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Abstract. The aim of this paper is to prove a coincidence point theorem for

a class of self mappings satisfying nonexpansive type condition under various
conditions and a fixed point theorem is also obtained. Our results extend and
generalizes the corresponding result of Singh et al. [7].

1. INTRODUCTION AND PRELIMINARIES

The concept of 2-metric space was introduced by Gähler ([2, 3, 4]) whose ab-
stract properties were suggested by the area function in Euclidean space. Employing
various contractive conditions Iseki [5] setout the tradition of proving fixed point
theorems in 2-metric spaces. Later on, Naidu and Prasad [6] contributed few fixed
point theorems in 2-metric spaces introducing the concept of weak commutativity.

Recently, Singh et al. sg proved a fixed point theorem in 2-metric space for
nonexpansive type mappings. They obtained the following result:

Theorem 1.1. Let (X, d) be a 2-metric space and T : X → X be a self mapping
satisfying the following nonexpansive type condition:

d(Tx, Ty, u) ≤

amax{d(x, y, u), d(x, Tx, u), d(y, Ty, u), 1
2
[d(x, Ty, u) + d(y, Tx, u)]}

+ bmax{d(x, Tx, u), d(y, Ty, u)}+ c[d(x, Ty, u) + d(y, Tx, u)](1.1)

for all x, y, u ∈ X, where a, b, c are real numbers such that a + b + 2c = 1 and
a ≥ 0, b > 0, c > 0. Then T has a unique fixed point and T is continuous at the
fixed point.

In this paper, we introduce a new class of self mappings satisfying the following
nonexpansive type condition:

d(Tx, Ty, u) ≤ a(x, y)max{d(fx, fy, u), d(fy, Ty, u)}
+ bmax{d(fx, Tx, u), d(fy, Ty, u), d(y, Tx, u)}
+ c[d(fx, Ty, u) + d(fy, Tx, u)](1.2)

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Coincidence point, Fixed point, Nonexpansive type mapping, 2-

metric space.

181



182 PANKAJ KUMAR JHADE, R. A. RASHWAN, AND A S SALUJA

for all x, y, u ∈ X, where a, b, c are real numbers such that sup{a(x, y) + b(x, y) +
2c(x, y)} = 1 and a(x, y) ≥ 0, β = inf b(x, y) > 0, γ = inf c(x, y) > 0. Our

condition is an extension of that of Ćirić ([1])(see also [8]).
Also, we will show that our condition (1.2) includes the above condition (1.1)

of S. L. Singh et al. [7].
Now we give some definitions which are used frequently to prove our main

results.
Gähler defined 2-metric space as follows:

Definition 1.1. A 2-metric on a set X with at least three points is a non-
negative real-valued mapping d : X×X×X → R satisfying the following properties:

(1) To each pair of points a, b with a ̸= b in X there is a point c ∈ X such
that d(a, b, c) ̸= 0.

(2) d(a, b, c) = 0, if at least two of the points are equal,
(3) d(a, b, c) = d(b, c, a) = d(a, c, b),
(4) d(a, b, c) ≤ (a, b, u) + d(a, u, c) + d(u, b, c) for all a, b, c, u ∈ X.

The pair (X, d) is called a 2-metric space.

Definition 1.2. The sequence {xn} is convergent to x ∈ X and x is the limit
of this sequence if limn→∞ d(xn, x, u) = 0 for each u ∈ X.

Definition 1.3. A sequence {xn} is called Cauchy sequence if

limn,m→∞ d(xn, xm, u) = 0

for all u ∈ X. A 2-metric space in which every Cauchy sequence is convergent is
called complete.

Definition 1.4. Let f and g be two self mappings of a 2-metric space (X, d).
Then f and g are said to be compatible if limn→∞ d(fgxn, gfxn, u) = 0 for each
u ∈ X, whenever {xn} is a sequence such that

limn→∞ fxn = limn→∞ gxn = t ∈ X.

2. MAIN RESULTS

Theorem 2.1. Let (X, d) be a 2-metric space. Let T, f be self mappings of X
satisfying nonexpansive type condition (1.2) with sup{a(x, y)+b(x, y)+2c(x, y)} = 1
and a(x, y) ≥ 0, β = inf b(x, y) > 0, γ = inf c(x, y) > 0. Let T (X) ⊆ f(X) and
either
(a) X is complete and f is surjective, or,
(b) X is complete, f is continuous and T, f are compatible, or
(c) f(X) is complete, or
(d) T (X) is complete.
Then f and T have a coincidence point in X . Further, the coincidence point is
unique, that is, fp = fq, whenever fp = Tp and fq = Tq; p, q ∈ X.

Proof. Let x = x0 be an arbitrary point in X. Since T (X) ⊆ f(X), choose x1

so that y1 = fx1 = Tx0. In general, choose xn+1 such that yn+1 = fxn+1 = Txn

for all n = 0, 1, 2, · · · .
On applying inequality (1.2) and taking a(xn, xn+1) = a, b(xn, xn+1) = b and
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c(xn, xn+1) = c, we get

d(fxn+2, fxn+1, fxn) = d(Txn+1, Txn, fxn)

≤ amax{d(fxn+1, fxn, fxn), d(fxn+1, Txn+1, fxn)}
+ bmax{d(fxn, Txn, fxn), d(fxn+1, Txn+1, fxn+1)

, d(fxn+1, Txn, fxn)}
+ c[d(fxn, Txn+1, fxn) + d(fxn+1, Txn, fxn)]

= (a+ b)d(fxn+1, Txn+1, fxn)

= (a+ b)d(fxn+2, fxn+1, fxn)

This implies that

(1− (a+ b))d(fxn+2, fxn+1, fxn) ≤ 0

Since 1− (a+ b) > 0, we get

(2.1) d(fxn+2, fxn+1, fxn) = 0

On applying inequality (1.2) again and using triangular inequality and (2.1), we
get

d(Txn, Txn+1, u) ≤ amax{d(fxn, fxn+1, u), d(fxn+1, Txn+1, u)}
+ bmax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)

, d(fxn+1, Txn, u)}
+ c[d(fxn, Txn+1, u) + d(fxn+1, Txn, u)]

≤ amax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)}
+ bmax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)}
+ cd(fxn, Txn+1, u)

= amax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)}
+ bmax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)}
+ c[d(fxn, Txn+1, Txn) + d(fxn, Txn, u)

+ d(Txn+1, Txn, u)]

= amax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)}
+ bmax{d(fxn, Txn, u), d(fxn+1, Txn+1, u)}
+ c[d(fxn, Txn, u) + d(fxn+1, Txn+1, u)](2.2)

Suppose that, for some n, d(fxn+1, Txn+1, u) > d(fxn, Txn, u), then from
(2.2),we have

d(fxn+1, Txn+1, u) = d(Txn, Txn+1, u)

≤ ad(fxn+1, Txn+1, u) + bd(fxn+1, Txn+1, u)

+ c[d(fxn+1, Txn+1, u) + d(fxn+1, Txn+1, u)]

= (a+ b+ 2c)d(fxn+1, Txn+1, u)

≤ d(fxn+1, Txn+1, u)

a contradiction. Hence we must have, d(fxn+1, Txn+1, u) ≤ d(fxn, Txn, u),or
equivalently,

(2.3) d(Txn, Txn+1, u) ≤ d(Txn−1, Txn, u)
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On applying inequality (1.2) again and evaluating a, b, c at (xn−1, xn), we have

d(yn, yn+1, u) = d(Txn−1, Txn, u)

≤ amax{d(fxn−1, fxn, u), d(fxn, Txn, u)}
+ bmax{d(fxn−1, Txn−1, u), d(fxn, Txn, u)

, d(fxn, Txn−1, u)}
+ c[d(fxn−1, Txn, u) + d(fxn, Txn−1, u)]

= amax{d(Txn−2, Txn−1, u), d(Txn−1, Txn, u)}
bmax{d(Txn−2, Txn−1, u), d(Txn−1, Txn, u)}
+ cd(Txn−2, Txn, u)

= ad(Txn−2, Txn−1, u) + bd(Txn−2, Txn−1, u)

+ cd(Txn−2, Txn, u)(2.4)

On applying inequality (1.2) again and using (2.1), (2.3) and by triangular inequal-
ity, we get

d(Txn−2, Txn, u) ≤ amax{d(fxn−2, fxn, u), d(fxn, Txn, u)}
+ bmax{d(fxn−2, Txn−2, u), d(fxn, Txn, u)

, d(fxn, Txn−2, u)}
+ c[d(fxn−2, Txn, u) + d(fxn, Txn−2, u)]

= amax{d(Txn−3, Txn−1, u), d(Txn−1, Txn, u)}
+ bmax{d(Txn−3, Txn−2, u), d(Txn−1, Txn, u)

, d(Txn−1, Txn−2, u)}
+ c[d(Txn−3, Txn, u) + d(Txn−1, Txn−2, u)]

≤ amax{d(Txn−3, Txn−2, Txn−1) + d(Txn−3, Txn−2, u)

+ d(Txn−2, Txn−1, u), d(Txn−1, Txn, u)}
+ bmax{d(Txn−3, Txn−2, u), d(Txn−1, Txn, u)

, d(Txn−1, Txn−2, u)}
+ c[d(Txn−3, Txn−2, Txn) + d(Txn−3, Txn−2, u)

+ d(Txn−2, Txn, u) + d(Txn−1, Txn−2, u)]

≤ amax{d(Txn−3, Txn−2, Txn−1) + d(Txn−3, Txn−2, u)

+ d(Txn−2, Txn−1, u), d(Txn−1, Txn, u)}
+ bmax{d(Txn−3, Txn−2, u), d(Txn−1, Txn, u)

, d(Txn−1, Txn−2, u)}
+ c[d(Txn−3, Txn−2, Txn−1) + d(Txn−3, Txn−1, Txn)

+ d(Txn−2, Txn−1, Txn) + d(Txn−3, Txn−2, u)

+ d(Txn−2, Txn−1, Txn) + d(Txn, Txn−1, u)

+ d(Txn−2, Txn−1, u) + d(Txn−1, Txn−2, u)]
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= amax{d(Txn−3, Txn−2, u) + d(Txn−2, Txn−1, u)

, d(Txn−1, Txn, u)}
+ bmax{d(Txn−3, Txn−2, u), d(Txn−1, Txn, u)

, d(Txn−1, Txn−2, u)}
+ c[d(Txn−3, Txn−1, Txn) + d(Txn−3, Txn−2, u)

+ d(Txn, Txn−1, u) + d(Txn−2, Txn−1, u)

+ d(Txn−1, Txn−2, u)]

≤ amax{2d(Txn−3, Txn−2, u), d(Txn−3, Txn−2, u)}
+ bmax{d(Txn−3, Txn−2, u), d(Txn−3, Txn−2, u)

, d(Txn−3, Txn−2, u)}
+ c[d(Txn−3, Txn−2, u) + d(Txn−3, Txn−2, u)

d(Txn−3, Txn−2, u) + d(Txn−3, Txn−2, u)

+ d(Txn−3, Txn−1, Txn)]

= [2(a+ b+ c)− b]d(Txn−3, Txn−2, u)

≤ (2− b)d(Txn−3, Txn−2, u)(2.5)

where a, b, c are evaluated at (xn−2, xn).

At the bottom line of the above inequality, d(Txn−3, Txn−1, Txn) = 0.
Because, let d(Txn−3, Txn−1, Txn) ̸= 0, then applying (2.2), we get

d(Txn−3, Txn−1, Txn) = d(Txn−1, Txn, Txn−3)

≤ amax{d(fxn−1, Txn−1, Txn−3), d(fxn, Txn, Txn−3)}
+ bmax{d(fxn−1, Txn−1, Txn−3), d(fxn, Txn, Txn−3)}
+ c[d(fxn−1, Txn−1, Txn−3) + d(fxn, Txn, Txn−3)]

≤ amax{d(Txn−2, Txn−1, Txn−3), d(Txn−1, Txn, Txn−3)}
+ bmax{d(Txn−2, Txn−1, Txn−3), d(Txn−1, Txn, Txn−3)}
+ c[d(Txn−2, Txn−1, Txn−3) + d(Txn−1, Txn, Txn−3)]

= (a+ b+ c)d(Txn−1, Txn, Txn−3)

< d(Txn−1, Txn, Txn−3)

a contradiction. Thus, d(Txn−3, Txn−1, Txn) = 0.

On using (2.3), (2.4),and (2.5), we get

d(Txn−1, Txn, u) = d(yn, yn+1, u)

≤ ad(Txn−2, Txn−1, u) + bd(Txn−2, Txn−1, u)

+ c[(2− b)d(Txn−3, Txn−2, u)]

≤ ad(Txn−3, Txn−2, u) + bd(Txn−3, Txn−2, u)

+ c(2− b)d(Txn−3, Txn−2, u)

= (a+ b+ 2c)d(Txn−3, Txn−2, u)− bcd(Txn−3, Txn−2, u)

≤ (1− bc)d(Txn−3, Txn−2, u)

≤ (1− βγ)d(Txn−3, Txn−2, u)

≤ (1− βγ)
n
2 d(y0, y1, u)(2.6)
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Hence {yn} is a Cauchy sequence.
For case (a) and (b), suppose that X is complete.Then Cauchy sequence {yn}

will converge to a point p in X.
Case (a): Since f is surjective, then there exist a point z in X such that p = fz.
Now applying inequality (1.2), we get

d(fz, Tz, u) ≤ d(fz, yn+1, u) + d(fz, Tz, yn+1) + d(Tz, yn+1, u)

≤ d(fz, yn+1, u) + d(fz, Tz, yn+1) + d(Txn, T z, u)

≤ d(fz, yn+1, u) + d(fz, Tz, yn+1)

+ a(x, y)max{d(fxn, fz, u), d(fz, Tz, u)}
+ b(x, y)max{d(fxn, Txn, u), d(fz, Tz, u), d(fz, Txn, u)}
+ c(x, y)[d(fxn, T z, u) + d(fz, Txn, u)]

≤ sup
x,y∈X

[a(x, y) + c(x, y)]max
[
max{d(fxn, fz, u), d(fz, Tz, u)}

, d(fz, fxn+1, u)
]
+ sup

x,y∈X
[b(x, y) + c(x, y)]max

[
max{d(fxn, fxn+1, u)

, d(fz, Tz, u), d(fz, fxn+1, u)}, d(fxn, T z, u) + d(fz, fxn+1, u)
]

+ d(fz, yn+1, u) + d(fz, Tz, yn+1)

Taking the limit as n → ∞, we have

d(fz, Tz, u) ≤ supx, y ∈ X(b+ c)d(fz, Tz, u) < d(fz, Tz, u)

implies that fz = Tz.
Case (b): Since f is continuous and f and T are compatible, we have

lim
n→∞

fyn = fp and lim
n→∞

fxn = lim
n→∞

Txn = lim
n→∞

yn+1 = p

and hence

(2.7) lim
n→∞

d(fTxn, Tfxn, u) = 0

Using (2.5), we get

d(fp, Tp, u) ≤ d(fp, fyn+1, Tp) + d(fp, fyn+1, u) + d(fyn+1, u, Tp)

≤ d(fp, fyn+1, Tp) + d(fp, fyn+1, u) + d(Tp, Tfxn, u)

≤ d(fp, fyn+1, Tp) + d(fp, fyn+1, u)

+ amax{d(ffxn, fp, u), d(fp, Tp, u)}
+ bmax{d(ffxn, T fxn, u), d(fp, Tp, u), d((fp, Tfxn, u)}
+ c[d(ffxn, Tp, u) + d(fp, Tfxn, u)]

≤ d(fp, fyn+1, Tp) + d(fp, fyn+1, u)

+ sup
x,y∈X

[a(x, y) + b(x, y) + c(x, y)]max
{
max{d(ffxn, fp, u),

d(fp, Tp, u)},max{d(ffxn, T fxn, u), d(fp, Tp, u),

d((fp, Tfxn, u)}, c[d(ffxn, Tp, u) + d(fp, Tfxn, u)]
}

(2.8)

Now we have

d(ffxn, T fxn, u) ≤ d(ffxn, fTxn, u) + d(fTxn, T fxn, u) + d(ffxn, T fxn, T fxn)

Using the continuity of f and the compatibility of f and T , it follows that

(2.9) lim
n→∞

d(ffxn, T fxn, u) = 0, lim
n→∞

d(ffxn, fTxn, u) = 0
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lim
n→∞

ffxn = fp, impliesthat, lim
n→∞

Tfxn = fp

Taking limit as n → ∞ and using the inequality (2.7) and (2.8), we get

d(fp, Tp, u) ≤ sup
x,y∈X

[a(x, y)+b(x, y)+c(x, y)]d(fp, Tp, u), , impliesthat, , fp = Tp

Case (c):In this case, p ∈ f(X). Let z ∈ f−1p, then p = fz, and the proof is
completed by Case (a).
To establish uniqueness, suppose that q is another coincidence point of f and T .
Then from (1.2) with a, b, c evaluated at (p, q), we have

d(Tp, Tq, u) ≤ amax{d(fp, fq, u), d(fq, T q, u)}
+ bmax{d(fp, Tp, u), d(fq, T q, u), d(fq, Tp, u)}
+ c[d(fp, Tq, u) + d(fq, Tp, u)]

≤ (a+ b+ 2c)d(Tp, Tq, u)

Hence Tp = Tq.

Corollary 2.1. Let (X, d) be a complete 2-metric space and T be a self map
of X satisfying (1.2) with f = I, the identity mapping on X. Then T has a unique
fixed point and at this fixed point T is continuous.

Proof. The existence and uniqueness of the fixed point comes from Theorem
(2.1) by setting f = I.
To prove continuity at the unique fixed point p, we apply inequality (1.2), where
a, b, c are evaluated at (yn, p).

d(Tyn, p, u) = d(Tyn, Tp, u)

≤ amax{d(yn, p, u), d(p, Tp, u)}
+ bmax{d(yn, T yn, u), d(p, Tp, u), d(p, Tyn, u)}
+ c[d(yn, Tp, u) + d(p, Tyn, u)]

Taking limit as n → ∞ yields

lim
n→∞

d(Tyn, p, u) ≤ (b+ c) lim
n→∞

d(p, Tyn, u) < lim
n→∞

d(p, Tyn, u)

a contradiction. Therefore, limn→∞ Tyn = p = Tp. �

Remark 2.1. Our condition (1.2) includes condition (1.1) of [7] if we define,
with f = I the identity mapping,

m(x, y, u) = max{d(x, y, u), d(x, Tx, u), d(y, Ty, u), 1
2
[d(x, Ty, u) + d(y, Tx, u)]}.

For each x, y ∈ X such that

m(x, y, u) = max{d(x, Tx, u), d(y, Ty, u)}

define a(x, y) = 0, b(x, y) = a+ b, c(x, y) = c.
For each x, y ∈ X such that

m(x, y, u) =
1

2
[d(x, Ty, u) + d(y, Tx, u)]

define a(x, y) = 0, b(x, y) = b, c(x, y) = a + 2c. Hence our Theorem (2.1) is a
proper generalization of [7].

�
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