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Abstract. This investigation is in the Bishop’s constructive mathematics.
We discuss about co-order, co-quasiorder and coequality relations on set X
with appartness. A connection between the family of all co-quasiorder relations
and the family of all coequality relations on set X is given. In addition, a

connection between the family of all co-quasiorder relations included in the
co-order α and the family of all regular coequality relation on X with respect
to α is also given.

1. Introduction and Preliminaries

This investigation is in the Constructive mathematics ([1, 2, 3, 4, 5, 8, 9, 17])
with the Constructive (Intuitionistic) logic ([8, 17]). It is the improvement of our
previously published articles [12, 14] and a continuation of our forthcoming articles
[15, 16]. So, in this text use notions and notations as in our recently published
articles [6, 7] and in our mentioned forthcoming articles [15, 16].

In this investigation we continue our intention to research relations on set with
apartness. In order to gain insight into the characters of our previous studies, the
reader can look at texts [10, 11, 12] and earlier mentioned articles [6, 7, 15, 16].

A relation α on set X is a co-order relation (In our earlier articles [11, 12, 13]
we used term anti-order.) if

α ⊈=, α ⊆ α ∗ α, ̸=⊆ α ∪ α−1 (linearity)

where ”∗” is the operation of relations α ⊆ X × Y and β ⊆ Y × Z, called filled
product of relations α and β, are relation on X × Z defined by

(a, c) ∈ β ∗ α ⇐⇒ (∀b ∈ X)((a, b) ∈ α ∨ (b, c) ∈ β).
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In that case we say that (X,α) is co-ordered set or X is a ordered set under co-order
α.

A relation τ on X is a coquasiorder ([7, 8]) on X if

τ ⊆ (α ⊆) ̸=, τ ⊆ τ ∗ τ .
(In our earlier articles [10, 11, 12, 13] we used term quasi-antiorder relation.) In
that case, we say that set (X, τ) is a coquasiordered set or set X is ordered set under
coquasiorder τ . A relation q on X is a coequality relation on X if and only if it is
consistent, symmetric and cotransitive:

q ⊆ ≠, q = q−1, q ⊆ q ∗ q.
It is clear that each coequality relation q on set X is a coquasiorder relation on X
and the apartness is a trivial co-order relation on X. For an equivalence e and a
coequalence q on set X we say that they are associated if e ◦ q ⊆ q holds, where
the notation ′◦′ is the standard product of relations.

Ler q be a coequaliuty relation on a set X. Then we can ([10, 11, 12])
construct the family X/q = {aq : a ∈ X} of strongly extensional subsets aq = {x ∈
X : (a, b) ∈ q} generated by the element a of X. This family has ([15], Theorem
2.1) the following properties:

a◃ aq, aq = qa, aq ̸= bq =⇒ aq ∪ qb = X.

The family X/q is a set with an equality and a coequality relations defined by

aq = bq ⇐⇒ (a, b)◃ q, aq ̸= bq ⇐⇒ (a, b) ∈ q.

Let g be a strongly extensional mapping of relational system from (X,α) into
relational system (Y, β). For g we say that it is:

(1) isotone if the following holds (∀a, b ∈ X)((a, b) ∈ α =⇒ (g(a), g(b)) ∈ β);

(2) reverse isotone if (∀a, b ∈ X)((g(a), g(b)) ∈ β =⇒ (a, b) ∈ α).

What is special about the work presented in this paper? In the first place, it
is the application of intuitionistic logic instead of classical logic. In mathematics
based on intuitionistic logic, there is a need to determine so-called negative concepts
through a positive approach. In intuitionistic logic formula ’The principle of the
third excluded’ is neither an axiom nor a valid formula. Therefore, in this case, a
set looks like as the relational system (X,=, ̸=) where the ’̸=’ is apartness relation
(extensive to equality on the set in the following sense: = ◦ ̸= ⊆ ̸=).

Secondly, the duality of the relationship, which appears with this aspect of
observation on concepts and processes in mathematics based on Intuitionistic logic,
opens possibilities for us to analyze the specific relationships that do not appear in
classical mathematics. So, we are interested to study some specific relations that
appear on sets with the apartness. In addition, we are also interested to analyze
structures based on those specific relations.

2. On Regular Coequality Relations

For a given ordered set (X,=, ̸=, α) under co-order α, it is essential to know
if there exists a coequality relation q on X such that X/q be a co-ordered set.
This plays an important role for studying the structure of co-ordered sets. The
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following question is natural: If (X,=, ̸=, α) is a co-ordered set and q a coequality
relation on X, is the family X/q a co-ordered set? Naturally, co-order on X/q
should be the relation Θ on X/q defined by means of the co-order α on X, such
that Θ = {(xq, yq) ∈ X/q × X/q : (x, y) ∈ α}, but it is not held in general case.
The following question appears: Is there a coequality relation q on X for which
the family X/q is a co-ordered set such that the natural mapping ϑ : X −→ X/q,
defined by ϑ(a) = aq (a ∈ X), is reverse isotone? According to Lemma 2.4 in
article [16], if (X,=, ̸=) is a set and σ a coquasiorder on X, then the relation q
on X, defined by q = σ ∪ σ−1, is a coequality relation on X and the set X/q is
an ordered set under co-order θ defined by (xq, yq) ∈ θ ⇐⇒ (x, y) ∈ σ. So, each
coquasiorder σ on a set X induces a coequality relation q = σ ∪ σ−1 on X such
that the family X/q is an ordered set under co-order θ.

Theorem 2.1. Let q be a coequality relation on a co-ordered set (X,=, ̸=, α).
Then the relation Θ = ϑ◦α◦ϑ−1 is a co-order relation on the family X/q if and only
if the relation τ = q◃ ◦α ◦ q◃ is a coquasiorder relation on X such that τ ∪ τ1 = q.

Proof. (1) Let q be a coequality relation on X such that the relation Θ =
ϑ ◦ α ◦ ϑ−1 is a co-order relation on X/q. Hence, the relation ϑ−1(Θ) = {(a, b) ∈
X×X : (aq, bq) ∈ Θ} is a coquasiorder relation on X under Θ such that q = τ∪τ−1

and the mapping ϑ : X −→ X/q is a reverse isotone strongly extensional surjective
function. At the other hand, we have:

(a, b) ∈ ϑ−1(Θ) ⇐⇒
(aq, bq) ∈ Θ = ϑ ◦ α ◦ ϑ−1 ⇐⇒
(∃x, y ∈ X)((aq, x) ∈ ϑ−1 ∧ (x, y) ∈ α ∧ (y, bq) ∈ ϑ) =⇒
(∃x, y ∈ X)((a, aq) ∈ ϑ ∧ (aq, x) ∈ ϑ−1 ∧ (x, y) ∈ α

∧ (y, bq) ∈ ϑ ∧ (bq, b) ∈ ϑ−1) =⇒
(a, b) ∈ ϑ−1 ◦ ϑ ◦ α ◦ ϑ−1 ◦ ϑ ⇐⇒
(a, b) ∈ q◃ ◦ α ◦ q◃.
Opposite, let (a, b) be an arbitrary element of q◃ ◦α ◦ q◃. Then there exists x,

y of X such that (a, x) ∈ q◃, (x, y) ∈ α and (y, b) ∈ q◃. Thus,
aq = xq = ϑ(x), ϑ(y) = bq = yq and (x, y) ∈ α. Since (aq, x) ∈ ϑ1, (x, y) ∈ α and
(y, bq) ∈ ϑ we have the following (aq, bq) ∈ ϑ ◦ α ◦ ϑ−1 = Θ. Hence, (a, b) ∈ ϑ1(Θ).
Therefore, the relation q◃ ◦ α ◦ q◃ = τ is a coquasiorder relation on X such that
τ ∪ τ−1 = q and the mapping ϑ is a reverse isotone strongly extensional function
from X onto X/q.

(2) Let = q◃ ◦ α ◦ q◃ be a coquasiorder relation on X such that τ ∪ τ−1 = q.
Then, the relation Θ = {(aq, bq) ∈ X/q × X/q : (a, b) ∈ τ} is a co-order relation
on X/q. Checking that the equality Θ = ϑ ◦ α ◦ ϑ−1 is valid is analogously to the
checking in the first part of this proof. So, the relation Θ is a co-order relation
on X/q such that the mapping ϑ is a strongly extensional reverse isotone function.
Therefore, for the coequality q, the relation Θ = ϑ ◦ α ◦ ϑ−1 is a co-order relation
on the family X/q. �

Each coequality relation q on a set (X,=, ̸=, α), such that X/q is co-ordered
set, induces a coquasiorder on X. Such coequality relation we call regular with
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respect to α. A coequality relation q on a set X is regular if there is a co-order Θ
on X/q satisfying the following conditions:
(1) (X/q,=, ̸=,Θ) is a co-ordered set;
(2) The mapping ϑ : X −→ X/q is a reverse isotone and surjective function.
In this case, we call the co-order Θ on X/q a regular co-order with respect to a
regular coequalitty q on X and the co-order α ([12]).

Remark 2.1. Let us note that any coequality relation q on a set (X,=, ̸=) is
a trivial regular coequality on X with respect to the apartness ̸= on X. In fact:
if q is a coequality relation on X, then ̸= on X/q is a co-order relation on X/q
and, besides, out of (xq ̸= yq =⇒ (x, y) ∈ q ⊈=) we get that the natural mapping
ϑ : X −→ X/q is reverse isotone.

The following lemma gives a result important for the second main result in this
article. The result is important by itself:

Lemma 2.1. Let q be a coequality relation on (X,=, ̸=, α) and suppose that
there exists a co-order Θ on X/q such that (X/q,=, ̸=,Θ) is co-ordered set and the
natural mapping ϑ : X −→ X/q is a reverse isotone function. Then there exists a
coquasiorder σ(⊆ α) on X such that σ ∪ σ−1 = q and Θ = θ.

Proof. Let q be a coequality relation on set (X,=, ̸=) and let Θ be a co-order
relation on X/q such that (X/q,=, ̸=,Θ) is an ordered set under co-order Θ. Let
σ be an relation on X defined by (x, y) ∈ σ ⇐⇒ (xq, yq) ∈ Θ. Then:

(1) The relation σ is a coquasiorder relation on X. Indeed:
Let (x, y) be an arbitrary element of σ. Then, (xq, yq) ∈ Θ. Thus, xq ̸= yq.

The last means (x, y) ∈ q. Since q is a consistent relation, then we have x ̸= y.
Let (x, z) be an arbitrary element of σ , i.e let (xq, zq) ∈ Θ hold. Hence, by

cotransitivity, we have (∀yq ∈ X/q)((xq, yq) ∈ Θ ∨ (yq, zq) ∈ Θ). Therefore, we
have (∀y ∈ X)((x, y) ∈ σ ∨ (y, z) ∈ σ).

(2) q = σ ∪ σ−1. Indeed:
Let (a, b) be an arbitrary element of q, i.e. let aq ̸= bq. Thus, by linearity of Θ

we have (aq, bq) ∈ Θ∨ (bq, aq) ∈ Θ. This means (a, b) ∈ σ ∨ (b, a) ∈ σ. So, we have
that (a, b) ∈ σ ∪ σ−1;

Opposite, let (x, y) be an element in σ ∪ σ−1, i.e. let (x, y) ∈ σ ∨ (y, x) ∈ σ.
Thus, we have (xq, yq) ∈ Θ ∨ (yq, xq) ∈ Θ. Therefore, by definition of co-order
relation, we have xq ̸= yq. Finally, we have (x, y) ∈ q.

(3) Θ = θ. In fact:

(aq, bq) ∈ Θ ⇐⇒ (a, b) ∈ σ

⇐⇒ (a(σ ∪ σ−1), b(σ ∪ σ−1)) ∈ θ

⇐⇒ (aq, bq) ∈ θ.

(4) σ ⊆ α. In fact: if (x, y) ∈ σ, then (xq, yq) ∈ θ and (x, y) ∈ α because the
natural mapping ϑ is a reverse isotone function. �

Remark 2.2. Recall that any class aq of coequality relation q, generated by the
element a ∈ X, is a strongly extensional subset of X. Besides, we have the following
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assertion, which is crucial in characterization of regular coequality relation on an
co-ordered set (X,=, ̸=, α). If q is a regular coequality relation on a co-ordered set
X, then for every q–class aq in X we have

((x, y)◃ α ∧ (y, z)◃ α ∧ x◃ aq ∧ z ◃ aq) =⇒ y ◃ aq

for any x, y, z, a ∈ X. If q is a regular coequality relation on a set X with respect
to a co-order α, then there exists a co-order relation θ on the family X/q such
that the natural function ϑ : X −→ X/q is a strongly extensive reverse isotone
mapping. Further on, there exists a coquasiorder σ under α, defined by (x, y) ∈
σ ⇐⇒ (xq, yq) ∈ θ such that σ ∪ σ−1 = q. Let t be an arbitrary element of aq.
Then (a, t) ∈ q = σ ∪ σ−1. Thus (a, t) ∈ σ ∨ (t, a) ∈ σ. Hence, we have
(a, t) ∈ σ =⇒ (a, x) ∈ σ ⊆ q ∨ (x, y) ∈ σ ⊆ α ∨ (y, t) ∈ σ ⊆ q =⇒ t ̸= y;

(t, a) ∈ σ =⇒ (t, y) ∈ σ ∨ (y, z) ∈ σ ⊆ α ∨ (z, a) ∈ σ ⊆ q =⇒ t ̸= y.

So, in both cases, we have that t ∈ aq =⇒ t ̸= y. Therefore, y ◃ aq.
On the other side, we have

((x, y)◃ α ∧ (y, z)◃ α ∧ y ∈ aq) =⇒ x ∈ aq ∨ z ∈ aq.

for any x, y, z, a ∈ X. Indeed, if x, y, z, a ∈ X such that (x, y) ◃ α and (y, z) ◃ α
and y ∈ aq, then

(a, y) ∈ q = σ ∪ σ−1 =⇒ ((a, y) ∈ σ ∨ (y, a) ∈ σ).

Thus, we have

((a, y) ∈ σ ∨ (y, a) ∈ σ) =⇒
((a, x) ∈ σ ⊆ q ∨ (x, y) ∈ σ ⊆ α)) ∨ ((y, z) ∈ σ ⊆ α ∨ (z, a) ∈ σ ⊆ q) =⇒
x ∈ aq ∨ z ∈ aq.

In this section we analyze a special case of regular coequality relation on co-
ordered set X. For a regular coequality q we say that it is a strongly regular
coequality relation on X if

α ◦ q◃ ⊆ q◃ ◦ α
holds. For a strongly regular coequality q we have the following assertion: If
coequality relation q on a set (X,=, ̸=) is a strongly regular, then the relation
α ◦ q◃ is a coquasiorder relation on X. In this part of the section we start with
the following result important for our main result of this paper and interesting by
itself:

Lemma 2.2. For any three relations α ⊆ X1×X2, β ⊆ X2×X3 and γ ⊆ X3×X4

the following inclusion

γ ∗ (β ◦ α) ⊇ (γ ∗ β) ◦ α and (γ ◦ β) ∗ α ⊇ γ ◦ (β ∗ α)
are valid.

For a strongly regular coequality q on ordered set X under co-order, we have:

Theorem 2.2. If the coequality relation q is a strongly regular, then the relation
α◦q◃ is a coquasiorder relation on X and the relation Θ = ϑ◦α◦ϑ−1 is the maximal
co-order relation on X/q.
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Proof. (I) Let q be a regular coequality relation on a ordered set (X,=, ̸=, α)
under co-order α. Then there exists a co-order Θ on X/q such that the natural
mapping ϑ : X −→ X/q is a reverse isotone function. So, it holds (∀aq, bq ∈
X/q)((aq, bq) ∈ Θ) =⇒ (a, b) ∈ α). Hence, there exists a coquasiorder ϑ−1(Θ) on
X, defined by (aq, bq) ∈ Θ ⇐⇒ (a, b) ∈ ϑ−1(Θ) such that
q = {(a, b) ∈ X ×X : ϑ(a) ̸= ϑ(b)} = {(a, b) ∈ X ×X : (aq, bq) ∈ Θ ∪Θ−1}
= {(a, b) ∈ X ×X : (aq, bq) ∈ Θ} ∪ {(a, b) ∈ X ×X : (aq, bq) ∈ Θ}
= ϑ−1(Θ) ∪ (ϑ−1(Θ))−1.
On the other hand, we have ϑ−1 ◦ α ◦ ϑ = ϑ−1(Θ) ⊆ α. Therefore, we have the
inclusion Θ ⊆ ϑ ◦ α ◦ ϑ−1. Besides, we have ϑ−1(Θ) ⊆ q◃ ◦ α ◦ q◃. Indeed: Let
(a, b) be an arbitrary element of ϑ−1(Θ). Then (aq, bq) ∈ Θ ⊆ ϑ◦α ◦ϑ−1. Thus we
conclude that there exist elements x, y ∈ X such that (aq, x) ∈ ϑ−1, (x, y) ∈ α and
(y, bq) ∈ ϑ. Since (a, aq) ∈ ϑ and (bq, b) ∈ ϑ−1, we have (a, b) ∈ ϑ−1 ◦ϑ◦α◦ϑ−1 ◦ϑ
= q◃ ◦ α ◦ q◃. Expect that, we have:

(1) α◦q◃ ⊆ q◃◦q◃◦q◃ ⊆ q◃◦α◦q◃ ⊆ q◃◦(Θ∗Θ)◦q◃ ⊆ (q◃)◦α)∗(α◦q◃) ⊆
(α ◦ q◃) ∗ (α ◦ q◃).

(2) Let us prove that the implication α ◦ q◃ ⊆ q◃ ◦α =⇒ α ◦ q◃ = q◃ ◦α ◦ q◃
is valid. In fact:

(i)α ◦ q◃ = △X ◦ α ◦ q◃ ⊆ q◃ ◦ α ◦ q◃;
(ii) q◃ ◦ α ◦ q◃ ⊆ q◃ ◦ q◃ ◦ α ⊆ q◃ ◦ α.
Therefore, if the relation q is a strongly regular coequality relation on co-ordered

set (X,=, ̸=, α), then holds α ◦ q◃ = q◃ ◦ α ◦ q◃.
(II) Let Ξ be a co-order relation on the family X/q such that the mapping

ϑ : X −→ X/q is a reverse isotone surjection. Then there exists a coquasiorder
σ = q◃ ◦ α ◦ q◃ on X such that Ξ = ϑ ◦ α ◦ ϑ−1 = Θ. �

3. On Connections

The family Coquas(X) of all coquasiorder relations in set X is a lattice ([15],
Corollary 2.1) and the family Coeq(X) all coequality relations in X is also a lattice
([16], Corollary 2.2)

Remark 3.1. Some of the colleagues who are engaged in constructive math-
ematics deny the existence of the concept of the cotransitive fulfillment of the
relation that we used in our works [12, 13, 14]. However, one can not deny the
existence of the maximal consistent and cotransitive relation on the set of X under
given relation since the following statements is true.

Let {σk}k∈J be a family of coquasiorders on a set (X,=, ̸=) all included in a
relation R. Then

∪
k∈J σk is a coquasiorder in X included in α.

Indeed. It is easy to check that
∪

k∈J σk is a consistent relation in X. Let (x, z)
be an arbitrary elements of X ×X such that (x, z) ∈

∪
k∈J σk. then there exists k

in J such that (x, z) ∈ σk. Hence, for every y ∈ X we have (x, y) ∈ σk ∨ (y, z) ∈ σk.
So, (x, y) ∈

∪
k∈J σk or (y, z) ∈

∪
k∈J σk. So, the relation

∪
k∈J σk is cotransitive.

At the other side, for every k in J holds σk ⊆ R. From this we conclude
∪

k∈J σk ⊆
R. Therefore, the relation

∪
k∈J σk is the maximal coquasiorder relation in set X

included in the relation R.
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For a set (X,=, ̸=, α) by Coeq(X,α) we denote the family of all regular coequal-
ity relations q on X with respect to α and by Coquas(X,α) denotes the family of
all coquasiorder relations on X included in α.

As a direct consequence of thinking in above remark we have the following
statements:

Theorem 3.1. Let X be an ordered set under co-order α. Then the family
Coquas(X,α) is a completely lattice. The maximal element of this lattice is the
relation α and the last element is ∅.

Proof. Let A be a subfamily of the family Coquas(X,α). Then the relation∪
a∈A σa is a coquasiorder relation included in the relation α. Also, there exist the

maximal coquasiorder relation included in
∩

a∈A σa. �
As a consequence of the Theorem 3.1, we have

Theorem 3.2. The family Coquas(X) of all coquasiorders in the set X is a
completely lattice. The maximal element of this lattice is the relation ̸= and the
last element is ∅.

In addition, a connection between families Coquas(X) and Coeq(X) is given.

Theorem 3.3. The mapping

f : Coquas(X) −→ Coeq(X),

defined by f(τ) = τ ∪ τ−1, is a strongly extensional surjective mapping. Relations

Kerf = {(τ, σ) ∈ Coquas(X)× Coquas(X) : τ ∪ τ−1 = σ ∪ σ−1}
Cokerf = {(τ, σ) ∈ Coquas(X)× Coquas(X) : τ ∪ τ−1 ̸= σ ∪ σ−1}

are associate equality and diversity relation on Coquas(X) and there the isomor-
phism Coquas(X)/(Kerf,Cokerf) ∼= Coeq(X).

Proof. The mapping f is well-defined strongly extensional function:
If τ is a coquasiorder relation on X, then f(τ) = τ ∪τ−1 is a coequality relation

on X.
Let τ and σ be elements of Coquas(X) such that τ = σ. Then f(τ) = τ∪τ−1 =

σ ∪ σ−1 = f(σ). So, the correspondence f is a function.
Suppose that f(τ) = τ ∪ τ−1 ̸= σ ∪ σ−1 = f(σ) for some τ, σ ∈ Coquas(X).

Then there exists an element (x, y) ∈ X ×X such that

((x, y) ∈ τ ∪ τ−1 ∧ (x, y)◃ σ ∪ σ−1) ∨ ((x, y) ∈ σ ∪ σ−1 ∧ (x, y)◃ τ ∪ τ−1).

In the first case, we have:
((x, y) ∈ τ ∨ (x, y) ∈ τ−1) ∧ (x, y)◃ σ ∧ (x, y)◃ σ−1 =⇒

((x, y) ∈ τ ∧ (x, y)◃ σ) ∨ ((x, y) ∈ τ−1) ∧ (x, y)◃ σ−1) ⇐⇒
((x, y) ∈ τ ∧ (x, y)◃ σ) ∨ ((y, x) ∈ τ ∧ (y, x)◃ σ) =⇒
τ ̸= σ .

In the second case we derive similar implication analogously. So, the mapping f is
strongly extensional.
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f is a surjective mapping: Let q be a coequality relation on X. Then q is
a coquasiorder relation on X and, by symmetric, q−1 = q. Thus we have q ∈
Coquas(X) and f(q) = q ∪ q−1 = q.

Finally, the correspondence Coquas(X)/(Kerf,Cokerf) −→ Coeq(X) is a
strongly extensional, embedding, injective and surjective mapping. �

In the following assertion we give another main result of this paper:

Theorem 3.4. The mapping

g : Coquas(X,α)/(Kerf,Cokerf) −→ Coeq(X,α),

defined by g(τKerf) = τ ∪ τ−1, is a strongly extensional embedding, injective and
surjective function.

Proof. (1) The mapping g is well-defined strongly extensional function:
If τ is a coquasiorder relation on X, then q = τ ∪ τ−1 is a coequality relation

on X. Then there exists a co-order relation θ on X/q defined by (aq, bq) ∈ θ ⇐⇒
(a, b) ∈ τ and the natural mapping ϑ : X −→ X/q is reverse isotone. This means
that g(τKerf) = τ ∪ τ−1 = q ∈ Coeq(X,α).

Let τ and σ be elements of Coquas(X,α) such that τKerf = σKerf . Then
(τ, σ) ∈ Kerf and g(τKerf) = τ ∪ τ−1 = σ ∪ σ−1 = g(σKerf).

Suppose that g(τKerf) = τ ∪ τ−1 ̸= σ ∪ σ−1 = g(σKerf) for some τ, σ ∈
Coquas(X). Then there exists an element (x, y) ∈ X ×X such that

((x, y) ∈ τ ∪ τ−1 and (x, y)◃ σ ∪ σ−1) or ((x, y) ∈ σ ∪ σ−1 and (x, y)◃ τ ∪ τ−1).

In the first case, we have:

((x, y) ∈ τ ∨ (x, y) ∈ τ−1) ∧ (x, y)◃ σ ∧ (x, y)◃ σ−1 =⇒
((x, y) ∈ τ ∧ (x, y)◃ σ) ∨ ((x, y) ∈ τ−1) ∧ (x, y)◃ σ−1) ⇐⇒
((x, y) ∈ τ ∧ (x, y)◃ σ) ∨ ((y, x) ∈ τ ∧ (y, x)◃ σ) =⇒
τ ̸= σ.

In the second case we derive similar implication analogously.

(2) g is an injective function. In fact: Let τ and σ be elements of Coquas(X,α)
such that g(τKerf) = τ ∪ τ−1 = σ ∪ σ−1 = g(σKerf). Then, (τ, σ) ∈ Kerf and
τKerf = σKerf .

(3) g is an embedding. Indeed, let τ and σ be elements of Coquas(X,α) such that
τKer ̸= σKerf , i.e such that (τ, σ) ∈ Cokerf . It means g(τKerf) = τ ∪ τ−1 ̸=
σ ∪ σ−1 = g(σKerf).

(4) g is a surjective function: Let q be a regular coequality relation on X with
respect to α , i.e. let q be a coequality relation on X such that there exists a
co-order θ on X/q and the natural mapping ϑ : X −→ X/q is reverse isotone. Then
there exists a coquasiorder σ (⊆ α) on X such that σ ∪ σ−1 = q and Θ = θ. Thus,
σ ∈ Coquas(X,α) and g(σKerf) = σ ∪ σ−1 = q. �

Example 3.1. Let X = {a, b, c, d} be a set,

α = {(a, b), (a, c), (a, d), (b, a), (c, a), (c, b), (d, a), (d, b), (d, c)}
be a co-order relation on X and
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q = {(a, c), (a, d), (b, c), (b, d), (c, a), (c, b), (d, a), (d, b)}
be a coequality relation on X. Then

X/q = {aq = {c, d}, bq = {c, d}, cq = {a, b}, dq = {a, b}}.
Now we can define co-oreder θ on X/q by

θ = {(aq, cq), (aq, dq), (bq, cq), (bq, dq)}.
In addition, there exists the coquasiorder τ = {(a, c), (a, d), (b, c), (b, d)} on X such
that q = τ ∪ τ−1. It is clear that the mapping ϑ : X −→ X/q is reverse isotone.
So, the coequality relation q is regular.
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[7] S. Crvenković, M. Mitrović and D. A. Romano. Notions of (Constructive) Semigroups with
Apartness, Semigroup Forum, 92(3)(2016), 659-674 (DOI 10.1007/s00233-016-9776-y);

[8] A. Heyting. Intuitionism. An Introduction. North-Holland, Amsterdam 1956.
[9] R. Mines, F. Richman and W.Ruitenburg. A Course of Constructive Algebra; Springer, New

York 1988.
[10] D. A. Romano. Coequality relations, a survey; Bull.Soc.Math.Banja Luka, 3(1996), 1-36.
[11] D. A. Romano: A Note on Quasi-antiorder in Semigroup; Novi Sad J. Math., 37(1)(2007),

3-8.
[12] D. A. Romano: On Regular Anticongruence in Anti-ordered Semigroups; Publications de

l’Institut Mathmatique, 81(95)(2007), 95-102
[13] D. A. Romano: An Isomorphism Theorem for Anti-ordered Sets; Filomat, 22(1)(2008),

145-160
[14] D. A. Romano: The Lattice of Regular Coequalities; Miskolc Math. Notes, 11(2)(2010),

175-181
[15] D. A. Romano: On Coequality Relation and its Copartition on Set with Apartness (To

appear)
[16] D. A. Romano: Some Important Classes of Subsets in Sets with Apartnesss (To appear)
[17] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduction, Vol. I;

Vol. II; North-Holland, Amsterdam 1988.

Received by editors 09.03.2016; Revised 24.05.2016; Available online 29.08.2016
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