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 Abstract - The     Triangular number denoted by       is defined as the sum of the first     consecutive positive 

integers.  A positive integer   is a Triangular Number if and only if     
      

 
 [1].  We stated and proved a 

sequence of positive integers         is consecutive triangular numbers if and only if  √   − √     =1  and  

     √    .  We consider a ceiling function ⌈
 

 
⌉  to state and prove a necessary and sufficient condition for a 

number      ⌈
   

 
⌉    ⌈

 

 
⌉     to be a triangular number for each       .  A formula to find      and       

of any two consecutive triangular numbers and a double factorial is introduced to find products of triangular 

numbers. 

 

Key words: Triangular numbers, ceiling function, double factorial. 

 

INTRODUCTION 

 A triangular number        is a number of the form                     where   is a natural number. So that the 

first  few triangular numbers are                               [2]. A well-known fact about triangular numbers is that   

is a triangular number if and only if        is a perfect square [1]. Triangular numbers can be thought of as the numbers 

of dots that can be arranged in the shape of a square. 

 

Lemma 0.0.1:  A positive integer   is triangular if and only if it is in the form of     ∑
      

 

 
      for      

Theorem 0.0.2:   For any integer n, ⌈
 

 
⌉  {

 

 
                    

   

 
                  

 

Theorem 0.0.3: A positive integer   is triangular if and only if   

                                               ⌈
   

 
⌉ ( ⌈

 

 
⌉   )  for each      

 

Proof:     Suppose a positive integer   is triangular. There exist     such that    
      

 
 ,  (Lemma 0.0.1). 

 

Case 1:  When   is odd. If    Is odd then 
   

 
  ⌈

   

 
⌉  and  ⌈

 

 
⌉  

   

 
 . The later implies      ⌈

 

 
⌉ and   

          ⌈
 

 
⌉    . Therefore  m= (

   

 
)       ⌈

   

 
⌉ ( ⌈

 

 
⌉   )   

 

Case 2:  When   is even. If   is even then  ⌈
 

 
⌉  

 

 
 . This implies    ⌈

 

 
⌉ and      ⌈

 

 
⌉   .   

                Similarly for    is even  
   

 
  ⌈

   

 
⌉.  Combining the former and the later we have           

       (
   

 
)  ⌈

   

 
⌉ ( ⌈

 

 
⌉   )  

     Suppose      ⌈
   

 
⌉ ( ⌈

 

 
⌉   ) & is even for some       We show that   is triangular. Set   ⌈

   

 
⌉  and  

     ⌈
 

 
⌉   . Then either A and B  are both even or they have different parity. But because B is always odd , A must be 

even. 
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Consider    ⌈
 

 
⌉     is odd. Then ⌈

 

 
⌉ is either even or odd. Suppose it is odd. This implies   is odd. Therefore ⌈

 

 
⌉  

 
   

 
    

 

and  ⌈
   

 
⌉  

   

 
 . From the former  ⌈

 

 
⌉     (

   

 
)        and   combining with the later, 

 

                        ⌈
   

 
⌉ ( ⌈

 

 
⌉   ) =  

          

 
 . Hence by (Lemma 0.0.1)     is triangular. 

 

 Suppose ⌈
 

 
⌉  is even. Then either    is even or odd.  Suppose   is even. Then  we have  ⌈

   

 
⌉  

   

 
   and  ⌈

 

 
⌉  

 

 
 . Hence 

( ⌈
 

 
⌉   ) =  (

 

 
)        and therefore, 

     

                             ⌈
   

 
⌉ ( ⌈

 

 
⌉   ) =  

          

 
  is triangular. 

 

Similarly when   is odd, we   have  ⌈
   

 
⌉  

   

 
  and  ( ⌈

 

 
⌉   ) =      and hence   

     

                                ⌈
   

 
⌉ ( ⌈

 

 
⌉   ) =  

          

 
 is triangular.                                    

In similar fashion one can prove the case      ⌈
   

 
⌉ ( ⌈

 

 
⌉   ) & is odd for some                                               

 

Theorem 0.0.4:  

A sequence of positive integers in the order         is consecutive triangular numbers if and only if   

 

                                     √   − √     = 1                                                                                  
 

                                                                 and  

 

                                                          √    .                                                                                              

 

Proof. ( ) Let         be a sequence of positive integers in the order. Suppose  

                          √      √         and       √    . 

 

  From the later when we square both sides,             . . .                                                                  (***)  

 

 and combining  the former with  (***) we have  √          √          √         

 

This implies √        |   |           because                                                                 (****). 

 

Squaring both sides of (****) gives,              . Let           for some      .  This implies   

                    and   from  (***)       . 

  

Hence  √   − √     = 1   is true if and only if              and             for some         
 

Therefore,                and                  . This implies               .   

 

Consider the sequence  

 

                                                                                                                                                   
 

From              Combining         and          we  have          ,  which implies  
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      and    

 

                
    

 
 =  

       

 
  

          

 
    and   

 

  B =      =      
    

 
  = 

    

 
  

      

 
 .  

 

Therefore (A , B , C)  = (
    

 
 ,   

      

 
   ,  

          

 
 ) = (             )  is a sequence of consecutive triangular numbers.    

 

     Suppose a sequence of integers         is consecutive triangular numbers.  

 

    Set        .   Then              and          .    By (Lemma 0.0.1),   

 

         
      

 
             

          

 
      and        

          

 
  . 

 

 

This implies                    and                 Thus  

 

√    √    √       √       

 

                                                   = |    |  |    |      and ,                                                           

B – A = 
          

 
  -  

      

 
   =     and  

 

 √     √
          

 
 

      

 
 √        = |   |      . 

 

Therefore        √    .                               
 

From       and        if  a sequence of integers         is consecutive triangular numbers, 

 

    then  √    √    = 1   and       √    .                                                                                         

 

 

Note:  For any     the number             ) is triangular in particular if  (    )  is prime for      

then             )  is perfect and also triangular number. To investigate the converse i.e., (in our next 

paper) which even triangular numbers has the form of             ) and are perfect we explore the 

followings. 
 

Definition 0.0.5:  The greatest common integer    that  divides two non-zero integers     and     is called the greatest 

common divisor of   and  , denoted by           
 

Example 0.0.6:   Given       
   

       and         
   

   where      and      are distinct primes,  the  

 

             
           

  
         

 
 

Definition 0.0.7: The least common multiple of the integers   and     is called the smallest positive integer that is divisible 

by both a and b, denoted by           
 

Example 0.0.8:    Given       
   

     and       
   

   where     and      are  distinct primes  the  
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Theorem 0.0.9 [4,5]:  For two positive integers    and  ,                         .  

 

Example 0.0.10:  Given       
   

     and       
   

   where        and      are primes,  then  

          
   

    
   

                           
           

  
         

  
           

  
        

 
 

Theorem 0.0.11:  

 

 For each    ,   (         )                    and   (         )                     are   the set of  ordered pairs 

with    

 

consecutive  even and consecutive odd triangular numbers.  

 

 Note: See the table at page 9 below. 

 

Theorem 0.0.12: 

 

          {
   (           )       

   (         )      
                  and                {

   (           )      (    
 

) 

   (         )      (    
 

)
  

 

Proof:   

 

                
          

 
              and                

          

 
            . 

 

  If   |          and   |        then |              . This implies    |  and then  |    

 

 

or  |    But    , because     is  a divisor of an odd integer. Therefore the only divisor of  

 

        and         is 1.  Hence the                  .                                                                           

 

Therefore for each     ,                and                                     and then  

 

 

                (          )   
        

   (          )
   =    

                    

  
  

 

                                           =                    =  
 

  
             

 

                                           = 
 

  
(  

 
)(    

 
) =    (    

 
)    

 

Next we find      (           ) and     (           )    
 

                             =   
            

 
  =              

 

                         and   

 

              =   
            

 
  =               . The                         ) above. 

 

 Therefore,    (           )                                  =     . 

 

By (Theorem 0.0.8),       (          )   
        

   (          )
   =   
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                                                                 =                     = 
 

     
             

 

                                                                 = 
 

  
(    

 
)(    

 
)  =     (    

 
)                                                                             

Example 0.0.13:  Find                    and               . 

 

Answer:                    and                where      . Therefore  

 

                   =                    and               ( 
 
)      

        

 
  .   

 

Theorem 0.0.14:   

 

  Define a sequence  

 

             ∑        
        and        ∑        

   .   Then  

 

                        ∑   
  
       ∑ ∑        

 
   

   
       . 

 

 Proof:  Given 

 

          ∑        
          and        ∑        

   . Then 

 

                   ∑    
  
    ∑ ∑        

 
   

   
                           

     

We use induction to prove the statement. We verify it is true for       The left side of  

 

          (  )   ∑   
 
     =     +    =  1+3 = 4 and the right side  ∑ ∑        

 
   

 
    =               . 

 

Let      and suppose the statement in    ) is true for      that is 

     

                              ∑    
  
    ∑ ∑        

 
   

   
    .   Now we show that it is true for           Thus   

 

  ∑    
      
    ∑    

    
    ∑    

  
                 ,  but 

 

    ∑        
      

       

 
                       , and  

 

    ∑        
      = 

      

 
                        .   Hence, 

 

            =      and             and ∑    
      
    =  ∑    

  
             and   therefore 

 

                           ∑    
      
    ∑    

    
    ∑    

  
                  

 

                         =   ∑ ∑        
 
   

   
     +         

 

                         =  ∑ ∑        
 
   

   
    +  ∑        

    +  ∑        
    

 

                         =  ∑ ∑        
 
   

 
     and the statement is true for         

 

Hence                            ∑   
  
       ∑ ∑        
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Theorem 0.0.15:   For each    ,  

∑  
 

 

   

  
 

  
     (

     

     
)   

 

 
  

  

Example 0.0.16: Find  ∑   
  

    . 

Answer:     ∑   
  

     =    
    

     
   =            =                 and  

 

  
  (     

     
)   

 

 
  

  = 
 

  
    (  

  
)   

 

 
     = 

 

  
        

 

 
     =              . 

      This implies      ∑   
  

     = 46 = 
 

  
  (     

     
)   

 

 
  

  . 

 

Proof:    We use the following identities:  ⨂       

1) ∑    
            

 

 
    

2) ∑    
        

 

 
     

                            3)      ∑      
            

  

 
                      

For each     ,    
      

     .  This implies   

                                     ∑ (  
      

 ) 
      ∑    

     =    
        

 
 = (

      

 
)
 

   
  .  Hence  

                
  =  ∑    

      and       ∑   
  

    = ∑ ∑     
   

 
    ∑

        

 

 
    = 

 

 
∑             

    .                      

But, 

                 ∑       
   ∑    

      =  ∑         
   ∑    

     +   ∑    
      

                                                     =   
            

  
           -   

            

 
  +  

            

 
 

              = 
            

 
(
        

 
  )  +  

            

 
 

             = 
                      

  
  +  

            

 
 

              =               (
          

  
 

 

 
) 

             = 
 

  
                        

             =  
 

  

            

 
             

             = 
 

  
       (

       

 
  ) =  

 

  
                        

             =
 

  
                                                                                                         (     

Combining      and       we have, 

 
 

 
∑             

    = 
 

 
 ∑       

   ∑      ∑    
   

 
       

                                 = 
 

 
 ( 

 

  
               +  ∑    

    )                                (see (    ) 

                                 = 
 

 
 (

 

  
               + 2 

        

 
 )                                        (see  ⨂ ) 

                                  = 
 

  
               +  

 

 
   

  

                                  = 
 

  
       (     

     
)  +  

 

 
   

  

Hence for each for each    ,  

                                       ∑   
  

     
 

  
     (     

     
)   

 

 
  

                                                  

 

Double Factorial 

 

The product of the integers from   up to some non-negative integers   that have the same parity as   is called double 

factorial or semi factorial of   and is denoted by     [3, 6]. That is  

                                             ∏        
     =               , where    ⌈

 

 
⌉    .  
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A consequence of this definition is that      . For even  , the double factorial is  

 

                             ∏     
 

 
   

  =                and   for odd   , 

 

                            ∏       
   

 
   

  =               . 

 

Theorem 0.0.17: 

 Let     be the     triangular number.  Then for    , 

 

                                               
 

  
∏    

 
   . 

Example 0.0.18: 

5!! = (2.2+1)!! = 1 . 3 . 5 = 15 = 
 

  
 ∏    

 
     = 

 

 
        = 

 

  
 (3 .10 ) = 15 and  

 

7!! = (2.3+1)!! = 1 . 3 . 5. 7= 105 = 
 

  
∏    

 
     = 

 

  
          = 

 

 
 (3 .10 .21) =  105 . 

 

Proof:  We prove by induction. Let      be the statement that 

 

                                                    
 

  
∏    

 
   .       (   ) 

 

We verify that       is true.  When    , the left side of                       and the right side  

  
 

  
∏    

 
   =    = 3 = 3!! = 1. 3, so both sides are equal and       is true. 

 

Let      and suppose      is true for    , i.e.,         
 

  
∏    

 
   .                      (    ) 

Next we show that 

        is true for each      that is               
 

      
∏    

   
   .      

 

                       =               

                      

                                                                 =        
 

  
∏    

 
          (See   (    )) 

                                                                 =  
 

  
∏    

 
    (2k+3) = 

   

      
∏    

 
     (2k+3)   (Because 

 

  
  

   

      
  ) 

 

                                               = 
   

      
∏    

 
     (2k+3)  = 

 

      
∏    

 
                  

 

But        =   
            

 
 , Lemma (0.0.1) which implies        =   

            

 
   =            . 

 

    Consequently,                      =  
 

      
∏    

 
                    

                                                          

                           = 
 

      
∏    

 
    .          

 

 

  =
 

      
∏    

   
    . =         

 

This implies         is true for each      , and hence , 

            

                                               
 

  
∏    

 
     for each    .                                                                   
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 ODD and EVEN Triangular Numbers with Corresponding Subscripts,  

 

 

1                3             6              10                 15               21             28               36               45            55 

66             78           91             105               120            136            153            171            190          210 

                231           253         276            300               325             351           378            406 

 

                  From the table above we see that odd triangular numbers are given as  

 

1 

 

3 

 

15 

 

21 

 

45 

 

55 

 

91 

 

105 

 

153 

 

171 

 

231 

 

253 

 

325 

 

351 

 

1*1 

 

1*3 

 

3*5 

 

3*7 

 

5*9 

 

5*11 

 

7*13 

 

7*15 

 

9*17 

 

9*19 

 

11*21 

 

11*23 

 

13*25 

 

13*27 

 

   

 

   

 

   

 

   

 

   

 

    

 

    

 

    

 

    

 

    

 

    

 

    
 

 

    

 

    

                   {

                         
   

                          
                                                {

                     

   
                     

 

 

6 

 

10 

 

28 

 

36 

 

66 

 

78 

 

120 

 

136 

 

190 

 

210 

 

276 

 

300 

 

378 

 

406 

 

2*3 

 

2*5 

 

4*7 

 

4*9 

 

6*11 

 

6*13 

 

8*15 

 

8*17 

 

10*19 

 

10*21 

 

12*23 

 

12*25 

 

13*27 

 

13*29 

 

   

 

   

 

   

 

   

 

    

 

    

 

    

 

    

 

    

 

    

 

    

 

    

 

    

 

    

 
                          and in the table below  the  even triangular numbers has following subscripts, 

 

                      {

                         
   

                          
                                             {

                           

   
                      

 

 

CONCLUSION AND REMARKS 

 

The sum of two triangular numbers may be a triangular number. For instance the pairs (6 , 15) and  (21, 45) are 

triangular number with 6 + 15 =    +     = 21 =    and  21 +  45 =              = 66  are again a triangular 

numbers. Moreover, if you see the double factorial, 

 

5!! = 1. 3. 5 = = (1)(3.5) =       

9!! = 1.3.5.7.9 = (1)( 3.7)(5.9) =            and 

13!! =                 =  (1)(7.13)(5.11)( 3) (9) =    .          
 . 

 

 We ponder that the double factorial of odd 

integers can be expresses as a product of triangular 

numbers. Is it unique?  Can we find a relationship 

between gamma functions, beta function and product 

of triangular numbers?  Which even triangular 

numbers   has the form of              ) and is 

perfect. These are open problems we are working on 

and close to show these facts are true in our next 

paper. 
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