A GENERAL FIXED POINT THEOREM FOR PAIRS OF MAPPINGS IN ORBITALLY 0 - COMPLETE PARTIAL METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

Abstract

The purpose of this paper is to prove a general fixed point theorem for two pairs of mappings satisfying implicit relations in orbitally 0 - complete partial metric space, which include also a result of Hardy - Rogers type.

1. Introduction

In 1974, Ćirić [7] has first introduced orbitally complete metric spaces and orbitally continuous function. Let f be a self mapping of a metric spaces (X, d). If $x_{0} \in X$, every Cauchy sequence of the orbit $O_{x_{0}}(f)=\left\{x_{0}, f x_{0}, f^{2} x_{0}, \ldots\right\}$ is convergent to a point $y \in X$, then X is said to be orbitally complete in x_{0}. If f is orbitally complete at each $x \in X$, then X is said to be f - orbitally complete. Every complete metric space is f - orbitally complete for every function f. An orbitally complete metric space may not be a complete metric space ($[\mathbf{2 1}]$, Example 4.5).

Some fixed point results for mappings in orbitally complete metric spaces are obtained in $[\mathbf{2}],[\mathbf{8}],[\mathbf{1 5}],[\mathbf{1 6}]$ and in other papers.

In 1994, Matthews [13] introduced the concept of partial metric space as a part of the study of denotional semantics of dataflow networks and proved the Banach contraction principle in such spaces. Recently, in $[\mathbf{1}],[4],[\mathbf{5}],[\mathbf{1 1}],[\mathbf{1 2}]$ and in other papers, some fixed point theorems under various contractive conditions are proved.

Romaguera [20] introduced the notion of 0 - Cauchy sequence, 0 - complete partial metric space and proved some characterizations of partial metric spaces in terms of completeness and 0 - completeness.

Some fixed point theorems for mappings in 0 - complete partial metric spaces are proved in [3], [14], [22].

Several classical fixed point theorems and common fixed point theorems have been unified considering a general condition by an implicit relation in $[\mathbf{1 6}],[\mathbf{1 7}]$.

Some fixed point results for mappings satisfying implicit relations in partial metric spaces are obtained in $[\mathbf{9}],[\mathbf{1 0}],[\mathbf{2 2}]$ and $[\mathbf{6}]$.

The purpose of this paper is to prove a general fixed point theorem for two pairs of mappings satisfying implicit relations in 0 - complete partial metric spaces, which include also a result of Hardy - Rogers type.

2. Preliminaries

Definition $2.1([\mathbf{1 3}])$. Let X be a nonempty set. A function $p: X \times X \rightarrow \mathbb{R}_{+}$ is said to be a partial metric on X if for any $x, y, z \in X$, the following conditions hold:
$\left(P_{1}\right): p(x, x)=p(y, y)=p(x, y)$ if and only if $x=y$,
$\left(P_{2}\right): p(x, x) \leqslant p(x, y)$,
$\left(P_{3}\right): p(x, y)=p(y, x)$,
$\left(P_{4}\right): p(x, z) \leqslant p(x, y)+p(y, z)-p(y, y)$.
The pair (X, p) is called a partial metric space.
If $p(x, y)=0$ then by $\left(P_{1}\right)$ and $\left(P_{2}\right), x=y$, but the converse does not always hold.

Each partial metric p on X generates a T_{0} - topology τ_{p} which has as base the family of open p - balls $\left\{B_{p}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{p}(x, \varepsilon)=\{y \in X$: $p(x, y) \leqslant p(x, x)+\varepsilon$ for all $x \in X$ and $\varepsilon>0\}$.

If p is a p - metric on X, then the function $d_{p}(x, y)=2 p(x, y)-p(x, x)-p(y, y)$ is a metric on X.

A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) converges to a point $x \in X$ $\left(x_{n} \rightarrow x\right)$ with respect to τ_{p} if and only if $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=p(x, x)$.

Lemma $2.1([\mathbf{1}],[\mathbf{1 2}])$. Let (X, p) be a partial metric space and $\left\{x_{n}\right\}$ a sequence in X such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$, where $p(z, z)=0$. Then, $\lim _{n \rightarrow \infty} p\left(x_{n}, y\right)=$ $p(z, y)$ for every $y \in X$.

Definition $2.2([\mathbf{1 3}],[\mathbf{1 9}])$. a) A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) is called Cauchy if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and is finite.
b) (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges with respect to τ_{p} to a point $x \in X$.
c) A sequence $\left\{x_{n}\right\}$ in (X, p) is called 0 - Cauchy if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$.
d) (X, p) is called 0 - complete if every 0 - Cauchy sequence in X converges with respect to τ_{p} to a point x such that $p(x, x)=0$.

Lemma $2.2([\mathbf{1 3}],[\mathbf{1 9}],[\mathbf{2 0}])$. Let (X, p) be a partial metric space and $\left\{x_{n}\right\}$ is a sequence in X.
a) $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in metric space $\left(X, d_{p}\right)$.
b) (X, p) is complete if and only if $\left(X, d_{p}\right)$ is complete. Furthermore,
$\lim _{n \rightarrow \infty} d_{p}\left(x_{n}, x\right)=0$ if and only if

$$
p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right) .
$$

c) Every 0 - Cauchy sequence in (X, p) is Cauchy in $\left(X, d_{p}\right)$.
d) If (X, p) os complete, then is 0 - complete.

Definition 2.3 ([14]). Let S and T be two self mappings on a partial metric space (X, p).

1) If for a point $x \in X$, a sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{gathered}
x_{2 n+1}=S x_{2 n} \\
x_{2 n+2}=T x_{2 n+1}, n=0,1,2, \ldots
\end{gathered}
$$

then the set $O_{x_{0}}(S, T)=\left\{x_{n}: n=0,1,2, \ldots\right\}$ is called the orbit of (S, T) in x_{0}.
2) The space (X, p) is said to be (S, T) - orbitally 0 - complete at x_{0} if every 0 - Cauchy sequence in $O_{x_{0}}(S, T)$ converges to a point $z \in X$ such that $p(z, z)=0$.

3. Implicit relations

Definition 3.1. Let $\mathcal{F}_{R 0}$ be the set of all continuous functions $F\left(t_{1}, \ldots, t_{6}\right)$: $\mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ satisfying:
$\left(F_{1}\right): F$ is nonincreasing in variables t_{5} and t_{6},
$\left(F_{2}\right):\left(F_{2 a}\right)$: There exists $h_{1} \in[0,1)$ such that for all $u, v \geqslant 0$ and $F(u, v, v, u$, $u+v, v) \leqslant 0$ implies $u \leqslant h_{1} v$;
$\left(F_{2 b}\right)$: There exists $h_{2} \in[0,1)$ such that for all $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$,
$\left(F_{3}\right): F(t, t, 0,0, t, t)>0, \forall t>0$.
In the following examples the property $\left(F_{1}\right)$ is obviously.
Example 3.1. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c t_{4}-d t_{5}-e t_{6}$, where $a, b, c, d, e \geqslant 0$ and $a+b+c+2 d+2 e<1$.
$\left(F_{2}\right):$ Let $u, v \geqslant 0$ be such that $F(u, v, v, u, u+v, v)=u-a v-b v-c u-$ $d(u+v)-e v \leqslant 0$. Then $u \leqslant h_{1} v$, where $0 \leqslant h_{1}=\frac{a+b+d+e}{1-(c+d)}<1$.

Similarly, $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$, where $0 \leqslant$ $h_{2}=\frac{a+c+d+e}{c[1-(b+e)]}<1$.
$\left(F_{3}\right): F(t, t, 0,0, t, t)=t[1-(a+b+d+e)]>0, \forall t>0$.
Example 3.2. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \ldots, t_{6}\right\}$, where $k \in\left[0, \frac{1}{2}\right)$.
$\left(F_{2}\right):$ Let $u, v \geqslant 0$ be such that $F(u, v, v, u, u+v, v)=u-k(u+v) \leqslant 0$ which implies $u \leqslant h_{1} v$, where $0 \leqslant h_{1}=\frac{k}{1-k}<1$.

Similarly, $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$, where $0 \leqslant$ $h_{2}=h_{1}<1$.
$\left(F_{3}\right): F(t, t, 0,0, t, t)=t(1-k)>0, \forall t>0$.

Example 3.3. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{c t_{2}, c t_{3}, c t_{4}, a t_{5}+b t_{6}\right\}$, where $c \in$ $(0,1), a, b \geqslant 0$ and $2 a+2 b<1$.
$\left(F_{2}\right):$ Let $u, v \geqslant 0$ be such that $F(u, v, v, u, u+v, v)=u-\max \{c u, c v, a(u+v)$ $+b v\} \leqslant 0$. If $u>v$, then $u[1-\max \{c, 2 a+b\}] \leqslant 0$, a contradiction. Hence $u \leqslant h_{1} v$, where $0 \leqslant h_{1}=\max \{c, 2 a+b\}<1$.

Similarly, $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$, where $0 \leqslant$ $h_{2}=\max \{c, a+2 b\}<1$.
$\left(F_{3}\right): F(t, t, 0,0, t, t)=t(1-\max \{c, a+b\})>0, \forall t>0$.
Example 3.4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-a \max \left\{t_{2}^{2}, t_{3}^{2}, t_{4}^{2}\right\}-b t_{5} t_{6}$, where $a, b \geqslant 0$ and $a+2 b<1$.
$\left(F_{2}\right):$ Let $u, v \geqslant 0$ be such that $F(u, v, v, u, u+v, v)=u^{2}-a \max \left\{u^{2}, v^{2}\right\}-$ $b v(u+v) \leqslant 0$. If $u>v$, then $u^{2}[1-(a+2 b)] \leqslant 0$, a contradiction. Hence $u \leqslant v$ which implies $u \leqslant h_{1} v$, where $0 \leqslant h_{1}=\sqrt{a+2 b}<1$.

Similarly, $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$, where $0 \leqslant$ $h_{2}=h_{1}<1$.
$\left(F_{3}\right): F(t, t, 0,0, t, t)=t^{2}[1-(a+b)]>0, \forall t>0$.
Example 3.5. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-a t_{2} t_{3} t_{4}-b t_{3} t_{4} t_{5}-c t_{4} t_{5} t_{6}$, where $a, b, c \geqslant 0$ and $a+2 b+2 c<1$.
$\left(F_{2}\right):$ Let $u, v \geqslant 0$ be such that $F(u, v, v, u, u+v, v)=u^{3}-a u v^{2}-b u v(u+v)-$ $\operatorname{cuv}(u+v) \leqslant 0$. If $u>v$, then $u^{3}[1-(a+2 b+2 c)] \leqslant 0$, a contradiction. Hence $u \leqslant v$ which implies $u \leqslant h_{1} v$, where $0 \leqslant h_{1}=\sqrt[3]{a+2 b+2 c}<1$.

Similarly, $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$, where $0 \leqslant$ $h_{2}=h_{1}<1$.
$\left(F_{3}\right): F(t, t, 0,0, t, t)=t^{3}>0, \forall t>0$.
Example 3.6. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}+\frac{t_{1}}{t_{5}+t_{6}}-\left(a t_{2}^{2}+b t_{3}^{2}+c t_{4}^{2}\right)$, where $a, b, c \geqslant 0$ and $a+b+c<1$.
$\left(F_{2}\right):$ Let $u, v \geqslant 0$ be such that $F(u, v, v, u, u+v, v)=u^{2}+\frac{u}{u+2 v}-$
$\left(a v^{2}+b v^{2}+c u^{2}\right) \leqslant 0$, which implies $u^{2}-\left(a v^{2}+b v^{2}+c u^{2}\right) \leqslant 0$. If $u>v$, then $u^{2}[1-(a+b+c)] \leqslant 0$, a contradiction. Hence $u \leqslant v$ which implies $u \leqslant h_{1} v$, where $0 \leqslant h_{1}=\sqrt{a+b+c}<1$.

Similarly, $u, v \geqslant 0$ and $F(u, v, u, v, v, u+v) \leqslant 0$ implies $u \leqslant h_{2} v$, where $0 \leqslant$ $h_{2}=h_{1}<1$.

$$
\begin{aligned}
& \\
&\left(F_{3}\right): F(t, t, 0,0, t, t)=t^{2}+\frac{1}{2}-a t^{2}=t^{2}(1-a)+\frac{1}{2}>0, \forall t>0 .
\end{aligned}
$$

4. Main results

Theorem 4.1. Let (X, p) be a partial metric space and $T, S: X \rightarrow X$ be two mappings satisfying inequality

$$
\begin{equation*}
F(p(T x, S y), p(x, y), p(x, T x), p(y, S y), p(x, S y), p(y, T x)) \leqslant 0 \tag{4.1}
\end{equation*}
$$

for all $x, y \in \overline{O_{x_{0}}(S, T)}$ for some $x_{0} \in X$ and $F \in \mathcal{F}_{R 0}$. If (X, p) is (S, T) orbitally 0 - complete at x_{0}, then T and S have a common fixed point z such that $p(z, z)=p(z, T z)=p(z, S z)=0$.

If moreover, each common fixed point z of S and T in $O_{x_{0}}(S, T)$ satisfies $p(z, z)=0$, then the common fixed point of S and T in $O_{x_{0}}(S, T)$ is unique.

Proof. First we prove that if $z=S z$ and $p(z, z)=0$, then z is a common fixed point of S and T.

By (4.1) we obtain

$$
\begin{gathered}
F(p(T z, S z), p(z, z), p(z, T z), p(z, S z), p(z, S z), p(z, T z)) \leqslant 0 \\
F(p(T z, z), 0, p(z, T z), 0,0, p(z, T z)) \leqslant 0
\end{gathered}
$$

By $\left(F_{2 a}\right)$ we obtain $p(z, T z)=0$ which implies $z=T z$ and z is a common fixed point of S and T.

We define a sequence $\left\{x_{n}\right\}$ in X as follows

$$
\begin{equation*}
x_{2 n+1}=S x_{2 n} \text { and } x_{2 n+2}=T x_{2 n+1}, \text { for } n=0,1,2, \ldots \tag{4.2}
\end{equation*}
$$

If there exists $n_{0} \in \mathbb{N}$ such that $p\left(x_{n_{0}}, S x_{n_{0}}\right)=0$ or $p\left(x_{n_{0}}, T x_{n_{0}}\right)=0$ for $n_{0} \in$ \mathbb{N}, then S and T have a common fixed point. We suppose that $p\left(x_{n}, x_{n+1}\right) \neq 0$, for $n \in \mathbb{N}$.

By (4.1) and (4.2) for $x=x_{2 n+1}$ and $y=x_{2 n}$ we obtain

$$
\begin{aligned}
& F\left(p\left(T x_{2 n+1}, S x_{2 n}\right), p\left(x_{2 n+1}, x_{2 n}\right), p\left(x_{2 n+1}, T x_{2 n+1}\right),\right. \\
& \left.p\left(x_{2 n}, S x_{2 n}\right), p\left(x_{2 n+1}, S x_{2 n}\right), p\left(x_{2 n}, T x_{2 n+1}\right)\right) \leqslant 0 \\
& F\left(p\left(x_{2 n+2}, x_{2 n+1}\right), p\left(x_{2 n+1}, x_{2 n}\right), p\left(x_{2 n+1}, x_{2 n+2}\right),\right. \\
& \left.p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n+1}, x_{2 n+1}\right), p\left(x_{2 n}, x_{2 n+2}\right)\right) \leqslant 0 .
\end{aligned}
$$

By $\left(P_{2}\right)$,

$$
p\left(x_{2 n+1}, x_{2 n+1}\right) \leqslant p\left(x_{2 n+1}, x_{2 n}\right)
$$

and by $\left(P_{4}\right)$

$$
p\left(x_{2 n}, x_{2 n+2}\right) \leqslant p\left(x_{2 n}, x_{2 n+1}\right)+p\left(x_{2 n+1}, x_{2 n}\right)
$$

By (F_{1}) and (4.3) we obtain

$$
\begin{aligned}
& F\left(p\left(x_{2 n+2}, x_{2 n+1}\right), p\left(x_{2 n+1}, x_{2 n}\right), p\left(x_{2 n+1}, x_{2 n+2}\right)\right. \\
& \left.p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leqslant 0
\end{aligned}
$$

By $\left(F_{2 b}\right)$ we obtain

$$
p\left(x_{2 n+2}, x_{2 n+1}\right) \leqslant h p\left(x_{2 n+1}, x_{2 n}\right), \text { where } h=\max \left\{h_{1}, h_{2}\right\} .
$$

By (4.1) and (4.2) for $x=x_{2 n-1}$ and $y=x_{2 n}$, for $n=1,2, \ldots$ we obtain

$$
\begin{gather*}
F\left(p\left(T x_{2 n-1}, S x_{2 n}\right), p\left(x_{2 n-1}, x_{2 n}\right), p\left(x_{2 n-1}, T x_{2 n-1}\right),\right. \\
\left.p\left(x_{2 n}, S x_{2 n}\right), p\left(x_{2 n-1}, S x_{2 n}\right), p\left(x_{2 n}, T x_{2 n-1}\right)\right) \leqslant 0, \\
F\left(p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n-1}, x_{2 n}\right), p\left(x_{2 n-1}, x_{2 n}\right),\right. \tag{4.4}\\
\left.p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n-1}, x_{2 n+1}\right), p\left(x_{2 n}, x_{2 n}\right)\right) \leqslant 0 .
\end{gather*}
$$

By $\left(P_{2}\right)$

$$
p\left(x_{2 n}, x_{2 n}\right) \leqslant p\left(x_{2 n-1}, x_{2 n}\right)
$$

and by $\left(P_{4}\right)$

$$
p\left(x_{2 n-1}, x_{2 n+1}\right) \leqslant p\left(x_{2 n-1}, x_{2 n}\right)+p\left(x_{2 n}, x_{2 n+1}\right)
$$

By (F_{1}) and (4.4) we obtain

$$
\begin{gathered}
F\left(p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n-1}, x_{2 n}\right), p\left(x_{2 n-1}, x_{2 n}\right),\right. \\
\left.p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n-1}, x_{2 n}\right)+p\left(x_{2 n}, x_{2 n+1}\right), p\left(x_{2 n}, x_{2 n-1}\right)\right) \leqslant 0
\end{gathered}
$$

By $\left(F_{2 a}\right)$ we obtain

$$
p\left(x_{2 n}, x_{2 n+1}\right) \leqslant h p\left(x_{2 n-1}, x_{2 n}\right) .
$$

Hence

$$
\begin{equation*}
p\left(x_{n}, x_{n+1}\right) \leqslant h p\left(x_{n-1}, x_{n}\right) \leqslant \ldots \leqslant h^{n} p\left(x_{0}, x_{1}\right) \tag{4.5}
\end{equation*}
$$

Then for each $m>n \in \mathbb{N}$, by (4.5) and (P_{4}) we have

$$
\begin{aligned}
p\left(x_{n}, x_{n+m}\right) & \leqslant p\left(x_{n}, x_{n+1}\right)+p\left(x_{n+1}, x_{n+2}\right)+\ldots+p\left(x_{m-1}, x_{m}\right) \\
& \leqslant h^{n}\left(1+h+\ldots+h^{m-1}\right) p\left(x_{0}, x_{1}\right) \\
& \leqslant \frac{h^{n}}{1-h} p\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Thus $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=0$. This implies that $\left\{x_{n}\right\}$ is a 0 - Cauchy sequence in the partial metric space $O_{x_{0}}(S, T)$. Since X is (S, T) - orbitally 0 - complete at x_{0}, then there exists $z \in X$ with $\lim _{n \rightarrow \infty} x_{n}=z$ and $p(z, z)=0$.

We prove that z is a fixed point for S.
By (4.1) for $x=x_{2 n+1}$ and $y=z$ we obtain

$$
\begin{aligned}
& F\left(p\left(T x_{2 n+1}, S z\right), p\left(x_{2 n+1}, z\right), p\left(x_{2 n+1}, T x_{2 n+1}\right)\right. \\
& \left.\quad p(z, S z), p\left(x_{2 n+1}, S z\right), p\left(z, T x_{2 n+1}\right)\right) \leqslant 0 \\
& F\left(p\left(x_{2 n+2}, S z\right), p\left(x_{2 n+1}, z\right), p\left(x_{2 n+1}, x_{2 n+2}\right)\right. \\
& \left.\quad p(z, S z), p\left(x_{2 n+1}, S z\right), p\left(z, x_{2 n+2}\right)\right) \leqslant 0
\end{aligned}
$$

Letting n tends to infinity, by Lemma 2.1 and (4.5) we obtain

$$
F(p(z, S z), 0,0, p(z, S z), p(z, S z), 0) \leqslant 0
$$

By $\left(F_{2 a}\right)$ we obtain $p(z, S z)=0$ which implies $z=S z$. By the first part of the proof we have $z=T z$ and z is a common fixed point of S and T.

Now suppose that each common fixed point z of T and S in $O_{x_{0}}(S, T)$ satisfy $p(z, z)=0$. We claim that S and T have a unique common fixed point. Assume that $p(u, S u)=p(u, T u)=0$ and $p(v, T v)=p(S v, v)=0$ but $u \neq v$. Then, by (4.1) for $x=u$ and $y=v$ we have

$$
\begin{gathered}
F(p(T u, S v), p(u, v), p(u, T u) \\
p(v, S v), p(u, S v), p(v, T u)) \leqslant 0 \\
F(p(u, v), p(u, v), 0,0, p(u, v), p(u, v)) \leqslant 0
\end{gathered}
$$

a contradiction of $\left(F_{3}\right)$. Hence, $u=v$.
Remark 4.1. By Theorem 4.1 and Example 3.1 we obtain a fixed point theorem of Hardy - Rogers type.

If $S=T$ by Theorem 4.1 we obtain

Theorem 4.2. Let (X, p) be a partial metric space such that X is T - orbitally 0 - complete at some $x_{0} \in X$ and

$$
F(p(T x, T y), p(x, y), p(x, T x), p(y, T y), p(x, T y), p(y, T x)) \leqslant 0
$$

for all $x, y \in \overline{O_{x_{0}}(T)}$ and F satisfies properties $\left(F_{1}\right),\left(F_{2 a}\right)$ and $\left(F_{3}\right)$. Then T has a fixed point. If moreover, each fixed point $z \in X$ in $\overline{O_{x_{0}}(T)}$ satisfies $p(z, z)=0$, then the fixed point is unique.

Example 4.1. Let $X=[0,1]$ be and $p(x, y)=\max \{x, y\}$. Then (X, p) is a partial metric space. Consider the following mappings: $S(x)=\frac{1}{3} \cdot x$ and $T(x)=\frac{1}{5} \cdot x$. If $x_{0}=1$ then $O_{1}(S, T)=\left\{\left(\frac{1}{3}\right)^{k} \cdot\left(\frac{1}{5}\right)^{m}: k, m \in \mathbb{N}\right\}$ and $\overline{O_{1}(S, T)} \subset O_{1}(S, T) \cup\{0\}$. 1) If $x>y$, then $p(S x, T y)=\frac{1}{3} \cdot x$ and $p(x, y)=x$. Hence $p(S x, T y) \leqslant k_{1} \cdot p(x, y)$, for $k_{1} \in\left[\frac{1}{3}, \frac{1}{2}\right)$, which implies
$p(x, y) \leqslant k_{1} \max \{p(x, y), p(S x, x), p(T y, y) \cdot p(x, T y), p(y, A x)\}$, for $k_{1} \in\left[\frac{1}{3}, \frac{1}{2}\right)$.
2) If $\frac{3}{5} \cdot y<x<y$ then $p(S x, T y)=\frac{1}{3} \cdot x$ and $p(x, S x)=x$. Hence $p(S x, T y) \leqslant$ $k_{1} p(x, S x)$, which implies
$p(S x, T y) \leqslant k_{1} \max \{p(x, y), p(x, S x), p(y, T y), p(x, T y) p(y, S x)\}$, for $k_{1} \in\left[\frac{1}{3}, \frac{1}{2}\right)$.
3) If $x \leqslant \frac{3}{5} \cdot y$ then $p(S x, T y)=\frac{1}{5} \cdot y$ and $p(y, T y)=y$. Hence $p(S x, T y) \leqslant$ $k_{2} \cdot p(y, T y)$, for $k_{2} \in\left[\frac{1}{5}, \frac{1}{2}\right)$, which implies

$$
p(S x, T y) \leqslant k_{2} \max \{p(x, y), p(x, S x) \cdot p(y, T y), p(x, T y), p(y, S x)\}
$$

Hence

$$
p(S x, T y) \leqslant k \max \{p(x, y), p(x, S x), p(y, T y), p(x, T y), p(y, S x)\}
$$

where $k \in\left[\frac{1}{3}, \frac{1}{2}\right)$.
By Example 3.1 and Theorem 4.1, S and T have a unique common fixed point $z=0$ and $p(z, z)=0$.

References

[1] T. Abdeljawad, E. Karapinar and K. Tas. Existence and uniqueness of a common fixed point on a partial metric space. Appl. Math. Lett., 24(11)(2011), 1900-1904.
[2] J. Achari. Ćirić's non - unique fixed point. Mat. Vesnik, 13(28)(1976), 255-257.
[3] A. E. B. Ahmad, Z. M. Fadail, V. C. Rajić and S. Radenović: Nonlinear contractions in 0 complete partial metric spaces, Abstr. Appl. Anal., Vol. 2012 (2012), Article ID 451239.
[4] I. Altun and H. Simsek. Some fixed point theorems on dualistic metric spaces. J. Adv. Math. Stud., 1(2008), 1-8.
[5] I. Altun, F. Sola and H. Simsek. Generalized contractions on partial metric spaces. Topology Appl., 157(18)(2010), 2778-2785.
[6] H. Aydi, M. Jellali and E. Karapinar. Common fixed points for generalized α - implicit contractions in partial metric spaces: consequences and application. Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, 109(2)(2015), 367-384.
[7] L. Cirić. On some maps with nonunique fixed points. Publ. Inst. Math. New Ser., $\mathbf{1 7}$ (31)(1974), 52-58.
[8] L. Ćirić and N. Jotić. A further extension of maps with nonunique fixed points. Mat. Vesnik, 50(1-2)(1998), 1-4.
[9] S. Gülyaz and E. Karapinar. Coupled fixed point results in partial ordered metric spaces through implicit functions. Hacet. J. Math. Stat., 42(4)(2013), 347-357.
[10] S. Gülyaz, E. Karapinar and S. Yüce. A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation. Fixed Point Theory Appl., 2013, 2013:38.
[11] Z. Kadelburg, H. K. Nashine and S. Radenović. Fixed point results under various contractive conditions in partial metric spaces. Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, $\mathbf{1 0 7}(2)(2013), 241-256$.
[12] E. Karapinar and I. M. Erhan. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett., 24(11)(2011), 1894-1899.
[13] S. G. Matthews. Partial metric topology. In S. Andima et.al. (Eds.) Proc. $8^{t h}$ Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728(1994), 183-197.
[14] H. K. Nashine, W. Sintunavarat, Z. Kadelburg and P. Kumam. Fixed point theorems in orbitally 0 - complete partial metric spaces via rational contractive conditions. Afr. Math. DOI 10110007/s13370-014-2097.
[15] H. K. Pathak. Some nonunique fixed point theorems for a new class of mappings, Ranchi Univ. Math. J., 17(1986), 65-70.
[16] H. K. Pathak. On some nonunique fixed point theorems for the maps of Dhage type. Pure Appl. Math. Sci., 27(1988), 41-47.
[17] V. Popa. Fixed point theorems for implicit contractive mappings, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, 7(1997), 129-133.
[18] V. Popa. Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math., 32(1)(1999), 159-163.
[19] S. Romaguera. A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl., 2010(2010), Article ID 493298.
[20] S. Romaguera. Matkowski's type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen. Topol., $12(2)(2011), 213-220$.
[21] D. Türkoğlu, O. Özer and B. Fisher. Fixed point theorems for T - orbitally complete metric spaces. Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, 9(1999), 211-218.
[22] C. Vetro and F. Vetro. Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl., 6(2013), 156-161.

Received by editors 04.08.2016; Revised version 21.09.2016; Available online 03.10.2016.
"Vasile Alecsandri" University of Bacău, Bacău, Romania
E-mail address: vpopa@ub.ro
Department of Mathematics and Computer Sciences, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galaţi, Galaţi, Romania

E-mail address: Alina.Patriciu@ugal.ro

