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NEIGHBOR TOUGHNESS OF GRAPHS
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Abstract. The vulnerability shows the resistance of the network until com-

munication breakdown after the disruption of certain stations or communi-
cation links. This study introduces a new vulnerability parameter, neighbor
toughness. The neighbor toughness of a graph G is defined as NT (G) =

min{ |S|
ω(G/S)

: ω(G/S) > 1}, where S is any vertex subversion strategy of

G and ω(G/S) is the number of connected components in the graph G/S. In
this paper, the relations between neighbor toughness and other parameters are

determined and the neighbor toughness of some specific graphs are obtained.

1. Introduction

Let G be a finite simple graph with vertex set V(G) and edge set E(G). The
minimum degree in a graph G is denoted δ(G). A subset S of V(G) is called an
independent set of G if no two vertices of S are adjacent in G. The independence
number of G, β(G), is the number of vertices in a maximum independent set of G.
The set N(u) = {v ∈ V (G)|v ̸= u, v and u are adjacent} is the open neighborhood
of u, and N [u] = u∪N(u) is the closed neighborhood of u. A vertex u in G is said
to be subverted if the closed neighborhood of u is removed from G. A set of vertices
S ⊆ V (G) is called a vertex subversion strategy of G if each of the vertices in S
is subverted from G. By G/S we denote the survival subgraph that remains after
each vertex S is subverted from G. A vertex set S is called a cut-strategy of G if
the survival subgraphs G/S is disconnected, or is a clique, or is an empty graph.

Graph theory has seen an explosive growth due to interaction with areas like
computer science, mathematics, etc. Especially, it has become one of the most
powerful mathematical tools in the analysis and study of the architecture of a
network. The study of networks has become an important area of multidisciplinary
research involving mathematics, informatics, chemistry, social sciences and other
theoretical and applied sciences. A network is described as an undirected and
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unweighed graph in which vertices represent the processing and edges represent the
communication channel between them [8, 25].

It is known that communication systems are often exposed to failures and at-
tacks. The stability of a communication network, composed of processing nodes and
communication links, is of prime importance to network designers. As the network
begins losing links or nodes, eventually there is a loss in its effectiveness. In the
literature, various measures were defined to measure the robustness of network and
a variety of graph theoretic parameters have been used to derive formulas to calcu-
late network vulnerability. Graph vulnerability relates to the study of graph when
some of its elements (vertices or edges) are removed. The best known measure of
reliability of a graph is its connectivity. The vertex (edge) connectivity is defined to
be the minimum number of vertices (edges) whose deletion results in a disconnected
or trivial graph [14]. Then integrity and edge-integrity [9], scattering number and
edge scattering number [1, 5, 20] and toughness and edge-toughness [11], etc. have
been proposed for measuring the vulnerability of networks. Recently, some average
vulnerability parameters such as average lower independence number [6, 7], aver-
age lower connectivity number [2], etc. have been defined. However, most of these
parameters do not consider the neighborhoods of the affected vertices. On the other
hand, in spy networks, if a spy or a station is captured, then adjacent stations are
unreliable. Therefore, neighborhoods should be taken into consideration in spy net-
works. Gunther and Hartnell [17, 18, 19] introduced the idea of modelling a spy
network can be modelled by a graph whose vertices represent the agents and whose
edges represent lines of communication. Clearly, if a spy is discovered or arrested,
the espionage agency can no longer trust any of the spies with whom he or she was
in direct communication, and so the betrayed agents become effectively useless to
the network as a whole. Such a betrayal is clearly equivalent to the removal of the
closed neighborhood of v in the modelling graph, where v is the vertex represent-
ing the particular agent who has been subverted. It is clear that to be effective, a
spy network must be able to pass messages quickly and easily between its any two
agents; it is equally clear, however, that this very need for ease of communication
presents great security risks since an agent who knows a lot can also betray a lot
[28]. Therefore, instead of considering the stability of a communication network in
standard sense, some new graph parameters such as vertex-neighbor-connectivity
[16, 17], vertex-neighbor-integrity [12, 13], vertex-neighbor-scattering number [26]
and vertex-neighbor- rupture degree [8] were introduced to measure the stability of
communication networks in ”neighbor” sense. Recent interest in the vulnerability
and reliability of networks (communication, computer, transportation) has given
rise to a host of other measures, some of which are more global in nature; see, for
example, [3, 4, 10, 15, 21, 22, 23, 24, 25].

The neighbor connectivity of a graph G is

κ(G) = min{|S|}

where S is a subversion strategy of G [17].



NEIGHBOR TOUGHNESS OF GRAPHS 137

The neighbor integrity of a graph G is defined to be

NI(G) = min{|S|+ c(G/S)}
where S is any vertex subversion strategy of G and c(G/S) is order of the largest
connected component of G/S [12].

The neighbor scattering number of a graph G is defined as

S(G) = max{ω(G/S)− |S| : ω(G/S) > 1}
where S is any vertex subversion strategy of G and ω(G/S) is the number of
connected components in the graph G/S [26].

The neighbor rupture degree of a noncomplete connected graph G is defined
to be

Nr(G) = max{ω(G/S)− |S| − c(G/S) : S ⊂ V (G), ω(G/S) > 1}
where S is any vertex subversion strategy of G and ω(G/S) is the number of
connected components in the graph G/S and c(G/S) is the maximum order of the
components of G/S [8].

The toughness of a graph G is defined as

t(G) = min{ |S|
ω(G− S)

: S ⊆ V (G) and ω(G− S) > 1}

where ω(G− S) denotes the number of components in G− S [11].
The paper is organized as follows. In Section 2, we introduce a new vulnerability

parameter, the neighbor toughness. Also, we establish relationships between the
edge scattering number and some other graph parameters. In Section 3, we compute
the neighbor toughness of some special graphs. Conclusions are addressed in Section
4.

2. Neighbor Toughness

We now introduce a new stability measure.

Definition 1. The neighbor toughness of a graph G is defined as

NT (G) = min{ |S|
ω(G/S)

: ω(G/S) > 1}

where S is any vertex subversion strategy of G and ω(G/S) is the number of
connected components in the graph G/S. In particular, the neighbor toughness of
a complete graph Kn is defined to be 0.

Definition 2. A cut-strategy S of G is called an NT-set of G if NT (G) =
|S|

ω(G/S) .

Similarly to the relation between the neighbor toughness and the neighbor
scattering number also differ in showing the vulnerability of networks. This can be
shown as follows. For example, consider the graphs G1 and G2 in Figure 1.

It can be easily seen that the neighbor scattering number of these graphs are
equal.
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G G1
2

Figure 1. The graphs G1 and G2.

S(G1) = S(G2) = 1

On the other hand, the neighbor toughness of G1 and G2 are different.

NT (G1) =
2
3

NT (G2) =
1
2

Thus, the neighbor toughness is a better parameter then the neighbor scattering
number these two graphs. As a new graph parameter, neighbor toughness can be
used to measure the vulnerability of spy networks. From the definition of neighbor
toughness we know that, in general, the more the neighbor toughness of a graph is,
the more stable the graph is.

Next, we give some upper and lower bounds for neighbor toughness via some
other well-known graph parameters.

Theorem 1. Let G be a connected graph of order n. Then,

NT (G) 6 κ(G).

Proof. Let S be a cut-strategy of G with |S| = κ(G). For any graph G, we
have ω(G/S) > 1. Hence we get

|S|
ω(G/S)

6 κ(G).

Then, by the definition of neighbor toughness, NT (G) 6 κ(G). �

Theorem 2. For any graph G,

NT (G) 6 δ(G).

Proof. For any graph G, we have δ(G) > κ(G). By Theorem 1 we know
NT (G) 6 κ(G). Thus,

NT (G) 6 κ(G) 6 δ(G).

Hence the proof is completed. �
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Lemma 1. [27] For any graph G,

κ(G) 6 NI(G).

The following theorem is easily obtained from Lemma 1 and Theorem 1.

Theorem 3. For any graph G,

NT (G) 6 NI(G).

3. Neighbor Toughness of Some Specific Graphs

In this section, we consider the neighbor toughness of some graphs.

Theorem 4. Let Pn be a path graph of order n(> 3). Then,

NT (Pn) =

 1, if n = 3, 4;

1
2 , if n > 5.

Proof. The case n = 3, 4 is trivial, so we assume n > 5. Let S be a cut-
strategy of Pn and |S| = r. If we remove r vertices from Pn, then we have
ω(Pn/S) 6 r + 1. So,

|S|
ω(Pn/S)

> r

r + 1

NT (Pn) > min
r

{ r

r + 1
}

the function f(r) takes its minimum value at r = 1, and we get NT (Pn) > 1
2 .

It can be easily seen that there exist a vertex v in Pn such that ω(Pn/S) = 2.
Then, by the definition of neighbor toughness, NT (Pn) =

1
2 .

Hence the proof is completed. �
Theorem 5. Let Cn be a cycle graph of order n(> 4). Then,

NT (Cn) =

 2, if n = 6, 7;

1, if n = 4, 5 or n > 8.

Proof. The case n = 4, 5, 6, 7 is trivial, so we assume n > 8. Let S be a
cut-strategy of Cn. If |S| = r then we have ω(Cn/S) 6 r. Thus,

|S|
ω(Cn/S)

> r

r
.

So, we get NT (Cn) > 1.
It is clear that there is a cut strategy of Cn such that |S| = 2 and ω(Cn/S) = 2.

From the definition of neighbor toughness we have, NT (Cn) = 1. �
Theorem 6. Let Km,n be a complete bipartite graph. Then,

NT (Km,n) =


1

m−1 , if n < m;

1
n−1 , if n > m.
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Proof. We assume n < m. Let vertices set of Km,n be V (G) = V (G1)∪ (G2)
where V (G1): The set contains m vertices with degree n, V (G2): The set contains
n vertices with degree m. Let S be a cut-strategy of Km,n and |S| = r. If we
remove r vertices from Km,n, then we have ω(Km,n/S) 6 m− 1. Thus,

|S|
ω(Km,n − S)

> 1

m− 1

so, we get NT (Km,n) > 1
m−1

It can be easily seen that there exist a vertex v ∈ V (G1) such that ω(Km,n/S) =
m− 1. Then, by the definition of neighbor toughness, NT (Km,n) =

1
m−1 .

Similarly, we obtain NT (Km,n) =
1

n−1 when n > m. Finally we have

NT (Km,n) =


1

m−1 , if n < m;

1
n−1 , if n > m.

The proof is completed. �

Corollary 1. The neighbor toughness of the star graph K1,n is

NT (K1,n) =
1

n− 1
.

4. Conclusion

Reliability and efficiency are important criteria in the design of networks. When
we want to design a network, we wish that it is as stable as possible. Any network
can be modelled as a connected graph. We investigate a new measure for reliability
of a graph called the neighbor toughness which is recently introduced. From the
definition of neighbor toughness we know that, in general, the more the neighbor
toughness of a graph is, the more stable the graph is.
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