DECOMPOSITION OF A C-ALGEBRA THROUGH PARTIAL ORDERINGS

P. Sundarayya, Ramesh Sirisetti, and V. Sriramani

Abstract. In this paper, we recall two partial orderings on a C-algebra. Two types of decompositions are derived by using these partial orderings, which are not dual to each other. Two sufficient conditions for a C-algebra to become a Boolean algebra in terms of C-algebras L_{a}, R_{a} are obtained.

1. Introduction

In [2], Guzman and Squier introduced the variety of C-algebra as the variety generated by the three element algebra $C=\{T, F, U\}$ with the operations \wedge, \vee and ' of type $(2,2,1)$, which is the algebraic form of the three valued conditional logic. They proved that the two element Boolean algebra B and C are the only subdirectly irreducible C-algebras and that the variety of C -algebras is a minimal cover of the variety of Boolean algebras. These C-algebras are of interest to logic and theoretical computer science.

In $[\mathbf{3}, \mathbf{5}]$, Rao and Sundarayya introduced two partial orderings on a C-algebra and derived a number of equivalent conditions for a C-algebra to become a Boolean algebra in terms of these partial orderings. In [6], Swamy, Rao and Ravi kumar introduced the centre of C-algebra and proved that it is a Boolean algebra.

In this paper, we recall two partial orderings \leqslant_{l} and \leqslant_{r} on a C-algebra. We obtain two C-algebraic structures on subsets of a C-algebra A (with T), which are not subalgebras of A. It is well known that if B is a Boolean algebra and $a \in B$, then B is isomorphic to $B \upharpoonright a \times B \upharpoonright a^{\prime}$ (see [1]). We obtain a version of this decomposition for a C-algebra corresponding to these partial orderings. They are not symmetric to each other because C-algebras have no commutative property.

[^0]
2. Preliminaries

In this section, we collect some necessary definitions, examples and results of C-algebras from $[\mathbf{3}, \mathbf{5}, \mathbf{6}]$.

Definition 2.1. ([2]) By a C-algebra we mean algebra ($A, \wedge, \vee^{\prime},^{\prime}$) of type $(2,2,1)$ satisfies the following identities;
(a) $x^{\prime \prime}=x$
(b) $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$
(c) $x \wedge(y \wedge z)=(x \wedge y) \wedge z$
(d) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
(e) $(x \vee y) \wedge z=(x \wedge z) \vee\left(x^{\prime} \wedge y \wedge z\right)$
(f) $x \vee(x \wedge y)=x$
(g) $(x \wedge y) \vee(y \wedge x)=(y \wedge x) \vee(x \wedge y)$
for all $x, y, z \in A$.
Example 2.1. ([2]) The three element set $\{T, F, U\}$ with operations \wedge, \vee and ' given by

\wedge	T	F	U
T	T	F	U
F	F	F	F
U	U	U	U

\vee	T	F	U
T	T	T	T
F	T	F	U
U	U	U	U

x	x^{\prime}
T	F
F	T
U	U

is a C-algebra. We denote this C-algebra by C and the two element C-algebra $\{T, F\}$ by B.

Example 2.2. ([3]) Let $G=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}$ where $g_{1}=(T, U), g_{2}=(F, U)$, $g_{3}=(U, F), g_{4}=(U, T), g_{5}=(U, U)$. Then G is a C-algebra with respect to the pointwise operations given in the following;

\wedge	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}
g_{1}	g_{1}	g_{2}	g_{5}	g_{5}	g_{5}
g_{2}	g_{2}	g_{2}	g_{2}	g_{2}	g_{2}
g_{3}	g_{5}	g_{5}	g_{3}	g_{4}	g_{5}
g_{4}	g_{4}	g_{4}	g_{4}	g_{4}	g_{4}
g_{5}	g_{5}	g_{5}	g_{5}	g_{5}	g_{5}

\vee	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}
g_{1}	g_{1}	g_{1}	g_{1}	g_{1}	g_{1}
g_{2}	g_{1}	g_{2}	g_{5}	g_{5}	g_{5}
g_{3}	g_{3}	g_{3}	g_{3}	g_{3}	g_{3}
g_{4}	g_{5}	g_{5}	g_{3}	g_{4}	g_{5}
g_{5}	g_{5}	g_{5}	g_{5}	g_{5}	g_{5}

x	x^{\prime}
g_{1}	g_{2}
g_{2}	g_{1}
g_{3}	g_{4}
g_{4}	g_{3}
g_{5}	g_{5}

Example 2.3. ([3]) Let $C \times C=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}\right\}$ where $f_{1}=$ $(T, U), f_{2}=(F, U), f_{3}=(U, T), f_{4}=(U, F), f_{5}=(U, U), f_{6}=(T, T), f_{7}=$ $(F, F), f_{8}=(T, F), f_{9}=(F, T)$. Then $C \times C$ is a C-algebra with respect to the pointwise operations.

It can be observe that the identities $(a),(b)$ imply that the variety of all Calgebras satisfies the dual statements (b) to (g). In general \wedge and \vee are not commutative in C and the ordinary right distributivity of \wedge over \vee fails in C.

Lemma 2.1. ([2, 6]) If A is a C-algebra, then for any $x, y \in A$,
(i) $x \wedge x=x$
(ii) $x \wedge\left(x^{\prime} \vee y\right)=\left(x^{\prime} \vee y\right) \wedge x=x \wedge\left(y \vee x^{\prime}\right)=x \wedge y$
(iii) $x \vee\left(x^{\prime} \wedge x\right)=\left(x^{\prime} \wedge x\right) \vee x=x$
(iv) $\left(x \vee x^{\prime}\right) \wedge y=(x \wedge y) \vee\left(x^{\prime} \wedge y\right)$
(v) $x \vee x^{\prime}=x^{\prime} \vee x$
(vi) $x \vee y \vee x=x \vee y$
(vii) $x \wedge x^{\prime} \wedge y=x \wedge x^{\prime}$.

If A has an identity for \wedge, then it is unique and denoted by T (that is $x \wedge T=$ $T \wedge x=x$ for all $x \in A$). In this case, we say that A is a C-algebra with T. If we write F for T^{\prime}, then F is the identity for \vee (that is $x \vee F=F \vee x=x$ for all $x \in A$). Now, we have the following;

Lemma 2.2. ([2]) If A is a C-algebra with T, then for any $x \in A$,
(i) $T \vee x=x$ and $F \wedge x=F$
(ii) $x \vee T=x \vee x^{\prime}$ and $x \wedge F=x \wedge x^{\prime}$.

If there exists an element $x \in A$ such that $x^{\prime}=x$, then it is unique and we denoted it by U (U is called the uncertain element of A).

Definition 2.2. ([6]) An element x of a C-algebra A with T is called a central element of A if $x \vee x^{\prime}=T$.

If A is a C-algebra with T, then the set $\left\{x \in A \mid x \vee x^{\prime}=T\right\}$ of central elements of A is called the centre of A and denoted by $B(A)[\mathbf{6}]$. It can be observed that $B(A)$ is a Boolean algebra with induced operations on A.

3. The partial orderings \leqslant_{l} and \leqslant_{r}

In this section, we recall two partial orderings \leqslant_{l} and \leqslant_{r}, and present that two C-algebra structures corresponding to \leqslant_{l} and \leqslant_{r} in a C-algebra which are not sub C-algebras of A. Some of the properties of these C-algebras are given in the following.

Lemma 3.1. ([5]) A relation \leqslant_{l} on a C-algebra A defined by $x \leqslant_{l}$ y if $x \wedge y=x$ and $x \vee y=y$, is a partial ordering on A.

Example 3.1. ([5]) The Hasse diagrams of $\left(C, \leqslant_{l}\right),\left(G, \leqslant_{l}\right)$ are given in the following figure 1.

Figure 1
Lemma 3.2. ([5]) A relation \leqslant_{r} on a C-algebra A defined by $x \leqslant_{r} y$ if $x \wedge y=x$ and $y \vee x=y$, is a partial ordering on A.

Example 3.2. ([5]) The Hasse diagrams of $\left(C, \leqslant_{r}\right),\left(G, \leqslant_{r}\right)$ are given in the following figure 2 .

Figure 2

REMARK 3.1. " \leqslant_{r} " and " \leqslant_{l} " are not dual to each other, for example, in G (see Example 2.2), we have $g_{3} \leqslant_{r} g_{1}$ but $g_{1} \not Z_{l} g_{3}$ and $g_{2} \leqslant_{l} g_{4}$ but $g_{4} \not Z_{r} g_{2}$

Now, we prove the following.
Lemma 3.3. If A is a C-algebra with T, then, for any $x, y \in A, x \leqslant_{l} y$ implies $y \vee x=x \vee y=y$.

Proof. Let $x, y \in A$ such that $x \leqslant_{l} y$. Then $x \wedge y=x$ and $x \vee y=y$. Now,

$$
\begin{array}{rlrl}
y \vee x & =(x \vee y) \vee(x \wedge y) & & \\
& =(x \vee y \vee x) \wedge(x \vee y \vee y) & & \text { (by the dual of Def. 2.1(d)) } \\
& =(x \vee y) \wedge(x \vee y) & & \\
& =x \vee y & \text { by Lemma 2.1(vi)) } \\
& =y & &
\end{array}
$$

Therefore $y \vee x=x \vee y=y$.
In the following, it is defined that a C-algebra corresponding to the partial ordering $\leqslant l$

Theorem 3.1. If A is a C-algebra with T and $a \in A$, then the set

$$
L_{a}=\left\{x \in A \mid a \leqslant_{l} x\right\}
$$

is a C-algebra with the induced operations \wedge, \vee and the complementation $*$ is defined by $x^{*}=a \vee x^{\prime}$, for any $x \in L_{a}$.

Proof. Let $x, y \in L_{a}$. Then $a \leqslant_{l} x, y$. That is $a \wedge x=a \wedge y=a, a \vee x=$ $x \vee a=x$ and $a \vee y=y \vee a=a$ (see Lemma 3.3). Now,

$$
\begin{aligned}
a \wedge(x \vee y) & =(a \wedge x) \vee(a \wedge y) \quad \text { (by Def. 2.1(d)) } \\
& =a \vee a \\
& =a \\
a \vee(x \vee y) & =a \vee x \vee a \vee y \quad(\text { by Lemma 2.1(vi) }) \\
& =x \vee y
\end{aligned}
$$

Therefore $a \leqslant_{l} x \vee y$ and hence $x \vee y \in L_{a}$. Similarly,

$$
\begin{aligned}
a \wedge(x \wedge y) & =a \wedge x \wedge a \wedge y \quad(\text { by the dual of Lemma 2.1(vi) }) \\
& =a \wedge a \\
& =a \\
a \vee(x \wedge y) & =(a \vee x) \wedge(a \vee y) \quad \text { (by the dual of Def. 2.1(d) }) \\
& =x \wedge y
\end{aligned}
$$

Therefore $a \leqslant_{l} x \wedge y$ and hence $x \wedge y \in L_{a}$. Now, $a \wedge x^{*}=a \wedge\left(a \vee x^{\prime}\right)=a$ (by the dual of Def. 2.1(f)) and $a \vee x^{*}=a \vee\left(a \vee x^{\prime}\right)=a \vee x^{\prime}=x^{*}$. Therefore $a \leqslant l x^{*}$ and hence $x^{*} \in L_{a}$. Thus L_{a} is closed under \wedge, \vee and $*$. Now, for $x \in L_{a}$,

$$
\begin{array}{rlr}
x^{* *} & =\left(x^{*}\right)^{*} & \\
& =\left(a \vee x^{\prime}\right)^{*} & \\
& =a \vee\left(a \vee x^{\prime}\right)^{\prime} & \\
& =a \vee\left(a^{\prime} \wedge x\right) \quad \text { (by the dual of Def 2.1(a, b)) } \\
& =a \vee x & \text { (by Lemma 2.1(ii)) } \\
& =x . &
\end{array}
$$

For $x, y \in L_{a}$,

$$
\begin{aligned}
(x \wedge y)^{*} & =a \vee(x \wedge y)^{\prime} & & \\
& =a \vee\left(x^{\prime} \vee y^{\prime}\right) & & \text { (by Def. 2.1(b) }) \\
& =\left(a \vee x^{\prime}\right) \vee\left(a \vee y^{\prime}\right) & & \text { (by Lemma 2.1(vi)) } \\
& =x^{*} \vee y^{*} . & &
\end{aligned}
$$

For $x, y, z \in L_{a}$,

$$
\begin{aligned}
(x \vee y) \wedge z & =a \vee((x \vee y) \wedge z) & & \text { (since } \left.a \leqslant_{l}(x \vee y) \wedge z\right) \\
& =a \vee\left((x \wedge z) \vee\left(x^{\prime} \wedge y \wedge z\right)\right) & & \text { (by Def. } 2.1(\mathrm{e})) \\
& =(x \wedge z) \vee a \vee\left(x^{\prime} \wedge y \wedge z\right) & & \text { (since } \left.a \leqslant_{l} x \wedge z\right) \\
& =(x \wedge z) \vee\left(\left(a \vee x^{\prime}\right) \wedge(a \vee y) \wedge(a \vee z)\right) & & \text { (by Def. 2.1(d)) } \\
& =(x \wedge z) \vee\left(x^{*} \wedge y \wedge z\right) & & \text { (since } \left.a \leqslant_{l} y, z\right)
\end{aligned}
$$

The remaining identities hold in L_{a}, since they hold in A. Thus $\left(L_{a}, \wedge, \vee, *\right)$ is a C-algebra.

We observe that L_{a} is itself a C-algebra but not a sub C-algebra of A, since the unary operation $*$ is not the restriction of ' to L_{a}. It can be easily prove that a is the join identity in L_{a}.

Lemma 3.4. Let A be a C-algebra with T. If $x \in A$ and $a \in B(A)$, then $x \leqslant_{r} a$ implies $x \wedge a=a \wedge x=x$.

Proof. Let $x \in A, a \in B(A)$ such that $x \leqslant_{r} a$. Then $x \wedge a=x$ and $a \vee x=a$. Now,

$$
\begin{aligned}
a \wedge x & =(a \vee x) \wedge x & & (\text { since } a \vee x=a) \\
& =(a \wedge x) \vee\left(a^{\prime} \wedge x \wedge x\right) & & (\text { by Def. 2.1(e)) } \\
& =(a \wedge x) \vee\left(a^{\prime} \wedge x\right) & & \\
& =\left(a \vee a^{\prime}\right) \wedge x & & \text { (by Lemma 2.1(iv)) } \\
& =T \wedge x & & \text { (since } a \in B(A)) \\
& =x . & &
\end{aligned}
$$

Therefore $x \wedge a=a \wedge x=x$.
In the following, it is defined that a C-algebra corresponding to the partial ordering \leqslant_{r}

Theorem 3.2. If A is a C-algebra with T and $a \in B(A)$, then the set

$$
R_{a}=\left\{x \in A \mid x \leqslant_{r} a\right\}
$$

is a C-algebra with the induced operations \wedge, \vee and the complementation $*$ is defined by $x^{*}=a \wedge x^{\prime}$, for any $x \in R_{a}$

In the above lemma, if $a \notin B(A)$, then $a \wedge x$ need not be equal to x. For example, in $C \times C$ (see Example 2.3), we have $f_{7} \leqslant r f_{3}$ but $f_{4}=f_{3} \wedge f_{7} \neq f_{7}$, where $f_{3} \notin B(C \times C)$.

We observe that R_{a} is itself a C-algebra but not a sub C-algebra of A, since the unary operation $*$ is not the restriction of ' to R_{a}. It can be easily prove that a is the meet identity in R_{a}. Moreover, if a is not a central element, then the set R_{a} need not be a C-algebra. For example, in $C \times C$ (see Example 2.3), $f_{9} \in R_{f_{3}}$, $f_{9} \neq f_{9}^{* *}$ where f_{3} is not a central element. Thus to become R_{a} is a C-algebra, it is necessary that a must be a central element.

4. Decompositions through \leqslant_{l}, and \leqslant_{r}

In this section, we obtain decompositions of a C-algebra with T corresponding to the partial orderings \leqslant_{l} and \leqslant_{r} and any decompositions of A is in the same form. We derive some sufficient conditions for a C-algebra to become a Boolean algebra.

Definition 4.1. Let $a \in A$. Define the mapping $\alpha_{a}: A \rightarrow L_{a}$ is defined by $\alpha_{a}(x)=a \vee x$, for all $x \in A$.

For any $a \in A$, the set $\varphi_{a}=\left\{(x, y) \in A \times A \mid \alpha_{a}(x)=\alpha_{a}(y)\right\}$ is a congruences relation on A. Now, we have the following.

Theorem 4.1. Let A be a C-algebra with T and $a \in A$. Then α_{a} is a homomorphism from A onto L_{a} with kernel φ_{a} and hence $\frac{A}{\varphi_{a}} \cong L_{a}$.

Proof. Let $x, y \in A$. Then

$$
\begin{aligned}
\alpha_{a}(x \wedge y) & =a \vee(x \wedge y) \\
& =(a \vee x) \wedge(a \vee y) \quad \text { (by the dual of Def. 2.1(d)) } \\
& =\alpha_{a}(x) \wedge \alpha_{a}(y) \\
\alpha_{a}(x \vee y) & =a \vee(x \vee y) \\
& =(a \vee x) \vee(a \vee y) \quad(\text { by Lemma 2.1(vi)) } \\
& =\alpha_{a}(x) \vee \alpha_{a}(y) .
\end{aligned}
$$

and $\alpha_{a}\left(x^{\prime}\right)=a \vee x^{\prime}=x^{*}$. Therefore α_{a} is a homomorphism from A onto L_{a}.
Lemma 4.1. Let A be a C-algebra with T and $a \in B(A)$. Then, for $x, y \in A$, $\alpha_{a}(x)=\alpha_{a}(y)$ and $\alpha_{a^{\prime}}(x)=\alpha_{a^{\prime}}(y)$ if and only if $x=y$.

Proof. (i) Suppose that $\alpha_{a}(x)=\alpha_{a}(y)$ and $\alpha_{a^{\prime}}(x)=\alpha_{a^{\prime}}(y)$. Then $a \vee x=$ $a \vee y$ and $a^{\prime} \vee x=a^{\prime} \vee y$. Now,

$$
\begin{aligned}
x & =F \vee x & & \text { (since } F \text { is the join identity) } \\
& =\left(a \wedge a^{\prime}\right) \vee x & & \text { (since } a \in B(A)) \\
& =(a \vee x) \wedge\left(a^{\prime} \vee x\right) & & \text { (by the dual of Lemma 2.1(iv)) } \\
& =(a \vee y) \vee\left(a^{\prime} \vee y\right) & & \\
& =\left(a \wedge a^{\prime}\right) \vee y & & \text { (by the dual of Lemma 2.1(iv)) } \\
& =F \vee y & & \text { (since } a \in B(A)) \\
& =y & & \text { (since } F \text { is the join identity) }
\end{aligned}
$$

Therefore $x=y$. Other hand is trivial.
Theorem 4.2. Let A be a C-algebra with T and $a \in B(A)$. Then $A \cong L_{a} \times L_{a^{\prime}}$
Proof. Define $\alpha: A \rightarrow L_{a} \times L_{a^{\prime}}$ by $\alpha(x)=\left(\alpha_{a}(x), \alpha_{a^{\prime}}(x)\right)$ for all $x \in A$. Then α is well-defined and homomorphism (See Theorems 4.1). By Lemma 4.1, α is one to one. Now, we will prove α is onto. For, let $(x, y) \in L_{a} \times L_{a^{\prime}}$. Then $a \leqslant_{l} x$ and $a^{\prime} \leqslant l y$. Therefore $a \wedge x=a, a^{\prime} \wedge y=a^{\prime}, a \vee x=x \vee a=x$ and $a^{\prime} \vee y=y \vee a^{\prime}=y$ (See Lemma 3.3). Now, for this $x \wedge y \in A$,

$$
\begin{aligned}
\alpha(x \wedge y) & =\left(\alpha_{a}(x \wedge y), \alpha_{a^{\prime}}(x \wedge y)\right) & & \\
& =\left(a \vee(x \wedge y), a^{\prime} \vee(x \wedge y)\right) & & \\
& =\left((a \vee x) \wedge(a \vee y),\left(a^{\prime} \vee x\right) \wedge\left(a^{\prime} \vee y\right)\right) & & \text { (by dual of 2.1(d)) } \\
& =\left(x \wedge\left(a \vee a^{\prime} \vee y\right),\left(a^{\prime} \vee a \vee x\right) \wedge y\right) & & \\
& =(x \wedge(T \vee y),(T \vee x) \wedge y) & & \text { (since } a \in B(A)) \\
& =(x \wedge T) \vee(x \wedge y),(T \wedge y) \vee(F \wedge x \wedge y)) & & \text { (by Def. 2.1(d, e)) } \\
& =(x \vee(x \wedge y), y \vee F) & & \text { (by Lemma 2.2(i)) } \\
& =(x, y) & & \text { (by Def. 2.1(f)) }
\end{aligned}
$$

Therefore α is onto and hence α is an isomorphism from A onto $L_{a} \times L_{a^{\prime}}$.
Theorem 4.3. Let A, A_{1}, A_{2} be three C-algebras with T such that $A \cong A_{1} \times A_{2}$. Then there exists $a \in B(A)$ such that $A_{1} \cong L_{a}$ and $A_{2} \cong L_{a^{\prime}}$.

Proof. Let $f: A_{1} \times A_{2} \rightarrow A$ be an isomorphism. Take $a=f\left(F_{1}, T_{2}\right)$, where $T_{1} \& T_{2}$ are the meet identities of $A_{1} \& A_{2}$ respectively and $F_{1} \& F_{2}$ are the join
identities of $A_{1} \& A_{2}$ respectively. Then $f^{-1}(a) \in B\left(A_{1}\right) \times B\left(A_{2}\right)=B\left(A_{1} \times A_{2}\right)=$ $B(A)[\mathbf{6}]$. Define $\gamma: A_{1} \rightarrow L_{a}$ by $\gamma\left(x_{1}\right)=f\left(x_{1}, T_{2}\right)$, for all $x_{1} \in A_{1}$. Now,

$$
\begin{aligned}
a \wedge f\left(x_{1}, T_{2}\right) & =f\left(F_{1}, T_{2}\right) \wedge f\left(x_{1}, T_{2}\right) \\
& =f\left(F_{1} \wedge x_{1}, T_{2} \wedge T_{2}\right) \quad \text { (since } f \text { is homomorphism) } \\
& =f\left(F_{1}, T_{2}\right) \\
& =a \\
a \vee f\left(x_{1}, T_{2}\right) & =f\left(F_{1}, T_{2}\right) \vee f\left(x_{1}, T_{2}\right) \\
& =f\left(F_{1} \vee x_{1}, T_{2} \vee T_{2}\right) \quad \text { (since } f \text { is homomorphism) } \\
& =f\left(x_{1}, T_{2}\right)
\end{aligned}
$$

Then $a \leqslant_{l} f\left(x_{1}, T_{2}\right)$. Therefore $f\left(x_{1}, T_{2}\right) \in L_{a}$ and γ is well-defined. It is easy to prove that γ preserves \wedge, \vee and γ is one to one. Let $x_{1} \in A_{1}$. Then

$$
\begin{array}{rlr}
\gamma\left(x_{1}^{\prime}\right) & =f\left(x_{1}^{\prime}, T_{2}\right) & \\
& =f\left(F_{1} \vee x_{1}^{\prime}, T_{2} \vee T_{2}\right) & \\
& =f\left(F_{1}, T_{2}\right) \vee f\left(x_{1}^{\prime}, F_{2}^{\prime}\right) & \text { (since } f \text { is homomorphism) } \\
& =a \vee\left(f\left(x_{1}, F_{2}\right)\right)^{\prime} & \text { (since } f \text { is homomorphism) } \\
& =a \vee\left(\gamma\left(x_{1}\right)\right)^{\prime} & \\
& =\left(\gamma\left(x_{1}\right)\right)^{*} &
\end{array}
$$

Therefore γ is a homomorphism. Since f is isomorphism, γ is one to one. Finally we will prove γ is onto. Let $x \in L_{a}$. Then, by Lemma 3.3, $a \vee x=x \vee a=x$ and $a \wedge x=a$. Since f is onto, there exist $x_{1} \in A_{1}, x_{2} \in A_{2}$, such that $f\left(x_{1}, x_{2}\right)=x$. Now,

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & =f^{-1}(x) & & \text { (since } f^{-1} \text { is bijective) } \\
& =f^{-1}(a \vee x) & & \\
& =f^{-1}(a) \vee f^{-1}(x) & & \text { (since } f^{-1} \text { is homomorphism) } \\
& =\left(F_{1}, T_{2}\right) \vee\left(x_{1}, x_{2}\right) & & \\
& =\left(F_{1} \vee x_{1}, T_{2} \vee x_{2}\right) & & \\
& =\left(x_{1}, T_{2}\right) & & \text { (by Lemma 2.2(i)) }
\end{aligned}
$$

Therefore $x_{2}=T_{2}$ and $\gamma\left(x_{1}\right)=f\left(x_{1}, T_{2}\right)=f\left(x_{1}, x_{2}\right)=x$. Hence γ is onto. Thus γ is isomorphism. Similarly, we can prove $A_{2} \cong L_{a^{\prime}}$.

From [4], it is observed that for any $a \in B(A), R_{a}=A_{a}$ where $A_{a}=\{a \wedge x \mid$ $x \in A\}$. Therefore we restate some results in the following;

Theorem 4.4. Let A be a C-algebra with T and $a \in B(A)$. Then $\beta_{a}: A \rightarrow R_{a}$ defined by $\beta_{a}(x)=a \wedge x$ for all $x \in A$, is an onto homomorphism with kernel θ_{a}, where $\theta_{a}=\left\{(x, y) \in A \times A \mid \beta_{a}(x)=\beta_{a}(y)\right\}$ and hence $\frac{A}{\theta_{a}} \cong R_{a}$.

Lemma 4.2. Let A be a C-algebra with T and $a \in B(A)$. Then, for any $x, y \in A, \beta_{a}(x)=\beta_{a}(y)$ and $\beta_{a^{\prime}}(x)=\beta_{a^{\prime}}(y)$ if and only if $x=y$.

Theorem 4.5. Let A be a C-algebra with T and $a \in B(A)$. Then $A \cong R_{a} \times R_{a^{\prime}}$.
Theorem 4.6. Let A, A_{1}, A_{2} be three C-algebras with T such that $A \cong A_{1} \times A_{2}$. Then there exists $a \in B(A)$ such that $A_{1} \cong R_{a}$ and $A_{2} \cong R_{a^{\prime}}$.

Now, we prove the following;
Lemma 4.3. Let A be a C-algebra with T. If $x, y \in A$ and $a \in B(A)$ are such that $a \leqslant_{l} x$ and $a^{\prime} \leqslant_{l} y$, then $x \wedge y=y \wedge x$.

Proof. Let $x, y \in A$ such that $a \leqslant_{l} x, a^{\prime} \leqslant_{l} y$, where $a \in B(A)$. Then $a \wedge x=a, a \vee x=x, a^{\prime} \wedge y=a^{\prime}$ and $a^{\prime} \vee y=y$. Now,

$$
\begin{array}{rlrl}
\alpha_{a}(x \wedge y) & =a \vee(x \wedge y) & & \\
& =(a \vee x) \wedge(a \vee y) & & \text { (by Def. 2.1(d)) } \\
& =x \wedge\left(a \vee a^{\prime} \vee y\right) & & \\
& =x \wedge(T \vee y) & & \text { (since } a \in B(A)) \\
& =(x \wedge T) \vee(x \wedge y) & & \text { (by Def. 2.1(d)) } \\
& =x \vee(x \wedge y) & & \\
& =x & \text { (by Def. 2.1(f)) } \\
& =x \vee F & & \\
& =(T \wedge x) \vee(F \wedge y \wedge x) & & \\
& =(T \wedge x) \vee\left(T^{\prime} \wedge y \wedge x\right) & & \\
& =(T \vee y) \wedge x & \text { (by Def. 2.1(d)) } \\
& =\left(a \vee a^{\prime} \vee y\right) \wedge x & & \text { (since } a \in B(A)) \\
& =(a \vee y) \wedge x & & \\
& =(a \vee y) \wedge(a \vee x) & & \text { (by Def. 2.1(d)) } \\
& =a \vee(y \wedge x) & & \\
& =\alpha_{a}(y \wedge x) & & \tag{d}
\end{array}
$$

Similarly, $\alpha_{a}(x \wedge y)=\alpha_{a^{\prime}}(y \wedge x)$. Therefore $x \wedge y=y \wedge x($ see Lemma 4.1).
Lemma 4.4. Let A be a C-algebra with T. If $x, y \in A$ and $a \in B(A)$ are such that $x \leqslant_{r} a$ and $y \leqslant_{r} a^{\prime}$, then $x \vee y=y \vee x$.

Proof. Let $x, y \in A a \in B(A)$ such that $x \leqslant_{r} a$ and $y \leqslant_{r} a^{\prime}$. Then $a \vee x=$ $a, a^{\prime} \vee y=a^{\prime}, x \wedge a=a \wedge x=x, y \wedge a^{\prime}=a^{\prime} \wedge y=y$ (see Lemma 3.6). Now,

$$
\begin{array}{rlrl}
\beta_{a}(x \vee y) & =a \wedge(x \vee y) & \\
& =(a \wedge x) \vee(a \wedge y) & & \text { (by Def. 2.1(d)) } \\
& =x \vee\left(a \wedge a^{\prime} \wedge y\right) & & \\
& =x \vee(F \wedge y) & & \\
& =x \vee F & \text { since } a \in B(A)) \\
& =F \vee x & & \\
& =(F \wedge y) \vee(a \wedge x) & & \\
& =\left(a \wedge a^{\prime} \wedge y\right) \vee(a \wedge x) & & \text { (since } a \in B(A)) \\
& =(a \wedge y) \vee(a \wedge x) & & \\
& =a \wedge(y \vee x) & & \text { (by Def. 2.1(d)) } \\
& =\beta_{a}(y \vee x) & &
\end{array}
$$

Similarly, $\beta_{a^{\prime}}(x \vee y)=\beta_{a^{\prime}}(y \vee x)$. Therefore $x \vee y=y \vee x$ (see Lemma 4.2).
From Theorem 4.6 and Lemma 4.3, we have the following.
Theorem 4.7. Let A be C-algebra with T.
(i) For any $x, y \in A$, there exists $a \in B(A)$ such that $a \leqslant_{l} x$ and $a^{\prime} \leqslant_{l} y$.
(ii) For any $x, y \in A$, there exists $a \in B(A)$ such that $x \leqslant_{r} a$ and $y \leqslant_{r} a^{\prime}$
(iii) A is a Boolean algebra

Then $(i) \Rightarrow(i i i) \Leftarrow(i i)$.

References

[1] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer Verlag, New York, 1981.
[2] F. Guzman and C. Squier, The algebra of conditional logic, Algebra Universalis, 27(1)(1990), 88-110.
[3] G. C. Rao and P. Sundarayya, C-algebra as a poset, Int. J. Math. Sci., 4(2)(2005), 225-236.
[4] G. C. Rao and P. Sundarayya, Decompositions of a C-algebra, Int. J. Math. Math. Sci., Volume 2006, Article ID 78981, Pages 18.
[5] G. C. Rao and P. Sundarayya, Two partial orders on a C-algebra, Int. J. Computational Congnition, $7(3)(2009), 40-43$.
[6] U. M. Swamy, G. C. Rao and R. V. G. Ravi kumar, Centre of a C-algebra, Southeast Asian Bull. Math., 27(2)(2003), 357-368.

Received by editors 24.06.2016; Available online 12.09.2016.
Department of Mathematics, GITAM University, Visakhapatnam, IndiA
E-mail address: psundarayya@yahoo.co.in
Department of Mathematics, GITAM University, Visakhapatnam, IndiA
E-mail address: ramesh.sirisetti@gmail.com - Corresponding author
Department of Mathematics, Vasavi College of Engineering, Hyderabad, india
E-mail address: ramaniv80@gmail.com

[^0]: 2010 Mathematics Subject Classification. 03G25, 06E99.
 Key words and phrases. C-algebra, Central element, Boolean algebra.

