Investigating Triangular Numbers with greatest integer function, Sequences and Double Factorial

Asia Pacific Journal of Multidisciplinary Research
Vol. 4 No.4, 134-142

November 2016
P-ISSN 2350-7756
E-ISSN 2350-8442
www.apjmr.com

Tilahun A Muche (PhD) ${ }^{1}$, Agegnehu A Atena ($\left.\mathbf{P h D}\right)^{2}$
Department of Mathematics, Savannah State University, USA
${ }^{1}$ muchet@savannahstate.edu, ${ }^{2}$ atenaa@savannahstate.edu

Date Received: August 3, 2016; Date Revised: October 5, 2016

Abstract

The $n t h$ Triangular number denoted by T_{n} is defined as the sum of the first n consecutive positive integers. A positive integer n is a Triangular Number if and only if $\boldsymbol{T}_{\boldsymbol{n}}=\frac{\boldsymbol{n (n + 1)}}{2}$ [1]. We stated and proved a sequence of positive integers (A, B, C) is consecutive triangular numbers if and only if $\sqrt{\boldsymbol{B}+\boldsymbol{C}}-\sqrt{\boldsymbol{B}+\boldsymbol{A}}=\mathbf{1}$ and $B-\boldsymbol{A}=\sqrt{\boldsymbol{B}+\boldsymbol{A}}$. We consider a ceiling function $\left[\frac{x}{2}\right]$ to state and prove a necessary and sufficient condition for a number $\boldsymbol{m}=\boldsymbol{T}_{\boldsymbol{n}}=\left\lceil\frac{n+1}{2}\right\rceil\left(\mathbf{2}\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}\right)$ to be a triangular number for each $n \geq 0$. A formula to find $\boldsymbol{l c m}$ and $\boldsymbol{g c d}$ of any two consecutive triangular numbers and a double factorial is introduced to find products of triangular numbers.

Key words: Triangular numbers, ceiling function, double factorial.

Introduction

A triangular number T_{n} is a number of the form $T_{n}=1+2+3+\cdots+n$, where n is a natural number. So that the first few triangular numbers are $1,3,6,10,15,21,28,36,45, \ldots$ [2]. A well-known fact about triangular numbers is that y is a triangular number if and only if $8 y+1$ is a perfect square [1]. Triangular numbers can be thought of as the numbers of dots that can be arranged in the shape of a square.

Lemma 0.0.1: A positive integer m is triangular if and only if it is in the form of $m=\sum_{i=1}^{n} \frac{i(i+1)}{2}$ for $n \geq 1$.
Theorem 0.0.2: For any integer $\mathrm{n},\left\lceil\frac{n}{2}\right\rceil= \begin{cases}\frac{n}{2} \text {; } & \text { if } n \text { is even } \\ \frac{n+1}{2} \text {; } & \text { if } n \text { is odd }\end{cases}$
Theorem 0.0.3: A positive integer m is triangular if and only if

$$
m=\boldsymbol{T}_{n}=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}\right) \text { for each } n \geq 0 .
$$

Proof: (\Rightarrow) Suppose a positive integer m is triangular. There exist $n \geq 1$ such that $m=\frac{n(n+1)}{2}$, (Lemma 0.0.1).
Case 1: When n is odd. If n Is odd then $\frac{n+1}{2}=\left\lceil\frac{n+1}{2}\right\rceil$ and $\left\lceil\frac{n}{2}\right\rceil=\frac{n+1}{2}$. The later implies $\boldsymbol{n}+\mathbf{1}=\mathbf{2}\left\lceil\frac{n}{2}\right\rceil$ and $\boldsymbol{n}+2=\left(2\left\lceil\frac{n}{2}\right\rceil+1\right)$. Therefore $\mathrm{m}=\left(\frac{n+1}{2}\right)(n+2)=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+1\right)$.

Case 2: When n is even. If n is even then $\left[\frac{n}{2}\right\rceil=\frac{n}{2}$. This implies $n=2\left[\frac{n}{2}\right]$ and $n+1=2\left[\frac{n}{2}\right]+1$.
Similarly for n is even $\frac{n+2}{2}=\left\lceil\frac{n+1}{2}\right\rceil$. Combining the former and the later we have

$$
m=(n+1)\left(\frac{n+2}{2}\right)=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+1\right) \text {. }
$$

(\Leftarrow) Suppose $\boldsymbol{m}=\boldsymbol{T}_{\boldsymbol{n}}=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}\right) \&$ is even for some $n \geq 0$. We show that m is triangular. Set $A=\left\lceil\frac{n+1}{2}\right\rceil$ and $B=2\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}$. Then either A and B are both even or they have different parity. But because B is always odd , A must be even.

Consider $B=\mathbf{2}\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}$ is odd. Then $\left\lceil\frac{n}{2}\right\rceil$ is either even or odd. Suppose it is odd. This implies n is odd. Therefore $\left\lceil\frac{n}{2}\right\rceil=$ $\frac{n+1}{2}$
and $\left\lceil\frac{n+1}{2}\right\rceil=\frac{n+1}{2}$. From the former $2\left\lceil\frac{n}{2}\right\rceil+1=2\left(\frac{n+1}{2}\right)+1=n+2$ and combining with the later, $\boldsymbol{m}=\boldsymbol{T}_{\boldsymbol{n}}=\left\lceil\frac{n+1}{2}\right\rceil\left(\mathbf{2}\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}\right)=\frac{(\boldsymbol{n}+\mathbf{1})(\boldsymbol{n}+\mathbf{2})}{\mathbf{2}}$. Hence by (Lemma 0.0.1) m is triangular.

Suppose $\left\lceil\frac{n}{2}\right\rceil$ is even. Then either n is even or odd. Suppose n is even. Then we have $\left\lceil\frac{n+1}{2}\right\rceil=\frac{n+2}{2}$ and $\left\lceil\frac{n}{2}\right\rceil=\frac{n}{2}$. Hence $\left(\mathbf{2}\left\lceil\frac{n}{2}\right\rceil+\mathbf{1}\right)=\mathbf{2}\left(\frac{n}{2}\right)+1=n+1$ and therefore,

$$
m=T_{n}=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+1\right)=\frac{(n+1)(n+2)}{2} \text { is triangular. }
$$

Similarly when n is odd, we have $\left\lceil\frac{n+1}{2}\right\rceil=\frac{n+1}{2}$ and $\left(2\left\lceil\frac{n}{2}\right\rceil+1\right)=n+2$ and hence

$$
m=T_{n}=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+1\right)=\frac{(n+1)(n+2)}{2} \text { is triangular. }
$$

In similar fashion one can prove the case $m=T_{n}=\left\lceil\frac{n+1}{2}\right\rceil\left(2\left\lceil\frac{n}{2}\right\rceil+1\right) \&$ is odd for some $n \geq 0$.

Theorem 0.0.4:

A sequence of positive integers in the order (A, B, C) is consecutive triangular numbers if and only if

$$
\sqrt{B+C}-\sqrt{B+A}=1
$$

and

$$
\begin{equation*}
B-\boldsymbol{A}=\sqrt{\boldsymbol{B}+\boldsymbol{A}} . \tag{**}
\end{equation*}
$$

Proof. (\Rightarrow) Let (A, B, C) be a sequence of positive integers in the order. Suppose

$$
\begin{equation*}
\sqrt{B+C}+\sqrt{B+A}=1 \text { and } B-\boldsymbol{A}=\sqrt{\boldsymbol{B}+\boldsymbol{A}} \tag{***}
\end{equation*}
$$

From the later when we square both sides, $(B-A)^{2}=B+A \ldots$
and combining the former with $\left({ }^{* * *)}\right.$ we have $\sqrt{B+C}=1+\sqrt{B+A}=1+\sqrt{(B-A)^{2}}$
This implies $\sqrt{B+C}=1+|B-A|=1+B-A$ because $B>A$
Squaring both sides of $\left({ }^{* * * *}\right)$ gives, $B+\boldsymbol{C}=(\mathbf{1}+\boldsymbol{B}-\boldsymbol{A})^{\mathbf{2}}$. Let $B-A=\boldsymbol{n}$, for some $\boldsymbol{n} \in \mathbb{Z}^{+}$. This implies $B+\boldsymbol{C}=(\mathbf{1}+\boldsymbol{n})^{\mathbf{2}}$ and from $\left({ }^{* * *)} B+A=n^{2}\right.$.

Hence $\sqrt{\boldsymbol{B}+\boldsymbol{C}}-\sqrt{\boldsymbol{B}+\boldsymbol{A}}=\mathbf{1}$ is true if and only if $B+C=(n+1)^{2}$ and $B+A=n^{2}$ for some $n \geq 0$.
Therefore, $B=n^{2}-A$ and $C-A=2 n+1$. This implies $C=2 n+1+A$.
Consider the sequence

$$
\begin{equation*}
(A, B, C)=\left(A, n^{2}-A, 2 n+1+A\right) \tag{*****}
\end{equation*}
$$

From $(* *), \boldsymbol{B}-\boldsymbol{A}=\boldsymbol{n}$. Combining $(* *)$ and $(* * *)$, we have $\boldsymbol{n}^{\mathbf{2}}-\boldsymbol{n}=\mathbf{2 A}$, which implies
$A=\frac{n^{2}-n}{2}=\frac{(n-1) n}{2} \quad$ and
$C=2 n+1+A=2 n+1+\frac{n^{2}-n}{2}=\frac{n^{2}+3 n+2}{2}=\frac{(n+1)(n+2)}{2}$ and
$\mathrm{B}=\boldsymbol{n}^{2}-\mathrm{A}=\boldsymbol{n}^{2}-\frac{n^{2}-n}{2}=\frac{n^{2}+n}{2}=\frac{n(n+1)}{2}$.
Therefore (A B , C) $=\left(\frac{n^{2}-n}{2}, \frac{n(n+1)}{2}, \frac{(n+1)(n+2)}{2}\right)=\left(T_{n-1}, T_{n}, T_{n+1}\right)$ is a sequence of consecutive triangular numbers.
(\Leftarrow) Suppose a sequence of integers (A, B, C) is consecutive triangular numbers.
Set $A=T_{m}$. Then $B=T_{m+1}$ and $C=T_{m+2}$. By (Lemma 0.0.1),

$$
A=\frac{m(m+1)}{2}, \quad B=\frac{(m+1)(m+2)}{2} \quad \text { and } \quad C=\frac{(m+2)(m+3)}{2} .
$$

This implies $B+C=(m+2)^{2}$ and $B+A=(m+1)^{2}$. Thus

$$
\begin{align*}
& \sqrt{B+C}-\sqrt{B+A}=\sqrt{(m+2)^{2}}-\sqrt{(m+1)^{2}} \\
& \quad=|m+2|-|m+1|=1 \text { and },
\end{align*}
$$

$\mathrm{B}-\mathrm{A}=\frac{(m+1)(m+2)}{2}-\frac{m(m+1)}{2}=m+1$ and
$\sqrt{B+A}=\sqrt{\frac{(m+1)(m+2)}{2}+\frac{m(m+1)}{2}}=\sqrt{(m+1)^{2}}=|m+1|=m+1$.
Therefore $B-A=\sqrt{B+A}$.
From (Δ) and $(\Delta \Delta)$ if a sequence of integers (A, B, C) is consecutive triangular numbers,
then $\sqrt{B+C}-\sqrt{B+A}=1$ and $B-A=\sqrt{B+A}$.

Note: For any $k \geq 1$ the number $n=2^{k-1}\left(2^{k}-1\right)$ is triangular in particular if $\left(2^{k}-1\right)$ is prime for $k>1$ then $n=2^{k-1}\left(2^{k}-1\right)$ is perfect and also triangular number. To investigate the converse i.e., (in our next paper) which even triangular numbers has the form of $n=2^{k-1}\left(2^{k}-1\right)$ and are perfect we explore the followings.

Definition 0.0.5: The greatest common integer d that divides two non-zero integers a and b is called the greatest common divisor of a and b , denoted by $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.

Example 0.0.6: Given $x=p_{1}^{m} p_{2}^{a}$ and $y=p_{1}^{n} p_{2}^{b}$ where p_{1} and p_{2} are distinct primes, the

$$
\operatorname{gcd}(x, y)=\mathbf{p}_{1}^{\min (\mathrm{n}, \mathrm{~m})} \mathbf{p}_{2}^{\min (\mathrm{a}, \mathrm{~b})}
$$

Definition 0.0.7: The least common multiple of the integers a and b is called the smallest positive integer that is divisible by both a and b , denoted by $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$.

Example 0.0.8: Given $x=p_{1}^{m} p_{2}^{a}$ and $y=p_{1}^{n} p_{2}^{b}$ where p_{1} and p_{2} are distinct primes the

$$
\operatorname{lcm}(x, y)=p_{1}^{\max (n, m)} p_{2}^{\max (a, b)}
$$

Theorem 0.0.9 [4,5]: For two positive integers a and $b, \boldsymbol{a} \boldsymbol{b}=\boldsymbol{\operatorname { l c m }}(\boldsymbol{a}, \boldsymbol{b}) \operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$.
Example 0.0.10: Given $x=p_{1}^{m} p_{2}^{a}$ and $y=p_{1}^{n} p_{2}^{b}$ where p_{1} and p_{2} are primes, then

$$
\mathbf{x y}=p_{1}^{m} p_{2}^{a} p_{1}^{n} p_{2}^{b}=\operatorname{gcd}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{l c m}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{p}_{1}^{\min (\boldsymbol{n}, \boldsymbol{m})} \boldsymbol{p}_{\mathbf{2}}^{\min (\boldsymbol{a}, \boldsymbol{b})} \boldsymbol{p}_{\mathbf{1}}^{\max (\boldsymbol{n}, \boldsymbol{m})} \boldsymbol{p}_{\mathbf{2}}^{\max (\boldsymbol{a}, \boldsymbol{b})}
$$

Theorem 0.0.11:

For each $n \geq 1, \quad(f(n), g(n))=\left(T_{4 n-1}, T_{4 n}\right) \quad$ and $(\phi(n), \eta(n))=\left(T_{4 n-3}, T_{4 n-2}\right)$ are the set of ordered pairs with
consecutive even and consecutive odd triangular numbers.
Note: See the table at page 9 below.

Theorem 0.0.12:

$$
\left\{\begin{array} { l }
{ \operatorname { g c d } (f (n) , g (n)) = 2 n } \\
{ \operatorname { g c d } (\phi (n) , \eta (n)) = 2 n - 1 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{c}
\operatorname{lcm}(f(n), g(n))=3\binom{4 n+1}{3} \\
\operatorname{lcm}(\phi(n), \eta(n))=3\binom{4 n-1}{3}
\end{array}\right.\right.
$$

Proof:

$$
f(n)=T_{4 n-1}=\frac{(4 n-1)(4 n)}{2}=(2 n)(4 n-1) \quad \text { and } \quad g(n)=T_{4 n}=\frac{(4 n)(4 n+1)}{2}=(2 n)(4 n+1)
$$

If $d \mid(4 n-1)$ and $d \mid(4 n+1)$ then $\mid(4 n+1)-(4 n-1)$. This implies $d \mid 2$ and then $d \mid 1$
or $d \mid 2$. But $d \neq 2$, because d is a divisor of an odd integer. Therefore the only divisor of
$(4 n+1)$ and $(4 n-1)$ is 1. Hence the $\operatorname{gcd}(4 n-1,4 n+1)=1$.
Therefore for each $n, f(n)=T_{4 n-1} \quad$ and $\quad g(n)=T_{4 n} \quad \operatorname{gcd}(f(n), g(n))=\mathbf{2 n}$ and then

$$
\begin{aligned}
\operatorname{lcm}(f(n), g(n)) & =\frac{\boldsymbol{f}(\boldsymbol{n}) \boldsymbol{g}(\boldsymbol{n})}{\operatorname{gcd}(\boldsymbol{f}(\boldsymbol{n}) \boldsymbol{g}(\boldsymbol{n}))}=\frac{(2 n)(4 n-1)(2 n)(4 n+1)}{2 n} \\
& =(2 \mathrm{n})\left((4 \mathrm{n}-1)(4 \mathrm{n}+1)=\frac{1}{2 n}\left(T_{4 n-1} T_{4 n}\right)\right. \\
& =\frac{1}{2 n}\binom{4 n}{2}\binom{4 n+1}{2}=3\binom{4 n+1}{3} .
\end{aligned}
$$

Next we find $\operatorname{lcm}(\phi(n), \eta(n))$ and $\operatorname{gcd}(\phi(n), \eta(n))$.

$$
\phi(n)=T_{4 n-3}=\frac{(4 n-3)(4 n-2)}{2}=(4 n-3)(2 n-1)
$$

and
$\eta(n)=T_{4 n-2}=\frac{(4 n-2)(4 n-1)}{2}=(4 n-1)(2 n-1)$. The $\operatorname{gcd}(4 n-1,4 n-3)=1 .(\infty 00)$ above.
Therefore, $\operatorname{gcd}(\phi(n), \eta(n))=\operatorname{gcd}((4 n-3)(2 n-1),(4 n-1)(2 n-1))=2 n-1$.
By (Theorem 0.0.8), $\operatorname{lcm}(\phi(n), \eta(n))=\frac{\phi(n) \eta(n)}{\operatorname{gcd}(\phi(n), \eta(n))}=\frac{(2 n-1)(4 n-3)(4 n-1)(2 n-1)}{2 n-1}$

$$
\begin{aligned}
& =(2 \mathrm{n}-1)(4 \mathrm{n}-1)(4 \mathrm{n}-3)=\frac{1}{(n-1)}\left(T_{4 n-3} T_{2 n-2}\right) \\
& =\frac{1}{2 n}\binom{4 n-2}{2}\binom{2 n-1}{2}=3\binom{4 n-1}{3}
\end{aligned}
$$

Example 0.0.13: Find $\operatorname{gcd}\left(T_{7}, T_{8}\right)$ and $\operatorname{lcm}\left(T_{7}, T_{8}\right)$.
Answer: $\quad T_{7}=T_{4 n-1}=28$ and $T_{8}=T_{4 n}=36$ where $n=2$. Therefore

$$
\operatorname{gcd}\left(T_{7}, T_{8}\right)=\operatorname{gcd}(28,36)=2 n=4 \text { and } \operatorname{lcm}\left(T_{7}, T_{8}\right)=3\binom{9}{3}=252=\frac{(28)(36)}{2} .
$$

Theorem 0.0.14:

Define a sequence

$$
\begin{gathered}
F_{n}=\sum_{i=0}^{n}(4 i+1) \quad \text { and } \quad G_{n}=\sum_{i=0}^{n}(4 i+3) . \text { Then } \\
\sum_{i=1}^{2 n} T_{i}=\sum_{i=0}^{n-1} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right) .
\end{gathered}
$$

Proof: Given

$$
\begin{gather*}
F_{t}=\sum_{k=0}^{t}(4 k+1) \quad \text { and } \quad G_{t}=\sum_{k=0}^{t}(4 k+3) . \text { Then } \\
\sum_{i=1}^{2 n} T_{2 i}=\sum_{i=0}^{n-1} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right)
\end{gather*}
$$

We use induction to prove the statement. We verify it is true for $n=1$. The left side of
$(\odot \odot) \quad \sum_{i=1}^{2} T_{i}=T_{1}+T_{2}=1+3=4$ and the right side $\sum_{i=0}^{0} \sum_{k=0}^{0}\left(F_{i}+G_{i}\right)=F_{0}+G_{0}=1+3=4$.
Let $t \in \mathbb{Z}^{+}$and suppose the statement in $(\odot \odot)$ is true for $n=t$ that is

$$
\sum_{i=1}^{2 t} T_{2 i}=\sum_{i=0}^{t-1} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right) . \text { Now we show that it is true for } n=t+1 \text {. Thus }
$$

$\sum_{i=1}^{2(t+1)} T_{2 i}=\sum_{i=1}^{2 t+2} T_{2 i}=\sum_{i=1}^{2 t} T_{2 i}+T_{2 t+1}+T_{2 t+2}$, but
$\mathrm{F}_{\mathrm{t}}=\sum_{\mathrm{k}=1}^{\mathrm{t}}(4 \mathrm{k}+1)+1=\frac{4 \mathrm{t}(\mathrm{t}+1)}{2}+\mathrm{t}+1=(\mathrm{t}+1)(2 \mathrm{t}+1)=\mathrm{T}_{2 \mathrm{t}+1}$, and
$\mathrm{G}_{\mathrm{t}}=\sum_{\mathrm{k}=1}^{\mathrm{t}}(4 \mathrm{k}+3)+3=\frac{\mathrm{t}(\mathrm{t}+1)}{2}++3 \mathrm{t}+3=(\mathrm{t}+1)(2 \mathrm{t}+3)=\mathrm{T}_{2 \mathrm{t}+2}$. Hence,
$\mathrm{T}_{2 \mathrm{t}+1}=\mathrm{F}_{\mathrm{t}}$ and $\mathrm{T}_{2 \mathrm{t}+2}=\mathrm{G}_{\mathrm{t}}$ and $\sum_{i=1}^{2(t+1)} T_{2 i}=\sum_{\mathrm{i}=1}^{2 \mathrm{t}} \mathrm{T}_{2 \mathrm{i}}+\mathrm{F}_{\mathrm{t}}+\mathrm{G}_{\mathrm{t}}$ and therefore

$$
\sum_{i=1}^{2(t+1)} T_{2 i}=\sum_{i=1}^{2 t+2} T_{2 i}=\sum_{i=1}^{2 t} T_{2 i}+T_{2 t+1}+T_{2 t+2}
$$

$$
=\sum_{i=0}^{t-1} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right)+F_{t}+G_{t}
$$

$$
=\sum_{i=0}^{t-1} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right)+\sum_{k=0}^{t}(4 k+1)+\sum_{k=0}^{t}(4 k+3)
$$

$$
=\sum_{i=0}^{t} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right) \text { and the statement is true for } n=t+1 .
$$

Hence

$$
\sum_{i=1}^{2 n} T_{i}=\sum_{i=0}^{n-1} \sum_{k=0}^{i}\left(F_{i}+G_{i}\right)
$$

Theorem 0.0.15: For each $n \geq 1$,

$$
\sum_{i=1}^{n} T_{i}^{2}=\frac{n}{60} T_{2 n+1}\binom{3 T_{n}+2}{3 T_{n}+1}+\frac{1}{2} T_{n}^{2}
$$

Example 0.0.16: Find $\sum_{i=1}^{3} T_{i}^{2}$.
Answer: $\quad \sum_{i=1}^{3} T_{i}^{2}=T_{1}^{2}+T_{2}^{2}+T_{3}^{2}=1^{2}+3^{2}+6^{2}=1+9+36=46$ and $\frac{3}{60} T_{7}\binom{3 T_{3}+2}{3 T_{3}+1}+\frac{1}{2} T_{3}^{2}=\frac{3}{60} .28 .\binom{20}{19}+\frac{1}{2}(36)=\frac{3}{60} \cdot 28 \cdot 20+\frac{1}{2}(36)=28+18=46$.

This implies $\quad \sum_{i=1}^{3} T_{i}^{2}=46=\frac{3}{60} T_{7}\binom{3 T_{3}+2}{3 T_{3}+1}+\frac{1}{2} T_{3}^{2}$.
Proof: We use the following identities: (\otimes)

1) $\quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
2) $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$
3) $\sum_{k=1}^{n} k^{4}=\frac{n(n+1)(2 n+1)}{30}\left(3 n^{2}+3 n-1\right)$

For each $n \geq 1, T_{n}{ }^{2}-T_{n-1}{ }^{2}=n^{3}$. This implies

$$
\sum_{i=1}^{n}\left(T_{i}^{2}-T_{i-1}^{2}\right)=\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}=\left(\frac{n(n+1)}{2}\right)^{2}=T_{n}^{2} . \text { Hence }
$$

$$
T_{k}^{2}=\sum_{i=1}^{k} i^{3} \quad \text { and } \quad \sum_{k=1}^{n} T_{k}^{2}=\sum_{k=1}^{n} \sum_{i=1}^{k} i^{3}=\sum_{k=1}^{n} \frac{k^{2}(k+1)^{2}}{4}=\frac{1}{4} \sum_{k=1}^{n}\left(k^{4}+2 k^{3}+k^{2}\right) .
$$

But,

$$
\begin{align*}
\sum_{k=1}^{n} k^{4}+\sum_{k=1}^{n} k^{2} & =\sum_{k=1}^{n} k^{4}-\sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k^{2} \\
& =\frac{n(n+1)(2 n+1)}{30}\left(3 n^{2}+3 n-1\right)-\frac{n(n+1)(2 n+1)}{6}+2 \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n(n+1)(2 n+1)}{6}\left(\frac{3 n^{2}+3 n-1}{5}-1\right)+2 \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{(n-1) n(n+1)(n+2)(2 n+1)}{10}+\frac{n(n+1)(2 n+1)}{3} \\
& =n(n+1)(2 n+1)\left(\frac{(n-1)(n+2)}{10}+\frac{1}{3}\right) \\
& =\frac{1}{30} n(\mathrm{n}+1)(2 \mathrm{n}+1)(3 \mathrm{n}(\mathrm{n}+1)+4) \\
& =\frac{n}{30} \frac{(2 n+1)(2 n+2)}{2}(3 n(n+1)+4) \\
& =\frac{n}{30} T_{2 n+1}\left(\frac{6 n(n+1)}{2}+4\right)=\frac{n}{30} T_{2 n+1}\left(6 T_{n}+4\right) \\
& =\frac{n}{15} T_{2 n+1}\left(3 T_{n}+2\right)
\end{align*}
$$

Combining (\oplus) and $(\oplus \oplus)$ we have,
$\frac{1}{4} \sum_{k=1}^{n}\left(k^{4}+2 k^{3}+k^{2}\right)=\frac{1}{4}\left(\sum_{k=1}^{n} k^{4}+\sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k^{3}\right)$

$$
=\frac{1}{4}\left(\frac{n}{15} T_{2 n+1}\left(3 T_{n}+2\right)+2 \sum_{k=1}^{n} k^{3}\right) \quad(\operatorname{see}(\oplus \oplus \oplus))
$$

$$
\begin{equation*}
=\frac{1}{4}\left(\frac{n}{15} T_{2 n+1}\left(3 T_{n}+2\right)+2 \frac{n^{2}(n+1)^{2}}{4}\right) \tag{see}
\end{equation*}
$$

$$
=\frac{n}{60} T_{2 n+1}\left(3 T_{n}+2\right)+\frac{1}{2} T_{n}^{2}
$$

Hence for each for each $n \geq 1$,

$$
=\frac{n}{60} T_{2 n+1}\binom{3 T_{n}+2}{3 T_{n}+1}+\frac{1}{2} T_{n}^{2}
$$

$$
\sum_{i=1}^{n} T_{i}^{2}=\frac{n}{60} T_{2 n+1}\binom{3 T_{n}+2}{3 T_{n}+1}+\frac{1}{2} T_{n}^{2}
$$

Double Factorial

The product of the integers from 1 up to some non-negative integers n that have the same parity as n is called double factorial or semi factorial of n and is denoted by $n!![3,6]$. That is

$$
n!!=\prod_{k=0}^{m}(n-2 k)=n(n-2)(n-4) \ldots, \text { where } m=\left\lceil\frac{n}{2}\right\rceil-1
$$

A consequence of this definition is that $0!!=1$. For even n, the double factorial is

$$
\begin{aligned}
& n!!=\prod_{k=1}^{\frac{n}{2}}(2 k)=n(n-2) \ldots 2 \text { and for odd } n, \\
& n!!=\prod_{k=1}^{\frac{n+1}{2}}(2 k-1)=n(n-2) \ldots 1 .
\end{aligned}
$$

Theorem 0.0.17:

Let T_{n} be the $n t h$ triangular number. Then for $p \geq 1$,

$$
(2 p+1)!!=\frac{1}{p!} \prod_{i=1}^{p} T_{2 i}
$$

Example 0.0.18:

$5!!=(2 \cdot 2+1)!!=1 \cdot 3 \cdot 5=15=\frac{1}{2!} \prod_{i=1}^{2} T_{2 i}=\frac{1}{2} \cdot T_{2} \cdot T_{4}=\frac{1}{2!}(3 \cdot 10)=15$ and
$7!!=(2.3+1)!!=1 \cdot 3 \cdot 5 \cdot 7=105=\frac{1}{3!} \prod_{i=1}^{3} T_{2 i}=\frac{1}{3!} \cdot T_{2} \cdot T_{4} \cdot T_{6}=\frac{1}{6}(3 \cdot 10 \cdot 21)=105$.
Proof: We prove by induction. Let $P(p)$ be the statement that

$$
(2 p+1)!!=\frac{1}{p!} \prod_{i=1}^{p} T_{2 i}
$$

We verify that $P(1)$ is true. When $p=1$, the left side of $(\circ \circ \circ)(2.1+\mathbf{1})=\mathbf{3 ! !}=\mathbf{3}$ and the right side $\frac{1}{1!} \prod_{i=1}^{1} T_{2 i}=T_{2}=3=3!!=1.3$, so both sides are equal and $P(1)$ is true.

Let $k \in \mathbb{Z}^{+}$and suppose $P(k)$ is true for $n=k$, i.e., $(\mathbf{2 k}+\mathbf{1})!!=\frac{\mathbf{1}}{\boldsymbol{k}!} \prod_{i=\mathbf{1}}^{\boldsymbol{k}} \boldsymbol{T}_{2 \boldsymbol{i}}$. (००००)

Next we show that
$P(k+1)$ is true for each $k \geq 1$ that is $(\mathbf{2}(\boldsymbol{k}+\mathbf{1})+\mathbf{1})!!=\frac{\mathbf{1}}{(k+\mathbf{1})!} \prod_{i=\mathbf{1}}^{\boldsymbol{+ 1}} \boldsymbol{T}_{\mathbf{2 i}}$.

$$
\begin{aligned}
&(2(k+1)+1)!!=(2 k+3)!!=(2 k+3)(2 k+1)!! \\
&=(2 k+3) \frac{1}{k!} \prod_{i=1}^{k} \boldsymbol{T}_{2 \boldsymbol{i}} \quad(\text { See } \quad(\circ \circ \circ \circ)) \\
&=\frac{1}{k!} \prod_{i=\mathbf{1}}^{k} \boldsymbol{T}_{2 \boldsymbol{i}}(2 \mathrm{k}+3)=\frac{k+1}{(k+1)!} \prod_{i=\mathbf{1}}^{k} \boldsymbol{T}_{2 \boldsymbol{i}} \quad(2 \mathrm{k}+3) \quad\left(\text { Because } \frac{1}{k!}=\frac{k+1}{(k+1)!}\right) \\
&=\frac{k+1}{(k+1)!} \prod_{i=1}^{k} \boldsymbol{T}_{2 \boldsymbol{i}} \quad(2 \mathrm{k}+3)=\frac{1}{(k+1)!} \prod_{i=\mathbf{1}}^{k} \boldsymbol{T}_{2 \boldsymbol{i}} \quad(2 k+3)(k+1)
\end{aligned}
$$

But $T_{2 k+2}=\frac{(2 k+2)(2 k+3)}{2}$, Lemma (0.0.1) which implies $T_{2 k+2}=\frac{(2 k+2)(2 k+3)}{2}=(2 k+3)(k+1)$.
Consequently, $2(k+1)+1)!!=(2 k+3)!!=\frac{1}{(k+1)!} \prod_{i=1}^{k} \boldsymbol{T}_{2 i}(2 k+3)(k+1)$

$$
\begin{aligned}
& =\frac{1}{(k+1)!} \prod_{i=1}^{k} T_{2 i} . \quad T_{2 k+2} \\
& =\frac{1}{(k+1)!} \prod_{i=1}^{k+1} T_{2 i} .=P(k+1)
\end{aligned}
$$

This implies $P(k+1)$ is true for each $k \geq 1$, and hence,

$$
(2 p+1)!!=\frac{1}{p!} \prod_{i=1}^{p} T_{2 i} \text { for each } p \geq 1
$$

ODD and EVEN Triangular Numbers with Corresponding Subscripts,

1	3	6	10	15	21	28	36	45	55
66	78	91	105	120	136	153	171	190	210
231	253	276	300	325	351	378	406		

From the table above we see that odd triangular numbers are given as
From the table above we see that odd triangular numbers are given as

1	3	15	21	45	55	91	105	153	171	231	253
$1 * 1$	$1 * 3$	$3 * 5$	$3 * 7$	$5 * 9$	$5 * 11$	$7 * 13$	$7 * 15$	$9 * 17$	$9 * 19$	$11 * 21$	$11 * 23$
t_{1}	t_{2}	t_{5}	t_{6}	t_{9}	t_{10}	t_{13}	t_{14}	t_{17}	t_{18}	t_{21}	t_{22}

$\left\{\begin{array}{lc} t_{2 i-2}, & i \text { is even } \\ & \text { and } \\ t_{2 i-1}, & i \text { is odd } \end{array}\right.$								$\begin{gathered} t_{4 k-2}, \text { for } i=2 k, k \in \mathbb{Z}^{+} \\ \text {and } \\ t_{4 k-3}, \text { for } i=2 k-1, k \in \mathbb{Z}^{+} \end{gathered}$					
6	10	28	36	66	78	120	136	190	210	276	300	378	406
$2 * 3$	$2 * 5$	4*7	4*9	$6 * 11$	6*13	8*15	8*17	10*19	$10 * 21$	$12 * 23$	$12 * 25$	$13 * 27$	$13 * 29$
t_{3}	t_{4}	t_{7}	t_{8}	t_{11}	t_{12}	t_{15}	t_{16}	t_{19}	t_{20}	t_{23}	t_{24}	t_{27}	t_{28}

and in the table below the even triangular numbers has following subscripts,

$$
\left\{\begin{array} { c }
{ t _ { 2 i } , \quad i \text { is even } } \\
{ \quad \text { and } } \\
{ t _ { 2 i + 1 } , \quad i \text { is odd } }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{c}
t_{4 k}, \text { for } i=2 k, k \in \mathbb{Z}^{+} \\
\text {and } \\
t_{4 k-1}, \text { for } i=2 k-1, k \in \mathbb{Z}^{+}
\end{array}\right.\right.
$$

Conclusion and Remarks

The sum of two triangular numbers may be a triangular number. For instance the pairs $(6,15)$ and $(21,45)$ are triangular number with $6+15=T_{3}+T_{5}=21=T_{6}$ and $21+45=T_{6}+T_{9}=T_{1}=66$ are again a triangular numbers. Moreover, if you see the double factorial,
$5!!=1.3 .5==(1)(3.5)=T_{1} \cdot T_{5}$
$9!!=1 \cdot 3 \cdot 5 \cdot 7 \cdot 9=(1)(3.7)(5.9)=T_{1} \cdot T_{6} \cdot T_{9}$ and
$13!!=1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11.13=(1)(7.13)(5.11)(3)(9)=T_{1} . T_{13} T_{10} T_{2}^{3}$.

We ponder that the double factorial of odd integers can be expresses as a product of triangular numbers. Is it unique? Can we find a relationship between gamma functions, beta function and product of triangular numbers? Which even triangular
numbers n has the form of $n=2^{k-1}\left(2^{k}-1\right)$ and is perfect. These are open problems we are working on and close to show these facts are true in our next paper.

References

[1] David M. Burton(1980) Elementary Number Theory, Ally and Bacon, Inc., ISBN 0-205-06965-7.
[2] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[3] Thomas Koshy(2004) Discrete Mathematics with Application, ISBN, 0-12-421180, Elsevier Academic Press.
[4] Charles Vanden Eynden(2001) Elementary Number Theory, ISBN13: 978- 1577664451, McGraw-Hill Publishing.
[5] Guram Bezhanishvili, Eachan Landreth (2013) Introduction to Set Theory. DOI: 10.4169/loci003991
[6] Keit Oldham, Jan Myland, Jerome Spanier (1987)An Atlas of Functions, ISBN10: 0891165738 ISBN 13:9780891165736, Published by Taylor \& Francis

COPYRIGHTS

Copyright of this article is retained by the author/s, with first publication rights granted to APJMR. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creative commons.org/licenses/by/4.

