9], [10], [22] and [6].

The purpose of this paper is to prove a general fixed point theorem for two
pairs of mappings satisfying implicit relations in 0 - complete partial metric spaces,
which include also a result of Hardy - Rogers type.

2. Preliminaries

Definition 2.1 ([13]). Let X be a nonempty set. A function p : X×X → R+

is said to be a partial metric on X if for any x, y, z ∈ X, the following conditions
hold:

(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) : p(x, x) 6 p(x, y),
(P3) : p(x, y) = p(y, x),
(P4) : p(x, z) 6 p(x, y) + p(y, z)− p(y, y).
The pair (X, p) is called a partial metric space.

If p(x, y) = 0 then by (P1) and (P2), x = y, but the converse does not always
hold.

Each partial metric p on X generates a T0 - topology τp which has as base the
family of open p - balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) 6 p(x, x) + ε for all x ∈ X and ε > 0}.

If p is a p - metric on X, then the function dp(x, y) = 2p(x, y)−p(x, x)−p(y, y)
is a metric on X.

A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X
(xn → x) with respect to τp if and only if limn→∞ p (xn, x) = p (x, x).

Lemma 2.1 ([1], [12]). Let (X, p) be a partial metric space and {xn} a sequence
in X such that xn → z as n → ∞, where p (z, z) = 0. Then, limn→∞ p (xn, y) =
p (z, y) for every y ∈ X.

Definition 2.2 ([13], [19]). a) A sequence {xn} in a partial metric space
(X, p) is called Cauchy if limn,m→∞ p(xn, xm) exists and is finite.

b) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges
with respect to τp to a point x ∈ X.

c) A sequence {xn} in (X, p) is called 0 - Cauchy if limn,m→∞ p(xn, xm) = 0.
d) (X, p) is called 0 - complete if every 0 - Cauchy sequence in X converges

with respect to τp to a point x such that p(x, x) = 0.

Lemma 2.2 ([13], [19], [20]). Let (X, p) be a partial metric space and {xn} is
a sequence in X.

a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in metric space (X, dp).
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b) (X, p) is complete if and only if (X, dp) is complete. Furthermore,
limn→∞ dp (xn, x) = 0 if and only if

p (x, x) = lim
n→∞

p (x, xn) = lim
n,m→∞

p (xn, xm) .

c) Every 0 - Cauchy sequence in (X, p) is Cauchy in (X, dp).
d) If (X, p) os complete, then is 0 - complete.

Definition 2.3 ([14]). Let S and T be two self mappings on a partial metric
space (X, p).

1) If for a point x ∈ X, a sequence {xn} in X such that

x2n+1 = Sx2n,
x2n+2 = Tx2n+1, n = 0, 1, 2, ...,

then the set Ox0 (S, T ) = {xn : n = 0, 1, 2, ...} is called the orbit of (S, T ) in x0.
2) The space (X, p) is said to be (S, T ) - orbitally 0 - complete at x0 if every 0

- Cauchy sequence in Ox0 (S, T ) converges to a point z ∈ X such that p (z, z) = 0.

3. Implicit relations

Definition 3.1. Let FR0 be the set of all continuous functions F (t1, ..., t6) :
R6

+ → R satisfying:
(F1) : F is nonincreasing in variables t5 and t6,
(F2) : (F2a) : There exists h1 ∈ [0, 1) such that for all u, v > 0 and F (u, v, v, u,

u+ v, v) 6 0 implies u 6 h1v;
(F2b) : There exists h2 ∈ [0, 1) such that for all u, v > 0 and

F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v,
(F3) : F (t, t, 0, 0, t, t) > 0, ∀t > 0.

In the following examples the property (F1) is obviously.

Example 3.1. F (t1, ..., t6) = t1−at2−bt3−ct4−dt5−et6, where a, b, c, d, e > 0
and a+ b+ c+ 2d+ 2e < 1.

(F2) : Let u, v > 0 be such that F (u, v, v, u, u+ v, v) = u − av − bv − cu −

d (u+ v)− ev 6 0. Then u 6 h1v, where 0 6 h1 =
a+ b+ d+ e

1− (c+ d)
< 1.

Similarly, u, v > 0 and F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v, where 0 6
h2 =

a+ c+ d+ e

c[1− (b+ e)]
< 1.

(F3) : F (t, t, 0, 0, t, t) = t[1− (a+ b+ d+ e)] > 0, ∀t > 0.

Example 3.2. F (t1, ..., t6) = t1 − kmax {t2, t3, t4, ..., t6}, where k ∈
[
0, 1

2

)
.

(F2) : Let u, v > 0 be such that F (u, v, v, u, u+ v, v) = u−k (u+ v) 6 0 which

implies u 6 h1v, where 0 6 h1 =
k

1− k
< 1.

Similarly, u, v > 0 and F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v, where 0 6
h2 = h1 < 1.

(F3) : F (t, t, 0, 0, t, t) = t (1− k) > 0, ∀t > 0.
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Example 3.3. F (t1, ..., t6) = t1 − max {ct2, ct3, ct4, at5 + bt6}, where c ∈
(0, 1) , a, b > 0 and 2a+ 2b < 1.

(F2) : Let u, v > 0 be such that F (u, v, v, u, u+ v, v) = u−max{cu, cv, a (u+ v)
+bv} 6 0. If u > v, then u[1−max{c, 2a+b}] 6 0, a contradiction. Hence u 6 h1v,
where 0 6 h1 = max{c, 2a+ b} < 1.

Similarly, u, v > 0 and F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v, where 0 6
h2 = max{c, a+ 2b} < 1.

(F3) : F (t, t, 0, 0, t, t) = t (1−max{c, a+ b}) > 0, ∀t > 0.

Example 3.4. F (t1, ..., t6) = t21 − amax
{
t22, t

2
3, t

2
4

}
− bt5t6, where a, b > 0 and

a+ 2b < 1.
(F2) : Let u, v > 0 be such that F (u, v, v, u, u+ v, v) = u2 − amax{u2, v2} −

bv (u+ v) 6 0. If u > v, then u2[1 − (a+ 2b)] 6 0, a contradiction. Hence u 6 v
which implies u 6 h1v, where 0 6 h1 =

√
a+ 2b < 1.

Similarly, u, v > 0 and F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v, where 0 6
h2 = h1 < 1.

(F3) : F (t, t, 0, 0, t, t) = t2[1− (a+ b)] > 0, ∀t > 0.

Example 3.5. F (t1, ..., t6) = t31 − at2t3t4 − bt3t4t5 − ct4t5t6, where a, b, c > 0
and a+ 2b+ 2c < 1.

(F2) : Let u, v > 0 be such that F (u, v, v, u, u+ v, v) = u3−auv2−buv (u+ v)−
cuv (u+ v) 6 0. If u > v, then u3[1 − (a+ 2b+ 2c)] 6 0, a contradiction. Hence
u 6 v which implies u 6 h1v, where 0 6 h1 = 3

√
a+ 2b+ 2c < 1.

Similarly, u, v > 0 and F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v, where 0 6
h2 = h1 < 1.

(F3) : F (t, t, 0, 0, t, t) = t3 > 0, ∀t > 0.

Example 3.6. F (t1, ..., t6) = t21 +
t1

t5 + t6
−
(
at22 + bt23 + ct24

)
, where a, b, c > 0

and a+ b+ c < 1.

(F2) : Let u, v > 0 be such that F (u, v, v, u, u+ v, v) = u2 +
u

u+ 2v
−(

av2 + bv2 + cu2
)
6 0, which implies u2 −

(
av2 + bv2 + cu2

)
6 0. If u > v, then

u2[1− (a+ b+ c)] 6 0, a contradiction. Hence u 6 v which implies u 6 h1v, where
0 6 h1 =

√
a+ b+ c < 1.

Similarly, u, v > 0 and F (u, v, u, v, v, u+ v) 6 0 implies u 6 h2v, where 0 6
h2 = h1 < 1.

(F3) : F (t, t, 0, 0, t, t) = t2 +
1

2
− at2 = t2 (1− a) +

1

2
> 0, ∀t > 0.

4. Main results

Theorem 4.1. Let (X, p) be a partial metric space and T, S : X → X be two
mappings satisfying inequality

(4.1) F (p(Tx, Sy), p (x, y) , p (x, Tx) , p (y, Sy) , p (x, Sy) , p (y, Tx)) 6 0,

for all x, y ∈ Ox0 (S, T ) for some x0 ∈ X and F ∈ FR0. If (X, p) is (S, T ) -
orbitally 0 - complete at x0, then T and S have a common fixed point z such that
p (z, z) = p (z, Tz) = p (z, Sz) = 0.
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If moreover, each common fixed point z of S and T in Ox0 (S, T ) satisfies
p (z, z) = 0, then the common fixed point of S and T in Ox0 (S, T ) is unique.

Proof. First we prove that if z = Sz and p (z, z) = 0, then z is a common
fixed point of S and T .

By (4.1) we obtain

F (p(Tz, Sz), p (z, z) , p (z, Tz) , p (z, Sz) , p (z, Sz) , p (z, Tz)) 6 0,

F (p(Tz, z), 0, p (z, Tz) , 0, 0, p (z, Tz)) 6 0.

By (F2a) we obtain p (z, Tz) = 0 which implies z = Tz and z is a common
fixed point of S and T .

We define a sequence {xn} in X as follows

(4.2) x2n+1 = Sx2n and x2n+2 = Tx2n+1, for n = 0, 1, 2, ...

If there exists n0 ∈ N such that p (xn0 , Sxn0) = 0 or p (xn0 , Txn0) = 0 for n0 ∈
N, then S and T have a common fixed point. We suppose that p (xn, xn+1) ̸= 0,
for n ∈ N.

By (4.1) and (4.2) for x = x2n+1 and y = x2n we obtain

F (p(Tx2n+1, Sx2n), p (x2n+1, x2n) , p (x2n+1, Tx2n+1) ,
p (x2n, Sx2n) , p (x2n+1, Sx2n) , p (x2n, Tx2n+1)) 6 0,

(4.3)
F (p(x2n+2, x2n+1), p (x2n+1, x2n) , p (x2n+1, x2n+2) ,
p (x2n, x2n+1) , p (x2n+1, x2n+1) , p (x2n, x2n+2)) 6 0.

By (P2),
p (x2n+1, x2n+1) 6 p (x2n+1, x2n)

and by (P4)
p (x2n, x2n+2) 6 p (x2n, x2n+1) + p (x2n+1, x2n) .

By (F1) and (4.3) we obtain

F (p(x2n+2, x2n+1), p (x2n+1, x2n) , p (x2n+1, x2n+2) ,
p (x2n, x2n+1) , p (x2n, x2n+1) , p (x2n+1, x2n+2)) 6 0.

By (F2b) we obtain

p (x2n+2, x2n+1) 6 hp (x2n+1, x2n) , where h = max{h1, h2}.
By (4.1) and (4.2) for x = x2n−1 and y = x2n, for n = 1, 2, ... we obtain

F (p(Tx2n−1, Sx2n), p (x2n−1, x2n) , p (x2n−1, Tx2n−1) ,
p (x2n, Sx2n) , p (x2n−1, Sx2n) , p (x2n, Tx2n−1)) 6 0,

(4.4)
F (p(x2n, x2n+1), p (x2n−1, x2n) , p (x2n−1, x2n) ,

p (x2n, x2n+1) , p (x2n−1, x2n+1) , p (x2n, x2n)) 6 0.

By (P2)
p (x2n, x2n) 6 p (x2n−1, x2n)

and by (P4)

p (x2n−1, x2n+1) 6 p (x2n−1, x2n) + p (x2n, x2n+1) .
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By (F1) and (4.4) we obtain

F (p(x2n, x2n+1), p (x2n−1, x2n) , p (x2n−1, x2n) ,
p (x2n, x2n+1) , p (x2n−1, x2n) + p (x2n, x2n+1) , p (x2n, x2n−1)) 6 0.

By (F2a) we obtain

p (x2n, x2n+1) 6 hp (x2n−1, x2n) .

Hence

(4.5) p (xn, xn+1) 6 hp (xn−1, xn) 6 ... 6 hnp (x0, x1) .

Then for each m > n ∈ N, by (4.5) and (P4) we have

p (xn, xn+m) 6 p (xn, xn+1) + p (xn+1, xn+2) + ...+ p (xm−1, xm)

6 hn
(
1 + h+ ...+ hm−1

)
p (x0, x1)

6 hn

1− h
p (x0, x1) .

Thus limn,m→∞ p (xn, xm) = 0. This implies that {xn} is a 0 - Cauchy sequence
in the partial metric space Ox0 (S, T ). Since X is (S, T ) - orbitally 0 - complete at
x0, then there exists z ∈ X with limn→∞ xn = z and p (z, z) = 0.

We prove that z is a fixed point for S.
By (4.1) for x = x2n+1 and y = z we obtain

F (p(Tx2n+1, Sz), p (x2n+1, z) , p (x2n+1, Tx2n+1) ,
p (z, Sz) , p (x2n+1, Sz) , p (z, Tx2n+1)) 6 0,

F (p(x2n+2, Sz), p (x2n+1, z) , p (x2n+1, x2n+2) ,
p (z, Sz) , p (x2n+1, Sz) , p (z, x2n+2)) 6 0.

Letting n tends to infinity, by Lemma 2.1 and (4.5) we obtain

F (p(z, Sz), 0, 0, p (z, Sz) , p (z, Sz) , 0) 6 0.

By (F2a) we obtain p (z, Sz) = 0 which implies z = Sz. By the first part of the
proof we have z = Tz and z is a common fixed point of S and T .

Now suppose that each common fixed point z of T and S in Ox0 (S, T ) satisfy
p (z, z) = 0. We claim that S and T have a unique common fixed point. Assume
that p (u, Su) = p (u, Tu) = 0 and p (v, Tv) = p (Sv, v) = 0 but u ̸= v. Then, by
(4.1) for x = u and y = v we have

F (p(Tu, Sv), p (u, v) , p (u, Tu) ,
p (v, Sv) , p (u, Sv) , p (v, Tu)) 6 0,

F (p(u, v), p (u, v) , 0, 0, p (u, v) , p (u, v)) 6 0,

a contradiction of (F3). Hence, u = v. �

Remark 4.1. By Theorem 4.1 and Example 3.1 we obtain a fixed point theorem
of Hardy - Rogers type.

If S = T by Theorem 4.1 we obtain
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Theorem 4.2. Let (X, p) be a partial metric space such that X is T - orbitally
0 - complete at some x0 ∈ X and

F (p(Tx, Ty), p (x, y) , p (x, Tx) , p (y, Ty) , p (x, Ty) , p (y, Tx)) 6 0,

for all x, y ∈ Ox0 (T ) and F satisfies properties (F1) , (F2a) and (F3). Then T has

a fixed point. If moreover, each fixed point z ∈ X in Ox0 (T ) satisfies p (z, z) = 0,
then the fixed point is unique.

Example 4.1. Let X = [0, 1] be and p(x, y) = max{x, y}. Then (X, p) is a
partial metric space. Consider the following mappings: S(x) = 1

3 ·x and T (x) = 1
5 ·x.

If x0 = 1 then O1(S, T ) =
{(

1
3

)k · ( 1
5

)m
: k,m ∈ N

}
and O1(S, T ) ⊂ O1(S, T )∪{0}.

1) If x > y, then p(Sx, Ty) =
1

3
· x and p(x, y) = x. Hence p(Sx, Ty) 6 k1 · p(x, y),

for k1 ∈
[
1

3
,
1

2

)
, which implies

p(x, y) 6 k1max {p(x, y), p(Sx, x), p(Ty, y) · p(x, Ty), p(y,Ax)} , for k1 ∈
[
1

3
,
1

2

)
.

2) If
3

5
· y < x < y then p(Sx, Ty) =

1

3
· x and p(x, Sx) = x. Hence p(Sx, Ty) 6

k1p(x, Sx), which implies

p(Sx, Ty) 6 k1max {p(x, y), p(x, Sx), p(y, Ty), p(x, Ty)p(y, Sx)} , for k1 ∈
[
1

3
,
1

2

)
.

3) If x 6 3

5
· y then p(Sx, Ty) =

1

5
· y and p(y, Ty) = y. Hence p(Sx, Ty) 6

k2 · p(y, Ty), for k2 ∈
[
1
5 ,

1
2

)
, which implies

p(Sx, Ty) 6 k2 max{p(x, y), p(x, Sx) · p(y, Ty), p(x, Ty), p(y, Sx)}.

Hence

p(Sx, Ty) 6 kmax {p(x, y), p(x, Sx), p(y, Ty), p(x, Ty), p(y, Sx)}

where k ∈
[
1

3
,
1

2

)
.

By Example 3.1 and Theorem 4.1, S and T have a unique common fixed point
z = 0 and p(z, z) = 0.
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