
 

International Journal of Academic Research in Accounting, Finance and Management Sciences 
Vol. 4, No.1, January 2014, pp. 397–408 

E-ISSN: 2225-8329, P-ISSN: 2308-0337 

© 2014 HRMARS 

www.hrmars.com 
 

 

A Model and its Solution Method for a Two-Item Newsvendor Supply 

Chain with Return Policy and Demand Leakage 
 

Che-Tsung TUNG
1
 

Kuo-Hsien WANG
2
 

Yu-Je LEE
3
 

1
Department of International Trade, Takming University of Science and Technology, Taipei, Taiwan,  

1
E-mail: dennistung@takming.edu.tw (Corresponding author) 

2
Department of Business Administration, Takming University of Science and Technology, Taipei, Taiwan,  

2
E-mail: wanko@takming.edu.tw  

3
Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan,  

3
E-mail: pyj@takming.edu.tw  

 
Abstract We study a one-manufacturer and one-retailer type of supply chain that the manufacturer manufactures 

two newsvendor-type items and offers a buy-back contractual commitment to the retailer who sells the 

items in a stochastic demand market with various prices, allowing demand leakage from high-priced item 

to low-priced one. The objective of this study is to coordinate the chain by jointly determining wholesale 

prices, buy-back prices, retail prices and order sizes. We first derive a succinct model for the chain in 

which the manufacturers expected profit subject to the retailer’s optimal expected profit will be explored. 

And a solution method to the case of uniformly distributed error demand is subsequently proposed; 

accordingly, a series of examples along with graphical concavity and satisfying constraint of the 

manufacturer’s expected profit are conducted to validate our solution method. 
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1. Introduction 

Recently, a Taipei-based Smartphone company, HTC, promoted a series of distinct classes of 

Smartphone’s in the European market, aiming at drawing more different consumer groups to enlarge 

market shares. In that case, his downstream retailer will face a problem on how to set retail prices in 

response to the marketing strategy. If the high-class phones are overpriced, some of potential buyers, who 

originally intend to purchase the phones, might choose the low-class but relatively cheap ones instead; 

contrarily, those who initially prefer the inexpensive low-class phones could opt to purchase the expensive 

high-class ones due to the insignificant price gap if the high-class phones are underpriced. Of these two 

situations the former damages the retailer’s profit because of demand leakage from high-priced phones to 

low-priced phones who possess meager profit by comparison; and the latter also impairs his profit because 

of the high-priced phone’s diminishing profit margin. This study therefore tackles this problem from the 

viewpoint of supply chain that a manufacturer manufactures two newsvendor-type items and offers a buy-

back commitment to a retailer, who helps sell the items in stochastic demand environment with various 

prices allowing demand leakage from high-priced item to low-priced one. 

A number of extant publications in the literature have termed revenue management as one of the 

most pressing topic in the field of management science and operation research since large revenue 

generally yields large profit (Bell, 1998); and a commonly used strategy to increase revenue is to 

differentiate a single market into multiple sub-market segments through various prices mainly enticing 

more buyers, which accounts for why many firms usually offer discount prices for earlier purchases and 

online purchases alike. Gerchak et al. (1985) primarily dealt with the relevant problem whether a limited 

supply of bagels should be sold as a single item with higher price or as part of other combination with lower 
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price; and later, consumers are partitioned into two sub-groups by Pfeifer (1989) with price-sensitivity and 

price-insensitivity to investigate airline discount fare allocation problem. Shi and Chen (2007) analyzed 

Pareto-optimal contracts for a newsvendor supply chain with satisfying objectives. Lately, Zhang and Bell 

(2007) and Zhang et al. (2010) initiated a model of two demand classes associated with demand 

dependency allowing demand leakage across the segments, from where the result of total expected profit 

of two variously priced sub-market segments always outstrips that from a single market segment is 

identified. Wang et al. (2013) also discussed this two demand class’s model. They developed a critical level 

rationing policy in which a threshold mechanism is adopted to allocate backorders when multiple 

outstanding orders exist. 

A supply chain is called to be coordinated if it reaches a possible maximal channel profit as a whole 

by virtue of contractual terms negotiating among the chain members. And a traditional price-only contract 

is a trade whereby manufacturer does not offer any incentives to retailers; wholesale prices are the only 

decision variables between them (Lariviere and Porteus, 2001). A return policy contract, however, is a 

commitment provided by upstream member to accept unsold stock of downstream members at the end of 

selling season; in practice, it actually helps ease nervousness on being overstocked, especially in a market 

full of demand uncertainty. Unlike the Larivieve (1999) who reported that the priced-only contract fails to 

coordinate supply chain, a benchmark paper by Pasternack (1985) expressed that channel coordination 

could be accessible by means of the return policy implementation. Thus two existing types of return policy 

are extensive discussed: the first is a complete return policy that promises to refund a buy-back price 

(smaller than wholesale price to avoid arbitrage opportunity) for each returned unit; the second is a partial 

return policy that reimburses retailer wholesale price only for part of unsold stock, usually a certain 

percentage of order size also known as the quantity flexibility (Tsay, 1999). Based on the policies, Lariviere 

(1999) accordingly derived a mathematical equivalence between the two return policies under stochastic 

demand environment. Also, Bose and Anand (2007) handled the pertinent issue by first adopting the partial 

return policy and then extending to the complete return policy with same approach in a framework of 

single-period problem. 

In competitive newsvendor environment, ordering decisions are assumed to be set simultaneously-

there is no priority or time sequence among competitors; each competes with others by satisfying a market 

with substitutable products. Parlar (1988) verified the existence of unique Nash solution for two vendors in 

this situation; Netessine and Rudi (2003) sequentially generalized Parlar’s result to the case of any number 

of vendors. In contrast with the competitive environment, a Stackelberg game includes a leader and other 

followers; the leader first sets contractual terms and then makes optimal decisions after knowing the 

followers’ responses, aiming to earn higher profit than that in competitive game. Bose and Anand (2007) 

coped with the game focusing on one manufacturer and one vendor supply chain with exogenously fixed 

wholesale price, where the manufacturer maximizes his expected profit subject to participation constraint 

of the retailer’s optimal profit; and with aid of numerical examples, channel coordination of the 

constrained Nash equilibrium is claimed. Later, Yao et al. (2008) conducted a string of examples regarding 

the game in light of the price-only and the return policy contracts, along with a conclusion that the return 

policy contract actually improves channel profit; in the case of high demand variability, they further 

suggested that manufacturer is supposed to split some profit to continue the game, a similar result 

appeared in Lau and Lau (1999), Lau et al. (2000) and Tsay (2001). Besides that, Serin (2007) stressed on 

two-vendor problem with initial and reallocated demand considerations, core value of which is that, under 

certain condition on profit function, problems of two-player type (Nash game) and leader-follower type 

(Stackelberg game) share common optimal solutions in inventory management. Unlike the papers above, 

Serel (2008) studied a single-period problem assuming that retailer could place his order from a reliable 

supplier, a risky supplier or the both, in which the retailer is making optimal ordering decision on how to 

divide his order between the reliable but high-cost supplier and the unreliable but low-cost supplier. 

In this study we zero in on a 1-leader-and-1-follower type of newsvendor supply chain that the 

manufacturer, who is a leader offering a complete return policy, maximizes his expected profit by 

determining wholesale prices and buy-back prices under the constraint of the retailer’s optimal expected 

profit, who is a follower determining optimal retail prices and optimal order sizes in a stochastic demand 

market. The contributions of our study are twofold. Firstly, we successfully derive a succinct model for the 
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two-item supply chain that is rather complicated since   demand leakage and buy-back policy are taken into 

account altogether. Secondly, due to interdependence of the two leaking demands, widely used software 

packages are unable to directly solve the problem; we thus develop a solution method of iteration that will 

be proven valid by means of a string of examples, accompanied with graphical concavity and satisfying 

constraint of the manufacturer’s expected profit. 

The remainder of this study is organized as follows. Assumptions and notation are made in Section 2 

incorporating with pertinent models formulation and corresponding theoretical analyses. In Section 3, an 

iterative solution procedure to optimize the case of uniform distribution of error demand is developed so 

as that many numerical examples are conducted to show the validity of our solution method. Finally, 

remarks on the study and possible directions for further research are presented in Section 4 to complete 

the study.  

 

2. The model 

The problem of this study is defined as follows. A manufacturer manufactures two newsvendor-type 

items and offers a complete returns policy contract to a retailer who sells the items in a stochastic demand 

market. For item i , i=1,2, wholesale price, buy-back price, retail price and order size are iw , ib , ip  and iQ , 

respectively; unit production cost ic  and unit shortage cost is  for unsatisfied demand are also incurred. 

Following Zhang and Bell (2007), the deterministic parts of the items’ demands allowing leakage from high-

priced item to low-priced one are defined by 

 

      1 1 1 1 1 2( )D p p pα β γ= − − −  

      2 2 2 2 1 2( )D p p pα β γ= − + −                                           (1) 

 

Where, for i=1,2, iα >0 is a primary demand; iβ >0 is a consumer’s price-sensitivity; γ >0 is a leakage 

rate. Then, based on Mills (1959), the items’ stochastic demands are given by 

 

      i i ix D ε= +     i=1,2                                                (2) 

 

Where, for item i, iε  is an error demand defined on a range [ , ]i iA B  with pdf ( )i if ε  and cdf ( )i iF ε .  

   According to the previous assumptions, for i=1, 2, the retailer’s profit from the item i is calculated 

by  

      
( )

( ) ( )
i i i i i i i i i

i i i i i i i i

p x w Q b Q x x Q

p w Q s x Q x Q

− + − ≤
 − − − >

                                     (3) 

 

Applying the scheme in Thowsen (1975) and Petruzzi and Dada (1999), we define i i iz Q D= −  and 

substitute i i ix D ε= +  into equation (3), then it becomes 

 

      
( ) ( ) ( )

( )( ) ( )
i i i i i i i i i i i

i i i i i i i i i

p D w D z b z z

p w D z s z z

ε ε ε
ε ε

+ − + + − ≤
 − + − − >

                             (4) 

 

Thus the retailer’s total expected profit is 

      
2

1

[ ] ( ( ( ) ( ) ( )) ( )
i

i

z

r i i i i i i i i i i i iA
i

E p D w D z b z f dπ ε ε ε ε
=

= + − + + −∑ ∫  

             (( )( ) ( )) ( ) )
i

i

B

i i i i i i i i i iz
p w D z s z f dε ε ε+ − + − −∫                       (5) 

 



International Journal of Academic Research in Accounting, Finance and Management Sciences 
Vol. 4 (1), pp. 397–408, © 2014 HRMARS 

    

 400 

Now, let ( ) ( ) ( )
i

i

z

i i i i i i iA
z z f dε ε εΛ = −∫  , ( ) ( ) ( )

i

i

B

i i i i i i iz
z z f dε ε εΘ = −∫  and the mean  

( )
i

i

B

i i i iA
f dµ ε ε ε= ∫  , the retailer’s expected profit can be re-written as follows. 

      
2 2 2

1 1 1

[ ] ( ) ( ) ( ) ( )r i i i i i i i i i i
i i i

E p w D p w w b zπ µ
= = =

= − + − − − Λ∑ ∑ ∑  

            
2

1

( ) ( )i i i i i
i

p w s z
=

− − + Θ∑                                          (6) 

 

Notice that each term of [ ]rE π  owns managerial meaning itself. The first term implies a profit 

coming from the deterministic part of the demand; the second term is an expected profit associated with 

the error demand; the third term is an expected cost due to overstock; and the last term means an 

expected shortage cost and an expected profit loss due to unsatisfied demand. 

Theorem 1. The retailer’s expected profit [ ]rE π  is concave in ip  and iz  for i=1,2, as long as 

1
( ) ( )

2i i i i i ip s b f zβ + − >  holds.        

Proof of the concavity of [ ]rE π   

  
2 2 2 2

1 1 1 1

[ ] ( ) ( ) ( ) ( ) ( ) ( )r i i i i i i i i i i i i i i i
i i i i

E p w D p w w b z p w s zπ µ
= = = =

= − + − − − Λ − − + Θ∑ ∑ ∑ ∑  

 

For i=1,2 , j=3-i, we have 

     
' '( ) ( ) , ( ) 1i i i i i i iz F z F zΛ = Θ = −  

     
[ ]

( ) ( ) ( )(1 ( ))r
i i i i i i i i i

i

E
w b F z p w s F z

z

π∂ = − − + − + −
∂

 

     
[ ]

2( ) 2 ( ) ( )r
i i j i i i j i i i

i

E
p p w w z

p

π β γ γ α β γ γ µ∂ = − + + + + + − + − Θ
∂

 

     

2 2

2 2

[ ] [ ]
( ) ( ) , 2( )r r

i i i i i i
i i

E E
p s b f z

z p

π π β γ∂ ∂= − + − = − +
∂ ∂

 

     

2 2 2 2[ ] [ ] [ ] [ ]
0, 1 ( ) , 0, 2r r r r

i i
i j i i i j i j

E E E E
F z

z z p z p z p p

π π π π γ∂ ∂ ∂ ∂= = − = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

Then corresponding Hessian matrix is 

     

1 1 1 1 1 1 1

2 2 2 2 2 2 2

1 1 1

2 2 2

( ) ( ) 0 1 ( ) 0

0 ( ) ( ) 0 1 ( )

1 ( ) 0 2( ) 2

0 1 ( ) 2 2( )

p s b f z F z

p s b f z F z
H

F z

F z

β γ γ
γ β γ

− + − − 
 − + − − =
 − − +
 − − + 

 

 

The first principal minor of H is 

     11 1 1 1 1 1( ) ( ) 0H p s b f z= − + − <  

The second principal minor of H is 

     22 1 1 1 2 2 2 1 1 2 2( )( ) ( ) ( ) 0H p s b p s b f z f z= + − + − >  

The third principal minor of H is 

     ( )2
33 2 2 2 2 2 1 1 1 1 1 1 1 1( ) ( ) 2( )( ) ( ) (1 ( ))H p s b f z p s b f z F zβ γ= + − − + + − + −  
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         < ( )2
2 2 2 2 2 1 1 1 1 1 1 1 1( ) ( ) 2 ( ) ( ) (1 ( ))p s b f z p s b f z F zβ+ − − + − + −  

         <0 if 1 1 1 1 1 1

1
( ) ( )

2
p s b f zβ + − >  holds 

The fourth principal minor of H is 

 

( )( )2 2
44 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 22( )( ) ( ) (1 ( )) 2( )( ) ( ) (1 ( ))H p s b f z F z p s b f z F zβ γ β γ= + + − − − + + − − −

      
2

1 1 1 2 2 2 1 1 2 24 ( )( ) ( ) ( )p s b p s b f z f zγ− + − + −   

    > ( )( )2 2
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 22 ( ) ( ) (1 ( )) 2 ( ) ( ) (1 ( ))p s b f z F z p s b f z F zβ β+ − − − + − − −  

    >0 if 2 2 2 2 2 2

1
( ) ( )

2
p s b f zβ + − >  holds. 

Combining with the above inequalities, we now complete the proof. 

Since the concavity of [ ]rE π  is identified, the optimal value iz  and ip  can be obtained by solving its 

first-order necessary conditions 
[ ]

0r

i

E

z

π∂ =
∂

 and
[ ]

0r

i

E

p

π∂ =
∂

, i=1,2.  

   As to the manufacturer’s expected profit, we have the following outcome. 

 

Theorem 2. The manufacturer’s expected profit is in the form of 

      
2 2 2

1 1 1

[ ] ( ) ( ) ( ) ( )m i i i i i i i i i i i
i i i

E w c D w c w c b zπ µ
= = =

= − + − + − − Λ∑ ∑ ∑  

            
2

1

( ) ( )i i i i
i

w c z
=

− − Θ∑                                              (7) 

 

Derivation of the manufacturer’s expected profit  

 

The manufacturer’s profit from the two items is 

  

1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 2

1 1 1 1 2 2 2 2 2 2 2 1 1 2 2

1 1 1 1 2 2 2 2 1 1 1 1 1 2 2

1 1 1 1 2 2 2 2 1 1 2

( )( ) ( )( ) ( ) ( ) ,

( )( ) ( )( ) ( ) ,

( )( ) ( )( ) ( ) ,

( )( ) ( )( ) ,

m

w c D z w c D z b z b z z z

w c D z w c D z b z z z

w c D z w c D z b z z z

w c D z w c D z z

ε ε ε ε
ε ε ε

π
ε ε ε

ε ε

− + + − + − − − − ≤ ≤
− + + − + − − > ≤

=
− + + − + − − ≤ >

− + + − + > 2z






 >

 

Then the manufacturers expected profit is 

 

( )1 2

1 2
1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 1[ ] ( )( ) ( )( ) ( ) ( ) ( ) ( )

z z

m A A
E w c D z w c D z b z b z f f d dπ ε ε ε ε ε ε= − + + − + − − − −∫ ∫       

+ ( )1 2

1 2
1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 2 1( )( ) ( )( ) ( ) ( ) ( )

B z

z A
w c D z w c D z b z f f d dε ε ε ε ε− + + − + − −∫ ∫  

      + ( )1 2

1 2
1 1 1 1 2 2 2 2 1 1 1 2 2 1 1 2 1( )( ) ( )( ) ( ) ( ) ( )

z B

A z
w c D z w c D z b z f f d dε ε ε ε ε− + + − + − −∫ ∫  

      +
1 2

1 2
1 1 1 1 2 2 2 2 2 2 1 1 2 1(( )( ) ( )( )) ( ) ( )

B B

z z
w c D z w c D z f f d dε ε ε ε− + + − +∫ ∫  

      =
2

1

( )i i i
i

w c D
=

−∑  + 

1 2

1 2
1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2

(1) (2) (5)

(( )( ) ( )( ) ( ) ( ) ) ( ) ( )
z z

A A
w c b z w c b z w c w c f f d dε ε ε ε ε ε ε ε− − − + − − − + − + −∫ ∫

+
1 2

1 2
1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2

(3) (2) (5)

( ( )( ) ( )( ) ( ) ( ) ) ( ) ( )
B z

z A
w c z w c b z w c w c f f d dε ε ε ε ε ε ε ε− − − + − − − + − + −∫ ∫  
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+
1 2

1 2
1 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2

(1) (4) (5)

(( )( ) ( )( ) ( ) ( ) ) ( ) ( )
z B

A z
w c b z w c z w c w c f f d dε ε ε ε ε ε ε ε− − − − − − + − + −∫ ∫  

+
1 2

1 2
1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2

(3) (4) (5)

( ( )( ) ( )( ) ( ) ( ) ) ( ) ( )
B B

z z
w c z w c z w c w c f f d dε ε ε ε ε ε ε ε− − − − − − + − + −∫ ∫  

=
2

1

( )i i i
i

w c D
=

−∑ +
2

1
(5)

( )i i i
i

w c µ
=

−∑ + 1 1 1 1 1
(1)

( ) ( )w c b z− − Λ + 2 2 2 2 2
(2)

( ) ( )w c b z− − Λ  

 1 1 1 1
(3)

( ) ( )w c z− − Θ 2 2 2 2
(4)

( ) ( )w c z− − Θ  

=
2

1

( )i i i
i

w c D
=

−∑ +
2

1

( )i i i
i

w c µ
=

−∑ +
2

1

( ) ( )i i i i i
i

w c b z
=

− − Λ∑
2

1

( ) ( )i i i i
i

w c z
=

− − Θ∑  

That way we complete the proof. 

 

Likewise, each term of [ ]mE π  has its own managerial meaning. The first and the second terms have 

the same meanings as those in [ ]rE π  ; the third term implies either an expected profit from returns if 

i i iw c b> +  or an expected cost due to returns if i i iw c b< + ; and the last term is an expected profit loss 

due to the retailer’s unsatisfied demand. 

   Ultimately, the manufacturer’s objective is to determine iw  and ib  so as to maximize [ ]mE π  

subject to the constraint of 
[ ]

0r

i

E

z

π∂ =
∂

 and
[ ]

0r

i

E

p

π∂ =
∂

, i=1,2. 

   We note that the proposed models are applicable to any type of distribution of error demand. But, 

because of difficulty in analyzing the problem, we plan to explore it with the assumption of uniformly 

distributed error demand, and then provide a simple solution procedure to conduct many examples, aiming 

at showing the validity of our solution method.  

 

3. The numerical examples  

As mentioned earlier, we assume that the error demand iε  is uniformly distributed with
1

( )i i
i

f ε
ξ

= , 

where [ , ]
2 2

i i
i

ξ ξε ∈ −  and iξ >0 for i=1,2. That way we have iµ =0, and the constraint of 
[ ]

0r

i

E

z

π∂ =
∂

 

and
[ ]

0r

i

E

p

π∂ =
∂

 yields the following equations. For i=1,2 

 
1( )i i i

i i
i i i

p w s
z F

p b s
− − += =

− +
( )

2
i i i i i

i i i

p w s

p b s

ξ ξ− + −
− +

                           (8) 

      
( )

2
i i i i i

i i
i i i

p w s
Q D

p b s

ξ ξ− += + −
− +

                                         (9) 

      

2

2

( )
( )

2( )
i i i i

i i
i i i

p w s
z

p b s

ξ − +Λ =
− +

                                            (10) 

      

2

2

( )
( )

2( )
i i i

i i
i i i

b w
z

p b s

ξ −Θ =
− +

                                             (11) 

 2( ) 2 ( ) ( )=0i i j i i i j i ip p w w zβ γ γ α β γ γ− + + + + + − − Θ  j=3-i               (12) 

Meanwhile, the retailer’s and manufacturer’s expected profits to the case of uniformly distributed 

error demand respectively become 
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2 2

1 1

[ ] ( ) ( ) ( )r i i i i i i i
i i

E p w D w b zπ
= =

= − − − Λ∑ ∑
2

1

( ) ( )i i i i i
i

p w s z
=

− − + Θ∑          (13) 

      
2 2

1 1

[ ] ( ) ( ) ( )m i i i i i i i i
i i

E w c D w c b zπ
= =

= − + − − Λ∑ ∑
2

1

( ) ( )i i i i
i

w c z
=

− − Θ∑          (14) 

 

Finally, the optimization problem turns into 

      

 
,

[ ]
i i

m
w b

Maximize E π  

Subject to the equation (8) ~ (12) 

                      

Still, its complexity prevents us from straightforwardly solving the problem via computer software 

packages, let alone an analytical closed-form solution. However, after a numerous trial-and-error, we find 

that the constraint of equation (8) ~ (12), which is a system of nonlinear equations in ip , i=1,2, is a key 

factor to keep computer software from solving the problem directly; and this inspires us to develop a 

solution-finding method with iteration of ip , mainly generating the linear equations (11) and (12) of ip in 

the constraint. Experimentally, four repeats of the iteration will converge to values that are believed to be 

the optimal values of our optimization problem because not only the constraint of the equations (11) and 

(12) will be satisfied, but graphical concavity of [ ]mE π  will also be illustrated in our subsequent examples.  

Before proceeding to our numerical examples, four notifications are clarified as follows. First, in 

order to validate our solution method, a number of examples with various parameters values have been 

completed; but due to limited pages, only three examples will be offered; sensitivity analysis and 

managerial insights with respect to our supply chain are also omitted. Second, only the first example will be 

provided with the detailed solution procedure, while the other two’s can also be acquired by substituting 

the expressions of 1p  and 2p  obtained in Step 1 into the first example’s solution procedure if needed. 

Third, since [ ]mE π  is a function of 1w , 2w , 1b , 2b , we therefore graphically illustrate its concavity as 1b , 2b  

and 1w , 2w  are the optimal values, respectively; this is mainly to identify the obtained 1w , 2w , 1b , 2b  are 

indeed the optimal values that maximize the [ ]mE π . Finally, equation (11) ~ (12) of the constraint are then 

examined by showing that differences between both sides of the expression of ip , i=1,2, in Step 1 are 

nearly close to zero; this is mainly to identify that the obtained 1p and 2p really satisfy 
[ ]

0r

i

E

p

π∂ =
∂

,i=1,2, in 

the equation (12). Once the 1w , 2w , 1b , 2b , 1p and 2p are finalized, the optimal iz , optimal iQ  ,i=1,2, and 

optimal [ ]rE π  could be respectively gained by equation (8),(9) and (13). 

 

Example 1.  Parameters values: 1α =300, 1β =6, 2α =200, 2β =5, γ =5, 1c =5, 2c =3, 

1s =3, 2s =2, 1ε = 2ε =50 

Solution procedure for Example 1: 

Step 1  Solve the equation (12) to obtain 1 1 1 1 2 2

1
(800 17 2 ( ) ( ))

34
p w z z= + − Θ − Θ   

and 2 2 1 1 2 2

1
(3700 85 5 ( ) 11 ( ))

170
p w z z= + − Θ − Θ  

                                   

Step 2  Let 1 1

1
(800 17 )

34
p w= + , 2 2

1
(3700 85 )

170
p w= +  
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Step 3  Find 

2

2

( )
( )

2( )
i i i i

i i
i i i

p w s
z

p b s

ξ − +Λ =
− +

 and 

2

2

( )
( )

2( )
i i i

i i
i i i

b w
z

p b s

ξ −Θ =
− +

, i=1,2 

Step 4  Find 1 1 1 1 2 2

1
(800 17 2 ( ) ( ))

34
p w z z= + − Θ − Θ  and  

            2 2 1 1 2 2

1
(3700 85 5 ( ) 11 ( ))

170
p w z z= + − Θ − Θ  

Step 5  Find 1 1 1 1 1 2( )D p p pα β γ= − − −  and 2 2 2 2 1 2( )D p p pα β γ= − + −  

Step 6  Solve 
,

[ ]
i i

m
w b

Maximize E π  and obtain the corresponding iw , ib , i=1,2. If the absolute value of 

difference between two consecutive [ ]mE π  is under a tolerant error, then stop. 

                     Step 7  Repeat  Step 2 ~ Step 4 

Step 8  Clear iw , ib , i=1,2 

Step 9  Goto Step 3 

 

Then the optimal values are as follows: 1b =14.72, 2b =14.39, 1w =24.62, 2w =21.80,  

1p =35.49, 2p =32.33, [ ]mE π =2353.72, [ ]rE π =1084.34, 1Q =75.45, 2Q =60.57 
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30

35

w1

10

15

20

25

30

35

w2

0

1000

2000

Em

15

20

25

30w1

 
Figure 1.1. Surface graphics of 1 2 1 2[ ( , | 14.72, 14.39)]mE w w b bπ = =  
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2340
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Figure 1.2. Surface graphics of 1 2 1 2[ ( , | 24.62, 21.80)]mE b b w wπ = =  

 

Check the constraint:  

    

2
1 1 1

1 1 2
1 1 1

( )
( ) 4.331

2( )

b w
z

p b s

ξ −Θ = =
− +
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2
2 2 2

2 2 2
2 2 2

( )
( ) 3.451

2( )

b w
z

p b s

ξ −Θ = =
− +

 

    1 1 1 1 2 2

1
(800 17 2 ( ) ( )) 0.007

34
p w z z− + − Θ − Θ =  

    2 2 1 1 2 2

1
(3700 85 5 ( ) 11 ( )) 0.016

170
p w z z− + − Θ − Θ =  

 

Example 2.  Parameters values: 1α =1000, 1β =5, 2α =1200, 2β =8, γ =5, 1c =20, 2c =12, 1s =10, 2s =8, 

1ε = 2ε =100 

Step 1 Solve the equation (12) to obtain 1 1 1 1 2 2

1
(19000 105 13 ( ) 5 ( ))

210
p w z z= + − Θ − Θ   

and 2 2 1 1 2 2

1
(3400 21 ( ) 2 ( ))

42
p w z z= + − Θ − Θ  

Then the optimal values are as follows: 1b =61.73, 2b =57.56, 1w =97.72, 2w =84.73,  

1p =138.65, 2p =122.79, [ ]mE π =38690.5, [ ]rE π =18703.7, 1Q =236.04,  

2Q =309.88 

60
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140

w1 60

80

100

120

140

w2

0

20000Em

60
80

100
120

140
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Figure 2.1. Surface graphics of 1 2 1 2[ ( , | 61.73, 57.56)]mE w w b bπ = =  
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Figure 2.2. Surface graphics of 1 2 1 2[ ( , | 97.72, 84.73)]mE b b w wπ = =  
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Check the constraint:  

    

2
1 1 1

1 1 2
1 1 1

( )
( ) 8.572

2( )

b w
z

p b s

ξ −Θ = =
− +

 

    

2
2 2 2

2 2 2
2 2 2

( )
( ) 6.883

2( )

b w
z

p b s

ξ −Θ = =
− +

 

    1 1 1 1 2 2

1
(19000 105 13 ( ) 5 ( )) 0.008

210
p w z z− + − Θ − Θ =  

    2 2 1 1 2 2

1
(3400 21 ( ) 2 ( )) 0.004

42
p w z z− + − Θ − Θ =  

 

Example 3.  Parameters values: 1α =5000, 1β =15, 2α =5500, 2β =30, γ =5, 1c =50, 2c =30, 1s =20, 

2s =10, 1ε = 2ε =500 

Step 1 Solve the equation (12) to obtain 1 1 1 1 2 2

1
(40500 135 7 ( ) ( ))

270
p w z z= + − Θ − Θ   

and 2 2 1 1 2 2

1
(27000 135 ( ) 4 ( ))

270
p w z z= + − Θ − Θ  

Then the optimal values are as follows: 1b =94.18, 2b =67.10, 1w =169.66, 2w =111.72,  

1p =233.21, 2p =154.90, [ ]mE π =226520.0, [ ]rE π =108324.0, 1Q =1123.01,  

2Q =1266.44 
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Figure 3.1. Surface graphics of 1 2 1 2[ ( , | 94.18, 67.10)]mE w w b bπ = =  
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Figure 3.2. Surface graphics of 1 2 1 2[ ( , | 169.66, 111.72)]mE b b w wπ = =  
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Check the constraint: 

    

2
1 1 1

1 1 2
1 1 1

( )
( ) 56.308

2( )

b w
z

p b s

ξ −Θ = =
− +

 

    

2
2 2 2

2 2 2
2 2 2

( )
( ) 52.034

2( )

b w
z

p b s

ξ −Θ = =
− +

 

    1 1 1 1 2 2

1
(40500 135 7 ( ) ( )) 0.035

270
p w z z− + − Θ − Θ =  

    2 2 1 1 2 2

1
(27000 135 ( ) 4 ( )) 0.019

270
p w z z− + − Θ − Θ =  

 

4. Conclusions 

This study is devoted to a one-leader-and-one-follower type of supply chain with two newsvendor-

type items that are variously priced for market share concerns, in which the demand is allowed to leak from 

high-priced item to low-priced one, and a complete return policy contract is offered by manufacturer to the 

purpose of coordinating the supply chain. Two contributions of the study are as follows. First, as shown in 

Appendix B, a two-item supply chain with return policy and demand leakage is far complex, but we 

successfully derived a pertinent and succinct model for the chain, and this could provide an exemplar for 

further researches. Second, due to the complex nonlinear constraint, we found that neither a theoretically 

analytical solution nor a computerized numerical solution of our problem is accessible; we therefore 

developed an efficient solution method and made every effort to prove its validity by conducting three 

examples in association with their graphical concavity illustrations and satisfying constraint, and this could 

be a reference direction for other related solution-finding approaches. 

Yet, we are unable to theoretically support our solution method although it has been validated by a 

number of examples; so attempting to present a theory-supported interpretation in response to the 

solution method will be a top priority in our further researches. Also, sensitivity analysis and managerial 

insights in the frame of our chain are still necessary. Meanwhile, to modify our two-item model into a 

multi-item one and to extend our one-leader-and-one-follower type of supply chain into a one-leader-and-

multi-follower one are two worthwhile issues for deeper explorations. 
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