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Abstract. Rate of coverage probability for direct-simulation estimator of
quantile estimation has been determined for Pareto 1, Pareto 2 and general

case, for the general Pareto distribution. Appropriate calculations and tables
with results have been given for data with Pareto 2 distribution as well as for
real data from insurance analyses which can be fit with that distribution.

1. Introduction

Finding high quantile estimators of an unknown distribution function is a prob-
lem of great importance from both a theoretical as well as a practical perspective.
For example, important problem that involves high quantile estimators is the esti-
mation of the Value-at-Risk (VaR), which is a standard risk measure in the field of
finance. Many authors have given different estimators of high quantiles and usu-
ally they have used k upper order statistics of a sample, see [5], [9], [4], [6] and
references therein. The problem of appropriate choice of k is complicated, because
small k gives the estimator with large deviation and large k gives the estimator
with large bias, and it is still open problem for another paper. In this paper we
consider well known quantile estimator from the literature, the direct-simulation
estimator of large quantiles and its rate of convergence. One of the aims of the pa-
per is to calculate that rate of convergence of the Pareto distribution, considering
its multiple applications in empirical analyzes and in theory. For example, certain
socio-economic quantities, magnitudes of earthquakes, number of hits at websites,
the assets of firms as well as standardized price returns on individual stocks or stock
indices are described with the Pareto distribution. For references see [3], [12], [16],
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[8], [13], [1], [7]. Also, the Pareto distribution is widely used in various fields of
science, such as hydrology, geology, climatology, astronomy, physics, finance and
for this paper the most important is insurance (see [14], [2], [10]).
In many types of insurance, loss data contain observations with high intensity and
low frequency. Since the appropriate statistical distributions for modeling insurance
data are skewed, high quantile estimators of these distributions could be used as the
adequate measures of actuarial risks. Value-at-Risk at a sufficiently high confidence
level determines probable maximum loss as well as solvency capital requirements of
insurance companies. The Solvency II framework adopted Value-at-Risk at a 99.5%
confidence level over a one year period as a measure of all risks threatening financial
health of insurers operating in the European Union (see [15], [11]). In the light of
the new methodological approach to evaluating insurance companies’ solvency, the
issue of this quantile estimation gains growing importance in the insurance sector
nowadays.

2. Some Preliminaries and Notations

Let X1, ..., Xn are i.i.d. random variables with common nondegenerate distri-
bution function F (x). The empirical distribution function is defined with Fn(x) =
1
n

∑n
k=1 I(Xk 6 x), x ∈ R, where I(Xk 6 x) denotes the indicator of the event

{Xk 6 x}. xp is appropriate quantile of the distribution function F (x) and it is
defined with: xp = inf{x : F (x) > p}, p ∈ (0, 1). In this paper we will consider
the direct-simulation estimator, defined with formula: x̂p(n) = inf{t : Fn(t) > p},
already known in the literature. The term of negative dependence is important
for understanding of the next section. Random variables X1, X2, . . . , Xn are
negatively dependent if the following two inequalities hold for all x1, x2, ..., xn:
P{X1 6 x1, ..., Xn 6 xn} 6 P{X1 6 x1} · ... · P{Xn 6 xn}, P{X1 > x1, ..., Xn >
xn} 6 P{X1 > x1} · ... · P{Xn > xn}. Two lemmas which are also important for
understanding of the next section can be found in [18]. Here we will give only the
primary theorem from that paper.

Theorem 2.1. ([18]) If the distribution function F is strictly increasing and
{Yn, n > 1} are negatively dependent, then

(2.1) P{
∣∣x̂p(n)− xp

∣∣ > ϵ} 6 e−n∆+(ϵ,n) + e−n∆−(ϵ,n), for all ϵ > 0,

where

∆+(ϵ, n) = sup
−∞<λ60

(
λp−

lnE{exp[λ
∑n

i=1 I(Yi 6 xp + ϵ)]}
n

)
,

∆−(ϵ, n) = sup
06λ<+∞

(
λp−

lnE{exp[λ
∑n

i=1 I(Yi 6 xp − ϵ)]}
n

)
.

And, moreover, the rate is enhanced by negatively dependence in the sense that

∆+(ϵ, n) > sup
−∞<λ60

(λp− lnE{exp[λI(Y 6 xp + ϵ)]}) > 0,

∆−(ϵ, n) > sup
06λ<+∞

(λp− lnE{exp[λI(Y 6 xp − ϵ)]}) > 0,
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where the right-hand ”sup” are the rates for i.i.d. samples.

3. Results for Different Types of Pareto Distribution

In this section we will determine the rate of convergence of the direct-simulation
estimator x̂p(n) of the quantile xp to exact value, for different types of Pareto
distribution.
For Pareto 1 distribution function the density function is f(x) = abax−(a+1) and
the distribution function is F (x) = 1− bax−a, with F (x) = bax−a, x > b, for shape
parameter a > 0 and scale parameter b > 0. The next result is given in [17].

Theorem 3.1. ([17]) Let {Yn, n > 1} be negatively dependent random variables
with the common Pareto 1 distribution F (x) = bax−a, x > b, a, b > 0. The rate of
convergence for the standard quantile estimator x̂p(n) in this case is given by

P {
∣∣x̂p(n)− xp

∣∣ > ϵ} 6 e−n∆+ + e−n∆−(3.1)

=
( pba(xp + ϵ)−a

(1− ba(xp + ϵ)−a)(1− p)

)−np

·
(ba(xp + ϵ)−a

1− p

)n

+
( pba(xp − ϵ)−a

(1− ba(xp − ϵ)−a)(1− p)

)−np

·
(ba(xp − ϵ)−a

1− p

)n

,

and we may write:

P{
∣∣x̂p(n)− xp

∣∣ > ϵ} 6
(p(1− p+)

p+(1− p)

)−np

·
(1− p+

1− p

)n

+
(p(1− p−)

p−(1− p)

)−np

·
(1− p−

1− p

)n

,

for 1− p+ = ba(xp + ϵ)−a and 1− p− = ba(xp − ϵ)−a.

Another special case is Pareto 2 distribution, with the density function f(x) =
aba(x+b)−(a+1) and the distribution function F (x) = 1−ba(x+b)−a, with F (x) =
ba(x + b)−a, x > 0, for shape parameter a > 0 and scale parameter b > 0. In this
case we have the next result.

Theorem 3.2. Let {Yn, n > 1} be negatively dependent random variables with
the common Pareto 2 distribution, F (x) = ba(x + b)−a, x > 0, a, b > 0. The rate
of convergence for the standard quantile estimator x̂p(n) in this case is given by

P {
∣∣x̂p(n)− xp

∣∣ > ϵ} 6 e−n∆+ + e−n∆−(3.2)

=
( pba(xp + ϵ+ b)−a

(1− ba(xp + ϵ+ b)−a)(1− p)

)−np

·
(ba(xp + ϵ+ b)−a

1− p

)n

+
( pba(xp − ϵ+ b)−a

(1− ba(xp − ϵ+ b)−a)(1− p)

)−np

·
(ba(xp − ϵ+ b)−a

1− p

)n

,
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and we may write:

P{
∣∣x̂p(n)− xp

∣∣ > ϵ} 6
(p(1− p+)

p+(1− p)

)−np

·
(1− p+

1− p

)n

+
(p(1− p−)

p−(1− p)

)−np

·
(1− p−

1− p

)n

,

for 1− p+ = ba(xp + ϵ+ b)−a and 1− p− = ba(xp − ϵ+ b)−a.

Proof. Since the Pareto 2 distribution is strictly increasing we may use The-
orem (2.1) and obtain:

P{
∣∣x̂p(n)− xp

∣∣ > ϵ} 6 e−n∆+(ϵ,n) + e−n∆−(ϵ,n), for all ϵ > 0,

where

∆+(ϵ, n) > sup
−∞<λ60

(λp− lnE{exp[λI(Y 6 xp + ϵ)]}) = ∆+,

∆−(ϵ, n) > sup
06λ<+∞

(λp− lnE{exp[λI(Y 6 xp − ϵ)]}) = ∆−,

p = P [Y 6 xp].

If we denote, p+ = P [Y 6 xp + ϵ] = F (xp + ϵ) = 1 − ba(xp + ϵ + b)−a and
p− = P [Y 6 xp − ϵ] = F (xp − ϵ) = 1− ba(xp − ϵ+ b)−a, our goal is to obtain ∆+

and ∆−.

The distribution of the indicator I(Y 6 xp + ϵ) is given by

I(Y 6 xp + ϵ) :

(
0 1

1− p+ p+

)
.

Now, we may calculate

∆+ = sup
−∞<λ60

(λp− ln(eλp+ + 1− p+)).

The maximum of the above function is attained for λ = ln p(1−p+)
p+(1−p) and λ is always

negative (since p < p+). Consequently, we obtaine

∆+ = p ln
p(1− p+)

p+(1− p)
− ln

1− p+
1− p

.

Similarly, we may calculate

∆− = sup
06λ<+∞

(λp− ln(eλp− + 1− p−)).

The maximum of the above function is attained for λ = ln p(1−p−)
(1−p)p−

and λ is always

positive (since p > p−). Consequently, we obtain

∆− = p ln
p(1− p−)

p−(1− p)
− ln

1− p−
1− p

.
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Finally we have the result:

P{
∣∣x̂p(n)− xp

∣∣ > ϵ} 6 e−n∆+ + e−n∆−

=
(p(1− p+)

p+(1− p)

)−np

·
(1− p+

1− p

)n

+
(p(1− p−)

p−(1− p)

)−np

·
(1− p−

1− p

)n

,

for 1 − p+ = ba(xp + ϵ + b)−a and 1 − p− = ba(xp − ϵ + b)−a and the proof is
completed. �

Also we may analyze more general case, for example the general Pareto dis-
tribution, F (x) = L(x)x−a, where a > 0 and L(x) is slowly varying function,
meaning:

lim
t→+∞

L(tx)

L(t)
= 1.

In this case we can obtain the next result:

P {
∣∣x̂p(n)− xp

∣∣ > ϵ} 6 e−n∆+ + e−n∆−(3.3)

=
( pL(xp + ϵ)(xp + ϵ)−a

(1− p)(1− L(xp + ϵ)(xp + ϵ)−a)

)−np

·
(L(xp + ϵ)(xp + ϵ)−a

1− p

)n

+
( pL(xp − ϵ)(xp − ϵ)−α

(1− p)(1− L(xp − ϵ)(xp − ϵ)−α)

)−np

·
(L(xp − ϵ)(xp − ϵ)−a

1− p

)n

,

which is analogous with the well known result:

P{
∣∣x̂p(n)− xp

∣∣ > ϵ} 6
(p(1− p+)

p+(1− p)

)−np

·
(1− p+

1− p

)n

+
(p(1− p−)

p−(1− p)

)−np

·
(1− p−

1− p

)n

,

for 1− p+ = L(xp + ϵ)(xp + ϵ)−a and 1− p− = L(xp − ϵ)(xp − ϵ)−a. The proof in
this case is analogous as the proof for the Pareto 2 distribution and we will omit it
here.

4. Numerical Examples and Real Data Analysis

In this section we present some numerical examples and performance of formu-
las from the section above. We take two values of b and a and two values of ϵ for the
Pareto 2 distribution. For each parameter setting we compute rate of convergence
of the direct-simulation estimator x̂p(n) of the quantile xp to exact quantile value,
by using Theorem(3.2) and appropriate formula (3.2). Tables 4.1-4.2 contain this
results.

Table 4.1 Rate of convergence for Pareto 2 distribution and a = 4, b = 5, p = 0.05,
xp = 0.06453
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n e−n∆+ + e−n∆−

ϵ = 0.05 50 0.77925
100 0.40135
200 0.13988
300 0.05189
500 0.00721

ϵ = 0.005 5000 0.95208
9000 0.52633
20000 0.10363
25000 0.04963
40000 0.0055

Table 4.2 Rate of convergence for Pareto 2 distribution and a = 6, b = 5, p = 0.95,
xp = 3.237745

n e−n∆+ + e−n∆−

ϵ = 0.5 300 0.694432
500 0.351129
800 0.130302
1000 0.068538
1800 0.005822

ϵ = 1 50 0.94848
100 0.487529
200 0.152777
300 0.053786
500 0.007338

The results in the tables above show the convergence rate of the coverage
probability as a function of sample size (and other parameters). It is clear that it
decreases as sample size increases. We could see from tables that for small quantile
x0.05 and for large quantile x0.95 the interval for sample size is from 50 to 500, what
gives the appropriate results in both cases.

Important question in this moment is: How the proposed results can be used
in practice? To answer on that question we analyzed real data set in this section.
Our real data sample contains 652 observations for loss amounts (in million RSD)
recorded in property insurance in the portfolio of one insurance company operating
in Serbia during 2014. Since the Kolmogorov-Smirnov statistic (0.03469) is smaller
than the critical value (0.0479) (for α = 0.1 and for smaller α is the same result), we
cannot reject the hypothesis that this sample stems from the Pareto 2 distribution.

The estimated values of distribution parameters are â = 5.7401 and b̂ = 5.0333.
For p = 0.95 and n = 652 we obtained that x̂0.95(652) = 3.5857. It is possible
to calculate quantile xp for Pareto 2 distribution with parameters a = 5.7401 and
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b = 5.0333 and probability p = 0.95 and it is x0.95 = 3.448908. We obtained
that there is less than 28.39% chance that quantile x0.95 differs from the direct-
simulation estimator x̂0.95(652) for more than 0.5 and also there is less than 2.25%
chance that this difference is greater than 0.8. Two above results we are obtained
by using inequality (3.2).

5. Conclusion

In this paper we considered appropriate coverage probability of the direct-
simulation estimator x̂p(n) of a large quantile xp and we gave some results for Pareto
1, Pareto 2 and the general Pareto distributions. We take two values of parameters
for Pareto 2 distribution (b and a) and two values of ϵ and for each parameter
setting we computed rate of convergence of the direct-simulation estimator of the
quantile to exact value of quantile, by using appropriate theorem and formula.
Tables 4.1-4.2 contain this results and show that rate of convergence decreases as
sample increases, what we could expect at the beginning. In the last section, we
analyzed real data set and performed appropriate calculations by using main results
of this paper. The obtained results could be used to enhance determination of the
maximum probable loss and solvency capital requirements of insurance companies.
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