THE RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH

P. Titus ${ }^{1}$, A.P. Santhakumaran ${ }^{2}$ and K. Ganesamoorthy ${ }^{3}$

Abstract

A set S of vertices of a connected graph G is a monophonic set if every vertex of G lies on an $x-y$ monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is the monophonic number of G, denoted by $m(G)$. A set S of vertices of a graph G is an edge monophonic set if every edge of G lies on an $x-y$ monophonic path for some elements x and y in S. The minimum cardinality of an edge monophonic set of G is the edge monophonic number of G, denoted by $\operatorname{em}(G)$. A set S of vertices of a graph G is a restrained edge monophonic set if either $V=S$ or S is an edge monophonic set with the subgraph $G[V-S]$ induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained edge monophonic set of G is the restrained edge monophonic number of G and is denoted by $e m_{r}(G)$. It is proved that, for the integers a, b and c with $3 \leqslant a \leqslant b<c$, there exists a connected graph G having the monophonic number a, the edge monophonic number b and the restrained edge monophonic number c.

1. Introduction

By a graph $G=(V, E)$ we mean a simple graph of order at least two. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology, we refer to Harary [5]. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. The closed neighborhood of a vertex v is the set $N[v]=N(v) \bigcup\{v\}$. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete. A vertex v is a semi-extreme vertex of G if the subgraph induced by its neighbors has a full degree vertex in $N(v)$. In particular, every extreme vertex is a semi-extreme vertex and a semi-extreme vertex need not be an extreme vertex.

[^0]For any two vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. A vertex v is said to lie on an $x-y$ geodesic P if v is a vertex of P including the vertices x and y.

The closed interval $I[x, y]$ consists of all vertices lying on some $x-y$ geodesic of G, while for $S \subseteq V, I[S]=\bigcup_{x, y \in S} I[x, y]$. A set S of vertices is a geodetic set if $I[S]=V$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set. The geodetic number of a graph was introduced in $[\mathbf{1}, \mathbf{6}]$ and further studied in $[\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}]$. A set S of vertices of a graph G is an edge geodetic set if every edge of G lies on an $x-y$ geodesic for some elements x and y in S. The minimum cardinality of an edge geodetic set of G is the edge geodetic number of G, denoted by $\operatorname{eg}(G)$. The edge geodetic number was introduced and studied in [8]. A set S of vertices of G is a restrained edge geodetic set of G if S is an edge geodetic set, and if either $S=V$ or the subgraph $G[V-S]$ induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained edge geodetic set of G is the restrained edge geodetic number, denoted by $e g_{r}(G)$. The restrained edge geodetic number of a graph was introduced and studied in [10].

A chord of a path $u_{1}, u_{2}, \ldots, u_{k}$ in G is an edge $u_{i} u_{j}$ with $j \geqslant i+2$. A $u-v$ path P is called a monophonic path if it is a chordless path. A set S of vertices is a monophonic set if every vertex of G lies on a monophonic path joining some pair of vertices in S, and the minimum cardinality of a monophonic set is the monophonic number $m(G)$. A monophonic set of cardinality $m(G)$ is called an m-set of G. The monophonic number of a graph G was studied in [9]. A set S of vertices of a graph G is an edge monophonic set if every edge of G lies on an $x-y$ monophonic path for some elements x and y in S. The minimum cardinality of an edge monophonic set of G is the edge monophonic number of G, denoted by $e m(G)$. A set S of vertices of a graph G is a restrained monophonic set if either $S=V$ or S is an monophonic set with the subgraph $G[V-S]$ induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained monophonic set of G is the restrained monophonic number of G, and is denoted by $m_{r}(G)$. The restrained monophonic number of a graph was studied in [11].

The following theorems will be used in the sequel.
Theorem 1.1. [5] Let v be a vertex of a connected graph G. The following statements are equivalent:
(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every $u-w$ path.
(iii) There exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every $u-w$ path.

Theorem 1.2. [9] Each extreme vertex of a connected graph G belongs to every monophonic set of G.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Restrained Edge Monophonic Number

Definition 2.1. A set S of vertices of a graph G is a restrained edge monophonic set if either $V=S$ or S is an edge monophonic set with the subgraph $G[V-S]$ induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained edge monophonic set of G is the restrained edge monophonic number of G, and is denoted by emr (G).

Figure 2.1: G
Example 2.1. For the graph G given in Figure 2.1, it is clear that $S_{1}=$ $\{z, w\}, S_{2}=\{z, v\}$ are the minimum monophonic sets of G and so $m(G)=2$; $S_{3}=\{z, w, u\}, S_{4}=\{z, v, x\}$ are the minimum edge monophonic sets of G and so $e m(G)=3$; and $S_{5}=\{z, w, v, u\}, S_{4}=\{z, w, v, x\}$ are the minimum restrained edge monophonic sets of G and so em$r(G)=4$. Thus the monophonic number, the edge monophonic number and the restrained edge monophonic number of a graph are all different.

Theorem 2.1. Each semi-extreme vertex of a graph G belongs to every restrained edge monophonic set of G. In particular, if the set S of all semi-extreme vertices of G is an restrained edge monophonic set, then S is the unique minimum restrained edge monophonic set of G.

Proof. Let S be the set of all semi-extreme vertices of G and let T be any restrained edge monophonic set of G. Suppose that there exists a vertex $u \in S$ such that $u \notin T$. Since $\Delta(<N(u)>)=|N(u)|-1$, there exists a $v \in N(u)$ such that $\operatorname{deg}_{<N(u)>}(v)=|N(u)|-1$. Since T is a restrained edge monophonic set of G, the edge $e=u v$ lies on an $x-y$ monophonic path $P: x=x_{0}, x_{1}, \ldots, x_{i-1}, x_{i}=$ $u, x_{i+1}=v, \ldots, x_{n}=y$ with $x, y \in T$. Since $u \notin T$, it is clear that u is an internal vertex of the path P. Since $\operatorname{deg}_{<N(u)\rangle}(v)=|N(u)|-1$, we see that v is adjacent to x_{i-1}, which is a contradiction to the fact that P is an $x-y$ monophonic path. Hence S is contained in every restrained edge monophonic set of G.

Every restrained edge monophonic set is an edge monophonic set and the converse need not be true. For the graph G given in Figure 2.1, S_{3} is an edge monophonic set, however it is not a restrained edge monophonic set. Also, every edge monophonic set is a monophonic set and so every restrained edge monophonic set
is a monophonic set of a graph G. Since every restrained edge monophonic set of G is an edge monophonic set, by Theorem 2.1, each semi-extreme vertex of a connected graph G belongs to every restrained edge monophonic set of G. Hence for the complete graph $K_{p}(p \geqslant 2), e m_{r}\left(K_{p}\right)=p$.

The next theorem follows from the respective definitions.
Theorem 2.2. For any connected graph $G, 2 \leqslant m(G) \leqslant e m(G) \leqslant e m_{r}(G) \leqslant p$.
If $e m(G)=p$ or $p-1$, then $m_{r}(G)=p$. The converse need not be true. For the cycle $C_{4}, e m\left(C_{4}\right)=2=p-2$ and $e m_{r}\left(C_{4}\right)=4=p$. Also, since every restrained edge monophonic set of G is an edge monophonic set of G and the complement of each restrained edge monophonic set has cardinality different from 1, we have $e m_{r}(G) \neq p-1$. Thus there is no graph G of order p with $e m_{r}(G)=p-1$.

Theorem 2.3. If a graph G of order p has exactly one vertex of degree $p-1$, then $e m_{r}(G)=p$.

Proof. Let G be a graph of order p with exactly one vertex of degree $p-1$, and let it be u. Since the vertex u is adjacent to all other vertices in G, then any edge $u v$ where $v \in V(G)-\{u\}$, is not an internal edge of any monophonic path joining two vertices of G other than u and v. Hence $e m_{r}(G)=p$.

Remark 2.1. The converse of the Theorem 2.3 need not be true. For the cycle C_{4}, all the vertices of C_{4} is the unique minimum restrained edge monophonic set of G, but it does not have a vertex of degree $p-1=3$.

The following theorem is easy to verify.
Theorem 2.4. (i) If T is a tree with k end vertices, then

$$
e m_{r}(T)= \begin{cases}p & \text { if } T \text { is a star } \\ k & \text { if } T \text { is not a star }\end{cases}
$$

(ii) For the cycle $C_{p}(p \geqslant 3)$,

$$
e m_{r}\left(C_{p}\right)= \begin{cases}p & \text { for } p<6 \\ 2 & \text { for } p \geqslant 6\end{cases}
$$

(iii) For the wheel $W_{p}=K_{1}+C_{p-1}(p \geqslant 5)$, emr $\left(W_{p}\right)=p$.
(iv) For the complete bipartite graph $K_{m, n}(m, n \geqslant 2)$,emr $\left(K_{m, n}\right)=m+n$.
(v) For the hyper cube Q_{n}, emr $\left(Q_{n}\right)=2$.

Theorem 2.5. Let G be a connected graph with every vertex of G is either a cut vertex or an extreme vertex. Then emr $(G)=p$ if and only if $G=K_{1}+\bigcup m_{j} K_{j}$.

Proof. Let $G=K_{1}+\bigcup m_{j} K_{j}$. Then G has at most one cut vertex. Suppose that G has no cut vertex. Then $G=K_{p}$ and hence $e m_{r}(G)=p$. Suppose that G has exactly one cut vertex. Then all the remaining vertices are extreme vertices and hence $e m_{r}(G)=p$.

Conversely, suppose that $e m_{r}(G)=p$. If $p=2$, then $G=K_{2}=K_{1}+K_{1}$. If $p \geqslant 3$, there exists a vertex x, which is not a cut vertex of G. If G has two or more cut vertices, then the induced subgraph of the cut vertices is a non-trivial path.

Then the set of all extreme vertices is the minimum restrained edge monophonic set of G and so $e m_{r}(G) \leqslant p-2$, which is a contradiction. Thus, the number of cut vertices k of G is at most one.

Case 1. If $k=0$, then the graph G is a block. If $p=3$, then $G=K_{3}=$ $K_{1}+K_{2}$. If $p \geqslant 4$, we claim that G is complete. Suppose G is not complete. Then there exist two vertices x and y in G such that $d(x, y) \geqslant 2$. By Theorem 1.1, both x and y lie on a common cycle and hence x and y lie on a smallest cycle $C: x, x_{1}, \ldots, y, \ldots, x_{n}, x$ of length at least 4 . Thus every vertex of C on G is neither a cut vertex nor an extreme vertex, which is a contradiction to the assumption. Hence G is the complete graph K_{p} and so $G=K_{1}+K_{p-1}$.

Case 2. If $k=1$, let x be the cut vertex of G. If $p=3$, then $G=P_{3}=$ $K_{1}+\bigcup m_{j} K_{1}$, where $\sum m_{j}=2$. If $p \geqslant 4$, we claim that $G=K_{1}+\bigcup m_{j} K_{j}$, where $\sum m_{j} \geqslant 2$. It is enough to prove that every block of G is complete. Suppose there exists a block B, which is not complete. Let u and v be two vertices in B such that $d(u, v) \geqslant 2$. Then by Theorem 1.1, both u and v lie on a common cycle and hence u and v lie on a smallest cycle of length at least 4 . Hence every vertex of C on G is neither a cut vertex nor an extreme vertex, which is a contradiction. Thus every block of G is complete so that $G=K_{1}+\bigcup m_{j} K_{j}$, where K_{1} is the vertex x and $\sum m_{j} \geqslant 2$.

A caterpillar is a tree for which the removal of all the end vertices gives a path.
Theorem 2.6. For every non-trivial tree T with diameter $d \geqslant 3$, emr $(T)=$ $p-d+1$ if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree with diameter $d \geqslant 3$. Let $P: u=$ $v_{0}, v_{1}, \ldots, v_{d}=v$ be a diametral path. Let k be the number of end vertices of T and let l be the number of internal vertices of T other than $v_{1}, v_{2}, \ldots, v_{d-1}$. Then $d-1+l+k=p$. By Theorem 2.4(i), emr $(T)=k$ and so $e m_{r}(T)=p-d-l+1$. Hence $e m_{r}(T)=p-d+1$ if and only if $l=0$, if and only if all the internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

The next theorem gives a realization result of the monophonic number, the edge monophonic number and the restrained edge monophonic number.

Theorem 2.7. For any integers a, b and c with $3 \leqslant a \leqslant b<c$, then there exists a connected graph G such that $m(G)=a, \operatorname{em}(G)=b$ and $e m_{r}(G)=c$.

Proof. Case 1. $3 \leqslant a=b<c$.
Let $K_{2, c-a+2}$ be the complete bipartite graph with bipartite sets $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{c-a+2}\right\}$ and let $P_{3}: u_{1}, u_{2}, u_{3}$ be a path of order 3 . Let H be the graph obtained from $K_{2, c-a+2}$ and P_{3} by identifying the vertex x_{2} in $K_{2, c-a+2}$ with the vertex u_{1} in P_{3}. Add $a-2$ new vertices $v_{1}, v_{2}, \ldots, v_{a-2}$ to H and join each vertex $v_{i}(1 \leqslant i \leqslant a-2)$ with the vertex u_{3}. The graph G is shown in Figure 2.2.

Figure 2.2: G
Let $S=\left\{v_{1}, v_{2}, \ldots, v_{a-2}\right\}$ be the set of all extreme vertices of G. By Theorems 1.2 and $2.1, S$ is a subset of every monophonic set, edge monophonic set and restrained edge monophonic set of G. It is clear that $S_{1}=S \cup\left\{x_{1}, x_{2}\right\}$ is both the unique minimum monophonic set and unique minimum edge monophonic set of G and so $m(G)=e m(G)=a$. Also, $S_{2}=S \cup\left\{y_{1}, y_{2}, \ldots, y_{c-a+2}\right\}$ is a minimum restrained edge monophonic set of G and so $e m_{r}(G)=c$.

Case 2. $a+1=b<c$.
Let $C_{5}: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}$ be a cycle of order 5 . Let G be the graph obtained from C_{5} by adding $c-b+a-1$ new vertices $u_{1}, u_{2}, \ldots, u_{a-1}, w_{1}, w_{2}, \ldots, w_{c-b}$ and joining each $u_{i}(1 \leqslant i \leqslant a-1)$ to the vertex v_{1}; joining each $w_{i}(1 \leqslant i \leqslant c-b)$ to both the vertices v_{3}, v_{5}; and joining the vertices v_{2} and v_{5}. The graph G is shown in Figure 2.3.

Figure 2.3: G
Let $S=\left\{u_{1}, u_{2},, \ldots, u_{a-1}\right\}$ be the set of all extreme vertices of G. By Theorems 1.2 and $2.1, S$ is a subset of every monophonic set, edge monophonic set and restrained edge monophonic set of G. It is clear that S is not a monophonic set of G and so $m(G)>a$. It is clear that $S_{1}=S \cup\left\{v_{3}\right\}$ is a monophonic set of G and so $m(G)=a$. Also, since the edge $v_{2} v_{5}$ does not lie on any $x-y$ monophonic path for some vertices $x, y \in S_{1}$, we have S_{1} is not an edge monophonic set of G and so $e m_{r}(G)>b$. Let $S_{2}=S_{1} \cup\left\{v_{5}\right\}$. Clearly, S_{2} is an edge monophonic set of G and so $\operatorname{em}(G)=\left|S_{2}\right|=a+1$. Also, it is clear that $S_{3}=S \cup\left\{v_{2}, v_{4}, w_{1}, w_{2}, \ldots, w_{c-b}\right\}$ is a minimum restrained edge monophonic set of G and so $e m_{r}(G)=c$.

Case 3. $a+2 \leqslant b<c$.
Let $P_{2}: x, y$ be a path of order 2 and let $P_{b-a+1}: u_{1}, u_{2}, \ldots, u_{b-a+1}$ be a path of order $b-a+1$. Let H be the graph obtained from P_{2} and P_{b-a+1} by joining the vertices $u_{i}(1 \leqslant i \leqslant b-a+1)$ with y and also joining the vertices x and u_{b-a+1}. Let G be the graph obtained from H by adding $c-b+a-1$ new vertices $v_{1}, v_{2}, \ldots, v_{a-1}, w_{1}, w_{2}, \ldots, w_{c-b}$ and joining each $v_{i}(1 \leqslant i \leqslant a-1)$ to the vertex x and joining each $w_{i}(1 \leqslant i \leqslant c-b)$ with the vertices u_{1} and u_{b-a+1}. The graph G is shown in Figure 2.4.

Figure 2.4: G
Let $S=\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ be the set of all extreme vertices of G. By Theorems 1.2 and 2.1, every monophonic set, edge monophonic set and restrained edge monophonic set contains S. Clearly, S is not a monophonic set of G and so $m(G)>a$. It is clear that $S_{1}=S \cup\left\{u_{1}\right\}$ is a monophonic set of G and so $m(G)=a$. Let $S_{2}=S \cup\left\{u_{2}, u_{3}, \ldots, u_{b-a}\right\}$ be the set of all semi-extreme vertices of G. By Theorem 2.1, S_{2} is a subset of every edge monophonic set of G. Since the edge $y u_{b-a+1}$ does not lie on any $x-y$ monophonic path for some vertices $x, y \in S_{2}$, we have S_{2} is not an edge monophonic set of G and so $\left.e m G\right)>b-2$. It is clear that $S_{3}=S_{2} \cup\left\{u_{1}, u_{b-a+1}\right\}$ is an edge monophonic set of G and so $\operatorname{em}(G)=b$. Also, it is clear that $S_{4}=S_{3} \cup\left\{w_{1}, w_{2}, \ldots, w_{c-b}\right\}$ is a minimum restrained edge monophonic set of G, we have $e m_{r}(G)=c$.

References

[1] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
[2] F. Buckley, F. Harary, and L. V. Quintas. Extremal Results on the Geodetic Number of a Graph. Scientia A2 (1988), 17-26.
[3] G. Chartrand, F. Harary, and P. Zhang. On the Geodetic Number of a Graph, Networks., 39(1)(2002), 1-6.
[4] G. Chartrand, G.L. Johns, and P. Zhang, On the Detour Number and Geodetic Number of a Graph, Ars Combinatoria, 72(2004), 3-15.
[5] F. Harary, Graph Theory, Addison-Wesley Pub. Co., 1969.
[6] F. Harary, E. Loukakis and C. Tsouros. The Geodetic Number of a Graph, Math. Comput. Modeling, 17(11)(1993), 87-95.
[7] P.A. Ostrand. Graphs with specified radius and diameter, Discrete Math., 4(1)(1973), 71-75.
[8] A. P. Santhakumaran amd J.John. Edge Geodetic Number of a Graph. Journal Discrete Mathematics and Cryptography, 10(3)(2007), 415-432.
[9] A.P. Santhakumaran, P. Titus and K. Ganesamoorthy. On the Monophonic Number of a Graph. J. Appl. Math. © Informatics, 32(1-2)(2014), 255-266.
[10] A. P. Santhakumaran, M. Mahendran and P. Titus. The Restrained Edge Geodetic Number of a Graph. International Journal of Computational and Applied Mathematics, 11(1)92016), 9-19.
[11] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy. The Restrained Monophonic Number of a Graph, Communicated.

Received by editors 15.02.2016; Revised version 01.09.2016; Available online 05.09.2016.
${ }^{1}$ Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region, Nagercoil - 629 004, India

E-mail address: titusvino@yahoo.com
${ }^{2}$ Department of Mathematics, Hindustan Institute of Technology and Science, Chennai - 603 103, India

E-mail address: apskumar1953@gmail.com
${ }^{3}$ Department of Mathematics, Coimbatore Institute of Technology, (Government
Aided Autonomous Institution), Coimbatore - 641 014, India
E-mail address: kvgm_2005@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 05C12.
 Key words and phrases. monophonic set, monophonic number, edge monophonic set, edge monophonic number, restrained edge monophonic set, restrained edge monophonic number.

