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Abstract. A set S of vertices of a connected graph G is a monophonic set if
every vertex of G lies on an x− y monophonic path for some elements x and y

in S. The minimum cardinality of a monophonic set of G is the monophonic

number of G, denoted by m(G). A set S of vertices of a graph G is an
edge monophonic set if every edge of G lies on an x− y monophonic path for
some elements x and y in S. The minimum cardinality of an edge monophonic
set of G is the edge monophonic number of G, denoted by em(G). A set S of
vertices of a graph G is a restrained edge monophonic set if either V = S or S
is an edge monophonic set with the subgraph G[V −S] induced by V −S has no
isolated vertices. The minimum cardinality of a restrained edge monophonic
set of G is the restrained edge monophonic number of G and is denoted by
emr(G). It is proved that, for the integers a, b and c with 3 6 a 6 b < c,
there exists a connected graph G having the monophonic number a, the edge
monophonic number b and the restrained edge monophonic number c.

1. Introduction

By a graph G = (V,E) we mean a simple graph of order at least two. The
order and size of G are denoted by p and q, respectively. For basic graph theoretic
terminology, we refer to Harary [5]. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. The closed neighborhood of
a vertex v is the set N [v] = N(v)

⋃

{v}. A vertex v is an extreme vertex if the
subgraph induced by its neighbors is complete. A vertex v is a semi-extreme vertex
of G if the subgraph induced by its neighbors has a full degree vertex in N(v).
In particular, every extreme vertex is a semi-extreme vertex and a semi-extreme
vertex need not be an extreme vertex.
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For any two vertices x and y in a connected graph G, the distance d(x, y) is
the length of a shortest x − y path in G. An x − y path of length d(x, y) is called
an x − y geodesic. A vertex v is said to lie on an x − y geodesic P if v is a vertex
of P including the vertices x and y.

The closed interval I[x, y] consists of all vertices lying on some x− y geodesic
of G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y]. A set S of vertices is a geodetic set if

I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number
g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic number of
a graph was introduced in [1, 6] and further studied in [2, 3, 4, 5]. A set S of
vertices of a graph G is an edge geodetic set if every edge of G lies on an x − y
geodesic for some elements x and y in S. The minimum cardinality of an edge
geodetic set of G is the edge geodetic number of G, denoted by eg(G). The edge
geodetic number was introduced and studied in [8]. A set S of vertices of G is a
restrained edge geodetic set of G if S is an edge geodetic set, and if either S = V or
the subgraph G[V − S] induced by V − S has no isolated vertices. The minimum
cardinality of a restrained edge geodetic set of G is the restrained edge geodetic
number, denoted by egr(G). The restrained edge geodetic number of a graph was
introduced and studied in [10].

A chord of a path u1, u2, . . . , uk in G is an edge uiuj with j > i + 2. A u-v
path P is called a monophonic path if it is a chordless path. A set S of vertices
is a monophonic set if every vertex of G lies on a monophonic path joining some
pair of vertices in S, and the minimum cardinality of a monophonic set is the
monophonic number m(G). A monophonic set of cardinality m(G) is called an
m-set of G. The monophonic number of a graph G was studied in [9]. A set S
of vertices of a graph G is an edge monophonic set if every edge of G lies on an
x− y monophonic path for some elements x and y in S. The minimum cardinality
of an edge monophonic set of G is the edge monophonic number of G, denoted by
em(G). A set S of vertices of a graph G is a restrained monophonic set if either
S = V or S is an monophonic set with the subgraph G[V − S] induced by V − S
has no isolated vertices. The minimum cardinality of a restrained monophonic set
of G is the restrained monophonic number of G, and is denoted by mr(G). The
restrained monophonic number of a graph was studied in [11].

The following theorems will be used in the sequel.

Theorem 1.1. [5] Let v be a vertex of a connected graph G. The following
statements are equivalent:

(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every u−w

path.
(iii) There exists a partition of the set of vertices V − {v} into subsets U and

W such that for any vertices u ∈ U and w ∈ W, the vertex v is on every u − w
path.

Theorem 1.2. [9] Each extreme vertex of a connected graph G belongs to every
monophonic set of G.
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Throughout this paper G denotes a connected graph with at least two vertices.

2. Restrained Edge Monophonic Number

Definition 2.1. A set S of vertices of a graph G is a restrained edge mono-
phonic set if either V = S or S is an edge monophonic set with the subgraph
G[V −S] induced by V −S has no isolated vertices. The minimum cardinality of a
restrained edge monophonic set of G is the restrained edge monophonic number of
G, and is denoted by emr(G).

b b
v u

b bw x

by bz

Figure 2.1: G

Example 2.1. For the graph G given in Figure 2.1, it is clear that S1 =
{z, w}, S2 = {z, v} are the minimum monophonic sets of G and so m(G) = 2;
S3 = {z, w, u}, S4 = {z, v, x} are the minimum edge monophonic sets of G and so
em(G) = 3; and S5 = {z, w, v, u}, S4 = {z, w, v, x} are the minimum restrained
edge monophonic sets of G and so emr(G) = 4. Thus the monophonic number, the
edge monophonic number and the restrained edge monophonic number of a graph
are all different.

Theorem 2.1. Each semi-extreme vertex of a graph G belongs to every re-
strained edge monophonic set of G. In particular, if the set S of all semi-extreme
vertices of G is an restrained edge monophonic set, then S is the unique minimum
restrained edge monophonic set of G.

Proof. Let S be the set of all semi-extreme vertices of G and let T be any
restrained edge monophonic set of G. Suppose that there exists a vertex u ∈ S
such that u /∈ T . Since ∆(< N(u) >) = |N(u)| − 1, there exists a v ∈ N(u) such
that deg<N(u)>(v) = |N(u)| − 1. Since T is a restrained edge monophonic set of
G, the edge e = uv lies on an x− y monophonic path P : x = x0, x1, . . . , xi−1, xi =
u, xi+1 = v, . . . , xn = y with x, y ∈ T . Since u /∈ T , it is clear that u is an internal
vertex of the path P . Since deg<N(u)>(v) = |N(u)| − 1, we see that v is adjacent
to xi−1, which is a contradiction to the fact that P is an x − y monophonic path.
Hence S is contained in every restrained edge monophonic set of G. �

Every restrained edge monophonic set is an edge monophonic set and the con-
verse need not be true. For the graph G given in Figure 2.1, S3 is an edge mono-
phonic set, however it is not a restrained edge monophonic set. Also, every edge
monophonic set is a monophonic set and so every restrained edge monophonic set
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is a monophonic set of a graph G. Since every restrained edge monophonic set
of G is an edge monophonic set, by Theorem 2.1, each semi-extreme vertex of a
connected graph G belongs to every restrained edge monophonic set of G. Hence
for the complete graph Kp(p > 2), emr(Kp) = p.

The next theorem follows from the respective definitions.

Theorem 2.2. For any connected graph G, 2 6 m(G) 6 em(G) 6 emr(G) 6 p.

If em(G) = p or p−1, then emr(G) = p. The converse need not be true. For the
cycle C4, em(C4) = 2 = p − 2 and emr(C4) = 4 = p. Also, since every restrained
edge monophonic set of G is an edge monophonic set of G and the complement
of each restrained edge monophonic set has cardinality different from 1, we have
emr(G) 6= p− 1. Thus there is no graph G of order p with emr(G) = p− 1.

Theorem 2.3. If a graph G of order p has exactly one vertex of degree p− 1,
then emr(G) = p.

Proof. Let G be a graph of order p with exactly one vertex of degree p− 1,
and let it be u. Since the vertex u is adjacent to all other vertices in G, then any
edge uv where v ∈ V (G) − {u}, is not an internal edge of any monophonic path
joining two vertices of G other than u and v. Hence emr(G) = p. �

Remark 2.1. The converse of the Theorem 2.3 need not be true. For the cycle
C4, all the vertices of C4 is the unique minimum restrained edge monophonic set
of G, but it does not have a vertex of degree p− 1 = 3.

The following theorem is easy to verify.

Theorem 2.4. (i) If T is a tree with k end vertices, then

emr(T ) =

{

p if T is a star

k ifT is not a star.

(ii) For the cycle Cp(p > 3),

emr(Cp) =

{

p for p < 6

2 for p > 6.

(iii) For the wheel Wp = K1 + Cp−1(p > 5), emr(Wp) = p.
(iv) For the complete bipartite graph Km,n(m,n > 2), emr(Km,n) = m+ n.
(v) For the hyper cube Qn, emr(Qn) = 2.

Theorem 2.5. Let G be a connected graph with every vertex of G is either a cut
vertex or an extreme vertex. Then emr(G) = p if and only if G = K1 +

⋃

mjKj.

Proof. Let G = K1 +
⋃

mjKj . Then G has at most one cut vertex. Suppose
that G has no cut vertex. Then G = Kp and hence emr(G) = p. Suppose that G
has exactly one cut vertex. Then all the remaining vertices are extreme vertices
and hence emr(G) = p.

Conversely, suppose that emr(G) = p. If p = 2, then G = K2 = K1 + K1. If
p > 3, there exists a vertex x, which is not a cut vertex of G. If G has two or more
cut vertices, then the induced subgraph of the cut vertices is a non-trivial path.
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Then the set of all extreme vertices is the minimum restrained edge monophonic
set of G and so emr(G) 6 p− 2, which is a contradiction. Thus, the number of cut
vertices k of G is at most one.

Case 1. If k = 0, then the graph G is a block. If p = 3, then G = K3 =
K1 + K2. If p > 4, we claim that G is complete. Suppose G is not complete.
Then there exist two vertices x and y in G such that d(x, y) > 2. By Theorem
1.1, both x and y lie on a common cycle and hence x and y lie on a smallest cycle
C : x, x1, ..., y, ..., xn, x of length at least 4. Thus every vertex of C on G is neither
a cut vertex nor an extreme vertex, which is a contradiction to the assumption.
Hence G is the complete graph Kp and so G = K1 +Kp−1.

Case 2. If k = 1, let x be the cut vertex of G. If p = 3, then G = P3 =
K1 +

⋃

mjK1, where
∑

mj = 2. If p > 4, we claim that G = K1 +
⋃

mjKj, where
∑

mj > 2. It is enough to prove that every block of G is complete. Suppose there
exists a block B, which is not complete. Let u and v be two vertices in B such that
d(u, v) > 2. Then by Theorem 1.1, both u and v lie on a common cycle and hence
u and v lie on a smallest cycle of length at least 4. Hence every vertex of C on G
is neither a cut vertex nor an extreme vertex, which is a contradiction. Thus every
block of G is complete so that G = K1 +

⋃

mjKj , where K1 is the vertex x and
∑

mj > 2. �

A caterpillar is a tree for which the removal of all the end vertices gives a path.

Theorem 2.6. For every non-trivial tree T with diameter d > 3, emr(T ) =
p− d+ 1 if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree with diameter d > 3. Let P : u =
v0, v1, ..., vd = v be a diametral path. Let k be the number of end vertices of T
and let l be the number of internal vertices of T other than v1, v2, ..., vd−1. Then
d− 1 + l + k = p. By Theorem 2.4(i), emr(T ) = k and so emr(T ) = p− d− l + 1.
Hence emr(T ) = p− d+1 if and only if l = 0, if and only if all the internal vertices
of T lie on the diametral path P , if and only if T is a caterpillar. �

The next theorem gives a realization result of the monophonic number, the
edge monophonic number and the restrained edge monophonic number.

Theorem 2.7. For any integers a, b and c with 3 6 a 6 b < c, then there exists
a connected graph G such that m(G) = a, em(G) = b and emr(G) = c.

Proof. Case 1. 3 6 a = b < c.
Let K2,c−a+2 be the complete bipartite graph with bipartite sets X = {x1, x2}

and Y = {y1, y2, ..., yc−a+2} and let P3 : u1, u2, u3 be a path of order 3. Let H be
the graph obtained from K2,c−a+2 and P3 by identifying the vertex x2 in K2,c−a+2

with the vertex u1 in P3. Add a− 2 new vertices v1, v2, ..., va−2 to H and join each
vertex vi (1 6 i 6 a− 2) with the vertex u3. The graph G is shown in Figure 2.2.
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Figure 2.2: G

Let S = {v1, v2, , ..., va−2} be the set of all extreme vertices of G. By Theorems
1.2 and 2.1, S is a subset of every monophonic set, edge monophonic set and
restrained edge monophonic set of G. It is clear that S1 = S ∪ {x1, x2} is both
the unique minimum monophonic set and unique minimum edge monophonic set
of G and so m(G) = em(G) = a. Also, S2 = S ∪ {y1, y2, ..., yc−a+2} is a minimum
restrained edge monophonic set of G and so emr(G) = c.

Case 2. a+ 1 = b < c.
Let C5 : v1, v2, v3, v4, v5, v1 be a cycle of order 5. Let G be the graph obtained

from C5 by adding c − b + a − 1 new vertices u1, u2, ..., ua−1, w1, w2, ..., wc−b and
joining each ui (1 6 i 6 a− 1) to the vertex v1; joining each wi (1 6 i 6 c− b) to
both the vertices v3, v5; and joining the vertices v2 and v5. The graph G is shown
in Figure 2.3.
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Figure 2.3: G

Let S = {u1, u2, , ..., ua−1} be the set of all extreme vertices of G. By Theorems
1.2 and 2.1, S is a subset of every monophonic set, edge monophonic set and
restrained edge monophonic set of G. It is clear that S is not a monophonic set of
G and so m(G) > a. It is clear that S1 = S ∪ {v3} is a monophonic set of G and
so m(G) = a. Also, since the edge v2v5 does not lie on any x− y monophonic path
for some vertices x, y ∈ S1, we have S1 is not an edge monophonic set of G and so
emr(G) > b. Let S2 = S1 ∪ {v5}. Clearly, S2 is an edge monophonic set of G and
so em(G) = |S2| = a+ 1. Also, it is clear that S3 = S ∪ {v2, v4, w1, w2, ..., wc−b} is
a minimum restrained edge monophonic set of G and so emr(G) = c.
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Case 3. a+ 2 6 b < c.
Let P2 : x, y be a path of order 2 and let Pb−a+1 : u1, u2, , ..., ub−a+1 be a

path of order b − a + 1. Let H be the graph obtained from P2 and Pb−a+1 by
joining the vertices ui (1 6 i 6 b− a+ 1) with y and also joining the vertices x and
ub−a+1. Let G be the graph obtained from H by adding c− b+ a− 1 new vertices
v1, v2, ..., va−1, w1, w2, ..., wc−b and joining each vi (1 6 i 6 a− 1) to the vertex x
and joining each wi (1 6 i 6 c− b) with the vertices u1 and ub−a+1. The graph G
is shown in Figure 2.4.
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Figure 2.4: G

Let S = {v1, v2, , ..., va−1} be the set of all extreme vertices of G. By Theorems
1.2 and 2.1, every monophonic set, edge monophonic set and restrained edge mono-
phonic set contains S. Clearly, S is not a monophonic set of G and so m(G) > a.
It is clear that S1 = S ∪ {u1} is a monophonic set of G and so m(G) = a. Let
S2 = S∪{u2, u3, ..., ub−a} be the set of all semi-extreme vertices of G. By Theorem
2.1, S2 is a subset of every edge monophonic set of G. Since the edge yub−a+1

does not lie on any x − y monophonic path for some vertices x, y ∈ S2, we have
S2 is not an edge monophonic set of G and so emG) > b − 2. It is clear that
S3 = S2 ∪ {u1, ub−a+1} is an edge monophonic set of G and so em(G) = b. Also, it
is clear that S4 = S3∪{w1, w2, ..., wc−b} is a minimum restrained edge monophonic
set of G, we have emr(G) = c. �
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