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Abstract. In this paper, we prove some strong convergence theorems of the
modified Mann iteration with errors for a new class of nonlinear mappings in

real Banach spaces. Our results not only employ a simple proof technique, but
also extend some well known results in this area of research.

1. Introduction and Preliminaries

We denote by J the normalized duality mapping from X into 2x
∗
by

J(x) = {f ∈ X∗ : ⟨x, f⟩ = ∥x∥2 = ∥f∥2},

for all x ∈ X, where X∗ denotes the dual space of real Banach space X and
⟨., .⟩ denotes the generalized duality pairing between elements of X and X∗. The
normalized duality mapping J has the following properties:
(i) J is an odd mapping, i.e., J(−x) = −J(x).
(ii) J is positive homogenous, i.e., for any λ > 0, J(λx) = λJ(x).
(iii) J is bounded, i.e., for any bounded subset A of X, J(A) is a bounded ubset of
X∗.
(iv) If X is smooth (or X∗ is strictly convex), then J is single-valued.

In the sequel, we denote the single-valued normalized duality mapping by j. In
the Hilbert space H, j is the identity mapping.

Goebel- Kirk [5] and Schu [17] introduced the asymptotically nonexpansive and
asymptotically pseudocontractive mappings respectively.
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Let K be a nonempty subset of real Banach space X.

Definition 1.1. A mapping T is called asymptotically nonexpansive if for each
x, y ∈ K

∥Tnx− Tny∥ 6 k∥x− y∥ 6 kn∥x− y∥2,∀n > 1,

where (kn) ⊂ [1,∞) with limn→∞kn = 1.

Definition 1.2. A mapping T is called asymptotically pseudocontractive with
the sequence(kn) ⊂ [1,∞) if and only if limn→∞kn = 1, and for all n ∈ N and all
x, y ∈ K , there exists j(x− y) ∈ J(x− y) such that

< Tnx− Tny, j(x− y) >6 kn∥x− y∥2, ∀n > 1.

Definition 1.3. A mapping T is called uniformly L− Lipschitzian if, for any
x, y ∈ K, there exists a constant L > 0 such that

∥Tnx− Tny∥ 6 L∥x− y∥, ∀n > 1.

It is easy to see that every asymptotically nonexpansive mapping is asymptot-
ically pseudocontractive. However, the converse is not true in general. Therefore,
it is of interest to study these mappings in the theory of fixed point and its appli-
cations.

In recent years, some authors have given much attention to iterative methods
for approximating fixed points of Lipschitz asymptotically type of some nonlinear
mappings (see [1-5, 7, 8, 10-19]).

In [1], Chang extended the results of Schu [17] to a real uniformly smooth
Banach space and proved the following theorem:

Theorem 1.1. ([1]). Let E be a real uniformly smooth Banach space, K be
a nonempty bounded closed convex subset of E, T : K → K be an asymptotically
pseudocontractive mapping with a sequence kn ⊂ [1,∞) with kn → 1 and F (T ) ̸= ∅,
where F (T ) is the set of fixed points of T in K. Let {αn}∞n=0 be a sequence in [0, 1]
satisfying the following conditions:
(i) limn→∞ αn = 0
(ii)

∑∞
n=0 αn = ∞.

For any x0 ∈ K, let {xn}∞n=0 be the iterative sequence defined by

xn+1 = (1− αn)xn + αnT
nxn, n > 0.

If there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0
such that

< Tnxn − ρ, j(xn − ρ) >6 kn∥xn − ρ∥2 − Φ(∥xn − ρ∥), n > 0 (1.1)

where ρ ∈ F (T ) is some fixed point of T in K, then xn → ρ as n → ∞.
The iteration process of Theorem 1.1 is a modification of the well-known Mann

iteration process (see, e.g., [9]).

Remark 1.1. Theorem 1.1, as stated is a modification of Theorem 2.1 of Chang
[1] who actually included error terms in his iteration process.
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Ofoedu [14] used the modified Mann iteration process (1.1) introduced by Schu
[17] to obtain a strong convergence theorem for uniformly Lipschitzian asymptot-
ically pseudocontractive mapping in real Banach space setting. He proved the
following theorem:

Theorem 1.2. ([14]). Let E be a real Banach space, K be a nonempty closed
convex subset of E, T : K → K , be a uniformly L-Lipschitzian asymptotically
mappings with a sequence kn ⊂ [1,∞) , kn → 1 such that ρ ∈ F (T ), where F (T ) is
the set of fixed points of T in K. Let {αn}∞n=0 be a sequence in [0, 1] satisfying the
following conditions:
(i)

∑∞
n=0 αn = ∞

(ii)
∑∞

n=0 α
2
n < ∞

(iii)
∑∞

n=0 βn < ∞
(iv)

∑∞
n=0 αn(kn − 1) < ∞.

For any x0 ∈ K, let {xn}∞n=0 be the iterative sequence defined by (1.1).
If there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0

such that
< Tnxn − ρ, j(xn − ρ) >6 kn∥xn − ρ∥2 − Φ(∥xn − ρ∥)

for all x ∈ K, then {xn}∞n=0 converges strongly to ρ.

Obviously, this result extends Theorem 1.2 of Chang [1] from a real uniformly
smooth Banach space to an arbitrary real Banach space and removes the bound-
edness condition imposed on K.
It is important to note the following remark:

Remark 1.2. (Remark 2, p. 567, of Rafiq [15]). One can see that, with∑∞
n=0 αn = ∞ the conditions

∑∞
n=0 α

2
n < ∞ and

∑∞
n=0 αn(kn − 1) < ∞ are not

always true. Let us take αn = 1√
n
and kn = 1+ 1√

n
, then obviously

∑∞
n=0 αn = ∞,

but
∑∞

n=0 α
2
n = ∞ =

∑∞
n=0 αn(kn−1). Hence the results of Ofoedu [14] and Chang

et al. [3] need to be improved.

Sahu [16] recently introduced the following new class of nonlinear map which
is more general than the class of uniformly L- Lipschitzian mappings.

Let K be a subset of a normed space X and let {a′n}n>0 be a sequence in [0,∞)
such that limn→∞a′n = 0.

A mapping T : K → K is called nearly Lipschitzian with respect to {a′n} if for
each n ∈ N , there exists a constant kn > 0 such that

∥Tnx− Tny∥ 6 kn(∥x− y∥+ a′n), ∀ x, y ∈ K. (1.2)

Define

µ(Tn) = sup{ ||T
nx− Tny||

||x− y||+ a′n
: x, y ∈ K,x ̸= y}.

Observe that for any sequence {kn}n > 1 satisfying (1.1) µ(Tn) 6 kn ∀n ∈ N and
that

∥Tnx− Tny∥ 6 µ(Tn)(∥x− y∥+ a′n), ∀ x, y ∈ K
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µ(Tn) is called the nearly Lipschitz constant of the mapping T . A nearly Lips-
chitzian mapping T is said to be
(i) nearly contraction if µ(Tn) < 1 for all n ∈ N ;
(ii) nearly nonexpansive if µ(Tn) = 1 for all n ∈ N ;
(iii) nearly asymptotically nonexpansive if µ(Tn) > 1 for all n ∈ N and
limn→∞ µ(Tn) = 1;
(iv) nearly uniformly L− Lipschitzian if µ(Tn) 6 L for all n ∈ N ;
(v) nearly uniformly k− contraction if µ(Tn) 6 k < 1 for all n ∈ N.
A nearly Lipschitzian mapping T with sequence {a′n} is said to be nearly uniformly
L− Lipschitzian if kn = L for all n ∈ N .

Observe that the class of nearly uniformly L− Lipschitzian mapping is more
general than the class of uniformly L− Lipschitzian mappings.

Example 1.1. (see Sahu[16]) Let X = R, K = [0, 1]. Define T : K → K by

Tx = { 1/2, x ∈ [0, 1/2),
0, x ∈ (1/2, 1].

It is obvious that T is not continuous, and thus not Lipschitz. However, T is nearly
nonexpansive. In fact, for a real sequence {a′n}n > 1 with a′1 = 1

2 and a′n → 0 as
n → ∞, we have

||Tx− Ty|| 6 ||x− y||+ a′1, ∀x, y ∈ K

and
||Tnx− Tny|| 6 ||x− y||+ a′n, ∀x, y ∈ K, n > 2.

This is because Tnx = 1
2 ,∀x ∈ [0, 1], n > 2.

Remark 1.3. The class of nearly uniformly L− Lipschitzian is not necessarily
continuous. In recent times, some authors have given much attention to this new
class of mappings in Banach spaces (see [10] and references there in).

The aim of this paper is, by using an easy quite different analytical method,
to prove some strong convergence theorems for a new class of nonlinear map. Our
results include some well known recent results in [1-3, 5, 7, 10-16].

For our main purpose, we recall the following.

Definition 1.4. ([18]) For arbitrary x1 ∈ K, the sequence {xn}∞n=1 in K
defined by

xn+1 = (1− an − cn)xn + anT
nxn + cnun, n > 1, (1.3)

where {an}∞n=1 and {cn}∞n=1 are sequences in [0, 1] with an + cn 6 1 and {un}∞n=1

is a bounded sequence of K.

We observe that the iteration process (1.3) is well defined and is a generalization
of the modified Mann iteration (1.1). This is evident by specialising some of the
parameters. Indeeed, when cn = 0 and αn = an, then (1.3) reduces to (1.1) which
is used by several authors working in this area of research.

Lemma 1.1. ([1, 4]) Let X be real Banach Space and J : X → 2X
∗
be the

normalized duality mapping. Then, for any x, y ∈ X

∥x+ y∥2 6 ∥x∥2 + 2 < y, j(x+ y) >,∀j(x+ y) ∈ J(x+ y).
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Lemma 1.2. ([12]) Let Φ : [0,∞) → [0,∞) be an increasing function with
Φ(x) = 0 ⇔ x = 0 and let {bn}∞n=0 be a positive real sequence satisfying

∞∑
n=0

bn = +∞ and lim
n→∞

bn = 0.

Suppose that {an}∞n=0 is a nonnegative real sequence. If there exists an integer
N0 > 0 satisfying

a2n+1 < a2n + o(bn)− bnΦ(an+1), ∀n > N0

where limn→∞
o(bn)
bn

= 0, then limn→∞ an = 0.

2. Main results

First of all, we give a new concept.
Let K be a subset of a normed space X and let {a′n}n>1 be a sequence in [0,∞)

such that limn→∞a′n = 0.

Definition 2.1. A mapping T : K → K is called nearly weak uniformly
Lipschitzian with respect to {a′n} if for each n ∈ N , there exists a constant kn > 0
such that

∥Tnx− Tny∥ 6 L(∥x− y∥+ a′n), ∀ x ∈ K, y ∈ F (T ). (1.2)

It is easy to see that if T has a bounded range, then it is nearly weak uniformly
Lipschitzian. In fact, since R(Tn) ⊂ R(T ), then

supx∈K∥Tnx∥ 6 supx∈K∥Tn−1x∥ 6 · · · 6 supx∈K∥Tx∥ 6 x,

thus

∥Tnx− Tny∥ 6 ∥Tx− Ty∥ 6 (∥x− y∥) 6 L(∥x− y∥+ a′n),

where x ∈ K, y ∈ F (T ). On the contrary, it may not be true in general.

In the following, we prove the main result of this paper.

Theorem 2.1. Let X be a real Banach space, K be a nonempty closed con-
vex subset of X, T : K → K be a nearly weak uniformly L-Lipschitzian map-
ping with sequence {a′n}. Let kn ⊂ [1,∞) and ϵn be sequences with limn→∞ kn =
1, limn→∞ ϵn = 0 and F (T ) = {ρ ∈ K : Tρ = ρ} ̸= ∅. Let {an}∞n=1 and {cn}∞n=1

be two real sequences in [0, 1] satisfying the following conditions:
(i) an + cn 6 1;
(ii) an, cn → 0 as n → ∞ and cn = o(an);
(iii)

∑
n>1 an = ∞.

For arbitrary x1 ∈ K, let {xn}n>1 be iteratively defined by (1.3). If there exists a
strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

< Tnx− Tnρ, j(x− ρ) >6 kn∥x− ρ∥2 − Φ(∥x− ρ∥) + ϵn

for all n > 1, then, {xn}n>1 converges strongly to ρ of T.
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Proof. Since there exists a strictly increasing continuous function

Φ : [0,∞) → [0,∞)

with Φ(0) = 0 such that

⟨Tnx− Tnρ, j(x− ρ)⟩ 6 kn∥x− ρ∥2 − Φ(∥x− ρ∥) + ϵn, (2.1)

for x ∈ K, ρ ∈ F (T ), that is

ϵn + ⟨kn(x− ρ)− (Tnx− ρ), j(x− ρ)⟩ > Φ(∥x− ρ∥). (2.2)

To ensure that Φ−1(r0) is well defined, choose some x1 ∈ K and x1 ̸= Tx1 such
that r0 = ϵn+(kn+L)∥x1−ρ∥2+L∥x1−ρ∥2, where R(Φ) is the range of Φ. Indeed,
if Φ(r) → +∞ as r → ∞, then r0 ∈ R(Φ); if sup{Φ(r) : r ∈ [0,∞]} = r1 < +∞
with r1 < r0, then ρ ∈ K, there exists a sequence {ηn} in K such that ηn → ρ
as n → ∞ with ηn ̸= ρ. Clearly, Tηn → Tρ as n → ∞ thus {ηn − Tηn}
is a bounded sequence. Therefore, there exists a natural number n0 such that
ϵn+(kn+L)∥ηn−ρ∥2+L∥ηn−ρ∥2 < r1

2 for n > n1, and then we redefine x1 = ηn0

and ϵn + (kn + L)∥x1 − ρ∥2 + L∥x1 − ρ∥2 ∈ R(Φ).

Step 1. We first show that {xn}∞n=1 is a bounded sequence.
Set R = Φ−1(r0), then from above (2.2), we obtain that ∥x1 − ρ∥ 6 R. Denote

B1 = {x ∈ K : ∥x− ρ∥ 6 R}, B2 = {x ∈ K : ∥x− ρ∥ 6 2R},

M∗ = supn{∥un − ρ∥}. (2.3)

Now, we want to prove that xn ∈ B1. If n = 1, then x1 ∈ B1. Now assume
that it holds for some n, that is, xn ∈ B1. Suppose that, it is not the case, then
∥xn+1 − ρ∥ > R.
Since {a′n} ∈ [0,∞] with a′n → 0 as n → ∞, set M = supn{a′n : n ∈ N}. Denote

τ0 = min{1, R
(L(R+M)+M∗) ,

Φ(R)
12R2 ,

Φ(R)
16R(R+M∗) ,

Φ(R)
16RL[(2+L)R+(2M+M∗)] ,

Φ(R)
8 }.
(2.4)

Since limn→∞ an, cn = 0 and limn→∞ kn = 1. Without loss of generality, let
0 6 an, cn, kn − 1, ϵn 6 τ0, cn < anτ0 for any n > 1. Thus, we get

∥xn+1 − ρ∥ 6 (1− an − cn)∥xn − ρ∥+ an∥Tnxn − Tnρ∥+ cn∥un − ρ∥
6 R+ anL(R+M) + cM∗

6 R+ τ0(L(R+M) +M∗)

6 2R,
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and

∥Tnxn+1 − Tnxn∥ 6 L(∥xn+1 − xn∥+ a′n)

6 anL∥Tnxn − xn∥+ cnL∥un − xn∥+ a′nL)

6 anL(∥xn − ρ∥+ ∥Tnxn − Tnρ∥)
+cnL(∥un − ρ∥+ ∥xn − ρ∥) + a′nL)

6 anL(R+ L(R+M)) + cnL(M
∗ +R) + a′nL)

6 τ0L[((1 + L)R+M) + (M∗ +R) +M ]

= τ0L[(2 + L)R+ (2M +M∗)]

6 Φ(R)
16R .

(2.4)

Using Lemma 1.1 and the above estimates, we have

∥xn+1 − ρ∥2 6 (1− an)
2∥xn − ρ∥2 + 2an < Tnxn − xn, j(xn+1 − ρ) >

+2cn < un − xn, j(xn+1 − ρ) >

= (1− an)
2∥xn − ρ∥2 + 2an < Tnxn+1 − xn+1, j(xn+1 − ρ) >

+2cn < un − xn, j(xn+1 − ρ) >

+2an < Tnxn − Tnxn+1, j(xn+1 − ρ) >

6 (1− an)
2∥xn − ρ∥2

+2an(kn∥xn+1 − ρ∥2 − Φ(∥xn+1 − ρ∥) + ϵn)

+2an(∥Tnxn+1 − Tnxn∥)∥xn+1 − ρ∥
+2cn∥un − xn∥∥xn+1 − ρ∥

6 (1− an)
2R2 + 2an(kn∥xn+1 − ρ∥2 − Φ(R) + ϵn)

+ 2an

16RΦ(R)2R+ 2cn(R+M∗)2R

6 (1− an)
2R2 + 2an(kn∥xn+1 − ρ∥2 − Φ(R) + ϵn)

+ 2an

16RΦ(R)2R+ 2anτ0(R+M∗)2R

6 R2 + 2an[(kn − 1) + an

2 ]R2 − 2anΦ(R) + 2anϵn

+ an

4RΦ(R) + 2anτ0(R+M∗)2R

6 R2 + 2an[τ0 +
τ0
2 ]R

2 − 2anΦ(R) + 2anτ0

+ an

4RΦ(R) + 2anτ0(R+M∗)2R

= R2 + 3anτ0R
2 − 2anΦ(R) + 2anτ0

+ an

4RΦ(R) + 2anτ0(R+M∗)2R

6 R2.
(2.5)

which is a contradiction. Hence {xn}∞n=1 is a bounded sequence.

Step 2. We want to prove that ∥xn − ρ∥ → 0 as n → ∞. Let

Mo = supn{∥xn − ρ∥}+ supn{∥un − ρ∥}.
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Observe that

∥xn+1 − xn∥ 6 anL∥Tnxn − xn∥+ cnL∥un − xn∥+ a′nL)

6 anL(∥xn − ρ∥+ ∥Tnxn − Tnρ∥)
+cnL(∥un − ρ∥+ ∥xn − ρ∥))

6 anL(∥xn − ρ∥+ L(∥xn − ρ∥+ a′n)

+cnL(∥un − ρ∥+ ∥xn − ρ∥))
6 anL((1 + L)Mo +M)) + 2MocnL.

(2.6)

Employing Lemma 1.2, (2.5) and (2.6), we have

∥xn+1 − ρ∥2 6 (1− an)
2∥xn − ρ∥2 + 2an < Tnxn − xn, j(xn+1 − ρ) >

+2cn < un − xn, j(xn+1 − ρ) >

= (1− an)
2∥xn − ρ∥2 + 2an < Tnxn+1 − xn+1, j(xn+1 − ρ) >

+2cn < un − xn, j(xn+1 − ρ) >

+2an < Tnxn − Tnxn+1, j(xn+1 − ρ) >

6 (1− an)
2∥xn − ρ∥2

+2an(kn∥xn+1 − ρ∥2 − Φ(∥xn+1 − ρ∥) + ϵn)

+2an(∥Tnxn+1 − Tnxn∥)∥xn+1 − ρ∥
+2cn∥un − xn∥∥xn+1 − ρ∥

6 ∥xn − ρ∥2

+2an(kn − 1)M2
o + a2nM

2
o − anΦ(∥xn+1 − ρ∥) + 2anϵn)

+2anL(∥xn+1 − xn∥+ a′n)Mo

+2cnM
2
o

6 ∥xn − ρ∥2 − anΦ(∥xn+1 − ρ∥) +Qn

(2.7)
where

Qn = 2an(kn − 1)M2
o + a2nM

2
o + 2anϵn) + 2anL(∥xn+1 − xn∥+ a′n)Mo + 2cnM

2
o .

By Lemma 1.2, we obtain that

lim
n→∞

∥xn − ρ∥ = 0,

i.e., xn → ρ as n → ∞. This completes the proof. �

We have the following corollary from Theorem 2.1.

Corollary 2.1. Let X be a real Banach space, K be a nonempty closed con-
vex subset of X, T : K → K be a nearly weak uniformly L-Lipschitzian map-
ping with sequence {a′n}. Let kn ⊂ [1,∞) and ϵn be sequences with limn→∞ kn =
1, limn→∞ ϵn = 0 and F (T ) = {ρ ∈ K : Tρ = ρ} ≠ ∅. Let {αn}n>1 be a
real sequence in [0, 1] satisfying the following conditions: (i) limn→∞ αn = 0;
(ii)

∑
n>1 αn = ∞. For arbitrary x1 ∈ K, let {xn}n>1 be iteratively defined by
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(1.1). If there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0
such that

< Tnx− Tnρ, j(x− ρ) >6 kn∥x− ρ∥2 − Φ(∥x− ρ∥) + ϵn

for all n > 1, then, {xn}n>1 converges strongly to ρ of T.

Now, we give an example to illustrate the validity of our Theorem 2.1.

Example 2.1. Let X = R and K = [0,∞). Define a mapping T : K → K by

Tx =
x3

1 + x2
, ∀x ∈ K

Clearly, T is nearly weak uniformly Lipschitzian with ρ = 0 ∈ K and a′n = 0 for all
n.
Define Φ : [0,∞) → [0,∞) by

Φ(t) =
t2

1 + nt2

then, Φ is a strictly increasing function with Φ(0) = 0. For all x ∈ K, ρ ∈ F (T ),
we have that operator T in Theorem 2.1 satisfies

< Tnx− Tnρ, j(x− ρ) >6 kn∥x− ρ∥2 − Φ(∥x− ρ∥) + ϵn

with the sequences kn = 1 and ϵn = x2

1+nx2 .

Remark 2.1. Theorem 2.2 remains true for the so-called modified Ishikawa-
type iteration scheme. This is a modification of the scheme introduced by Ishikawa
in [6]. There is no further generality obtained in using the cumbersome-Ishikawa
iteration process, rather than the iteration process considered in this paper.
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