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Abstract

Upon infection into human red cell, Plasmodium falciparum differentiates into asexual and sexual ( gametocyte)
stages. The mitochondrion is a tubular-cristate organelle, functionally and structurally different between the
two stages. Genes and proteins involving metabolic and functional roles, protein targeting and import to this or-
ganelle, are comprehensively reviewed. The genes and proteins of the electron transport system are identified,
partially characterized in human and rodent malaria parasites consisting of a single subunit of NADH dehydro-
genase, two subunits of succinate dehydrogenase, cytochrome C reductase and cytochrome Coxidase. One of
the primary functional roles of the mitochondrion in the parasite is the coordination of pyrimidine biosynthesis,
the electron transport system and oxygen utilization through dihydroorotate dehydrogenase. All enzymes of tri-
carboxylic acid cycle, pyruvate dehydrogenase complex and some enzymes of ATP synthase, are identified and
partially characterized using the completed P. falciparum genome. Some metabolic and functional roles of the
organelle include oxidative phosphorylation, ubiquinone and heme biosynthesis, antioxidant defense and redox
balance. Recent physiological studies involve membrane potential maintenance, cellular signaling and cation
homeostasis. The organelle is a target for antimalarial drug, i.e. atovaquone. Based on the lines of evidence,
we hypothesize that the parasite exhibits metabolic adaptation of the underdeveloped mitochondrial organelle to
life in the mosquito vector and the human host.
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INTRODUCTION

anemia, delirium, metabolic acidosis, cerebral ma-
laria, multi-organ system failure, coma and death

Malaria remains one of the most important diseases of 124 To combat the disease, there is an urgent need

the WOI'ld, Causing annual infections to at least 515 to develop new dmgs due to the increasing preva-

million people from the developing countries and 1. lence of drug resistant parasites to currently use anti-

5-2. 7 million deaths mainly in sub-Saharan Afri- malarials, chloroquine and sulfadoxine-pyrime-

ca'"”". Of the four Plasmodium species of blood-
borne apicomplexan parasite, P. falciparum is re-
sponsible for the most severe form of human malaria.
Disease symptoms include fever, chills, prostration,
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thamine, which consequently accounts for increase
morbidity and mortality "> .

Upon blood stage infection, P. falciparum
grows and differentiates into various asexual stages,
i. e., ring, trophozoite and schizont, as well as into
infectious sexual stages ( gametocytes) which are
taken up during the mosquito blood meal. In the
Anopheles mosquito, sporozoite-stage parasites devel-

op after fertilization of male and female gametes
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role in the transfer of electrons between the mtETS
complexes and acts as a proton carrier that supports
ATP synthesis **' . Thus the inhibition of the elec-
tron transfer at this site represents an important tar-
get for chemotherapeutic attack.

One class of compounds extensively investigated
over fifty years for antimalarial activity is the quinone
analog, hydroxynaphthoquinone. One of the com-
pounds, atovaquone which is 2-( trans-4-( 4 “chloro-
phenyl) cyclohexyl) -3-hydroxy-1, 4-naphthoquinone,
is currently used as a potent antimalarial ''"'.
Atovaquone affects multiple sites in which Qg plays
a significant catalytic role in the target enzyme, e. g.
complex """, and DHODase ™.

parasites synthesize their own ubiquinones and can-

The malarial
not salvage this from the host. Furthermore, all
genes necessary for a complete ubiquinone biosyn-
thetic pathway, starting from chorismate to ubiqui-
none, are also identified. We have found that atova-
quone at micromolar levels strongly inhibits ubiqui-
none biosynthesis in P. falciparum, similar to its
effect on Pneumocystis carinii """ .

Many derivatives of 5-hydroxy-2-methyl-1, 4-
naphthoquinone have been synthesized and tested for
their antimalarial activities on the in vitro growth of
") These include fifteen quinoline
5-Hydroxy-2-methyl-1, 4-naphthoqui-

none exhibits a strong effect on the malarial mtETS

P. falciparum

. 40
qumonesl I

complex I, II and mitochondrial oxygen consumption
74701 Thus, quinoline quinones may represent a
new class of compounds with potent antimalarial ac-

tivity.
Proteomics

There are 246 ( ~4. 6% of total parasite proteins)
proteins targeted to the mitochondrion after transla-
tion using the TargetP and MitoProtll methods as o-

d P+ Using recently developed

riginally identifie
PlasMit program for prediction of mitochondrial tran-
sit peptides, Bender er al ' have predicted 381 ( ~
7. 1% ) mitochondrial proteins, based on 5334 anno-
tated genes in the P. falciparum genome, close to
the numbers of the mitochondrial proteins in other
organisms. However, the human mitochondrial pro-
teomics indicate about 1000 proteins involved for
carbohydrate and lipid

bioenergetic  function,

metabolisms, and regulatory functions in apoptosis
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and cell death, and homeostasis "' . Most of the
parasite mitochondrial protein sequences identified to
date are hypothetical proteins. Nevertheless, homol-
ogy searching using bioinformatics approaches have
identified some components of metabolic pathways,
transporter and import proteins ( Table 1) .

Import mechanism

Basic knowledge on mitochondrial import mechanism

d"". A long N-terminal sequence

has been limite
having a typical feature of a mitochondrial targeting
signal has been identified in the de novo pyrimidine
synthetic DHODase gene homologue for the first time
in P. falciparum """ . The DHODase is then verified
as the mitochondrial protein by using a polyclonal
antibody raised against the purified protein from P.
falciparum and immunogold-labeled electron micros-
copy .

Recently, Wilson§ group has used the GFP chi-
meric protein targeted to the mitochondrion and iden-
tified the import signal within a region of 68 amino
acids in the mitochondrial protein HSP-60 ( Table 1)

which may play a role as a
[93-96]

molecular
chaperone Most recently, the transferring pro-
tein orthologue (translocase of outer membrane) has
[119]

also been identified in P. falciparum' . The pro-
teins contain N-terminal sequences with homologies
to mitochondrial transfer peptides which use to enter
the organelle, similar to higher eukaryotes'®. Sien-
kiewicz et al''™, in contrast, recently demonstrates
that the mitochondrial iron superoxide dismutase
(FeSOD) has a 70-residue long N-terminal extension
that shows a typical bipartite apicoplast organelle tar-
1201 but the FeSOD protein targets

the GFP fusion into the parasite ‘s mitochondrion.

geting sequence

The verification of the proposed mitochondrial pro-
teins will, therefore, be necessary.

Comparing mitochondrial and apicoplast organ-
elles

A non-photosynthetic chloroplast, or apicoplast, has
been demonstrated in malaria parasites since eleven
years ago''’. The apicoplast, as well as the
mitochondrion , is considered to be a target for drug

development ''**' | The apicoplast retains a circular

- 37 .
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Table 1 P. falciparum mitochondrial proteins and their biochemical functions

No  Name Function

1 Cogq4 Co(QQ biosynthesis

2 Lon protease homologue Chaperone/protease

3 Prohibitin/BAP37 ( PHB2 homologue) Respiratory chain assembly
4 Valyl-tRNA synthetase Translation

5  Elongation factor g ( EF-G) Translation

6  50s RPL24 Translation

7  50s RPL17 Translation

8  DNA-directed RNA polymerase Transcription

9  EF-Tu Translation

10 50S RPI2 Translation

11 Citrate synthase TCA cycle

12 Isocitrate dehydrogenase ( NADP-dependent) TCA cycle

13 Succinyl-CoA sythetase beta subunit TCA cycle

14 Succinate dehydrogenase Fe-S subunit TCA cycle/complex 11
15  Fumerate hydratase class | TCA cycle

16  NADH dehydrogenase Complex |

17 Rieske Fe-S protein 3 Complex IIT

18 Cytochrome cl Complex IIT

19 ATP synthase beta subunit Complex V

20 ATP synthase gamma subunit Complex V

21 ATP synthase alpha subunit Complex V

22 ATP synthase delta subunit Complex V

23 Dihydroxy hexaprenylbenzoate methyltransferase CoQ) biosynthesis

24 Geranyl diphosphate synthase/prenyl transferase ( Coql) CoQ biosynthesis

25  Coq2 CoQ biosynthesis

26 Cog5 (CoQ synthesis methyltransferase) CoQ) biosynthesis

27 Cog8 (ubiquinol-cytochrome ¢ reductase assembly protein, ABCI) Co(QQ biosynthesis

28  Branched-chain alpha keto-acid DH E1 alpha subunit Amino acid degradation
29  Branched-chain alpha keto-acid DH E1 beta subunit Amino acid degradation
30  Mitochondrial serine hydroxymethyltransferase One carbon metabolism
31  Rhodanese Amino acid degradation/ Cyanide detoxification
32 Mitochondrial intermediate processing peptidase ( MPP) Import

33 MPP alpha subunit Import

34 MPP beta subunit Import/complex 111

35  HSP-60/CPN-60 Import

36  Mitochondrial phosphate carrier Transport

37  Delta aminolevulinate synthase Heme synthesis

38  HSP-70/DnaK Protein folding

39  Dihydroorotate dehydrogenase Pyrimidine biosynthesis
40  GrpE Protein folding
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Table 2 Structure, genomics and proteomics of mitochondrial and apicoplast organelles in the asexual stage of P. falciparum

Property Mitochondrion Apicoplast
Size (in trophozoite stage) 1.0x0.2 pm 1.6x0.3 pm
Membrane layer 2 34
Number per cell single single
DNA:

-size 6 kb 35 kb
-shape linear circular
-copy number >20 >15

-% A +T content 69 % 86%

- gene encoding protein 3 23
tRNA import import
Protein identified” 381 551
Replication:

-mechanism phage-like bi-directional theta,

rolling circle

-replicating enzyme unknown multienzyme complex
Transcription/Translation bacterial-type, bacterial-type,
70S ribosome 708 ribosome

Representing ~7.1% and ~10% of the total proteins encoded by the parasite genome.

Table 3  Functional/metabolic roles between mitochondrial and apicoplast organelles in the asexual bloog stage P. falciparum

Property Mitochondrion Apicoplast
Electron transport system present absent
Oxygen consumption present absent
Oxidative phosporylation/ ATP synthesis absent absent
Pyrimidine synthesis involved not involved
Tricarboxylic acid cycle present absent
Ubiquinone biosynthesis present absent
Heme biosynthesis involved involved
Fatty acid biosynthesis” absent present
Isoprenoid biosynthesis absent present
Redox and antioxidant system present possibly present
Cellular signaling/homeostasis present unknown

The operating fatty acid biosynthesis requires the utilization of NADH as an electron donor and the production of fatty acid as an e-
lectron acceptor, however, it is presently unknown for an antioxidant defense system in the apicoplast.

(©)2008. Asian Pacific Journal of Tropical Medicine. .30 .
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Figure 1 Maturing sexual satge of Plasmodium falciparum from an in vitro culture. ( Giemsa)

Figure 2 Asexual stage of Plasmodium falciparum ( trophozoite stage) polymerized from catabolized heme in a food vacuole
(TEM) . A: Single mitochondrion with a clearly double membrane organelle, and an elongated form, preparing for binary fis-
sion; B: Single tubular cristate structure( arrowhead) in the organelle at higher magnification, classified as type I mitochon-

drion . N: Nucleus; M: Mitochondria; P: Crystalline hemozoin pigment.

< 40 -
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Figure 3 Sexual stage of Plasmodium falciparum ( gametocyte stage 1V) (TEM). A: Many mitochondria in a single parasite
B: Two organelles containing several cristae ( arrowheads) clssified as type II mitochondrion . M: Mitochondria; P: Pig-

ment.

Figure 4 Type III mitochondria in the maturing sexual stage of Plasmodium falciparum(TEM) . Electron-dense and finely
compact of the tubular cristae ( arrowheads) are typically found with this type of the mitochondrion. An apicoplast, associated
to one of the mitochondria, was observed with a multi-membraneous organelle, containing electron-dense matrix and absence
of internal cristae. M: Mitochondria; P: Pigment; A: Apicoplast. It is noted that the mitochondrial localization is closely as-
sociated to the food vacuole, a place where hemoglobin is degraded to free amino acids and hemozoin pigment is formed.

(©2008. Asian Pacific Journal of Tropical Medicine. <41 -
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Figure 5 A diagram of the proposed arrangement of the mitochondrial electron transport system and its link with pyrimidine biosyn-
thesis via dihydroorotate dehydrogenase in the asexual and sexual blood stages of Plasmodium falciparum. Dihydroorotate
dehydrogenase ( DHODase) , an inner membrane protein of the pyrimidine pathway, generates electrons to the mitochondrial electron
transporting complexes, containing NADH — ubiquinol reductase (a single component of complex I, NADH dehydrogenase), succi-
nate — ubiquinone oxidoreductase (succunate dehydrogenase, complex II), cytochrome ¢ reductase (complex III) and cytochrome c
oxidase ( complex IV) which is the final electron acceptor. Q, oxidized ubiquinone; QH,, reduced ubiquinone; C, cytochrome C.

Orotate analogs _ CN-, CO, Ny

Atovaguone

_y Dihydroorotate '— Atovaquone

=Orotate

Cytochrome be;
camplex

112 0,+2H* H,0

Succinate 2
v*a‘uecmate ) Antimycin A
dehydrogenase, Myxothiazole
Fumarate .
Acety| CoA 7\
f Thenoyltrifluoroacetone
Pyruvate Plumbagin

i Glycerol-3-P
Glycerone-P

Figure 6 A diagram of proposed mitochondrial metabolic networks of Plasmodium falciparum. The mitochondrial electron transport
complexes contain a single polypeptide NADH dehydrogenase, two — subunits succinate dehydrogenase, cytochrome c reductase ( cy-

* Glycerol-3:P s
dehydrogenass, T

Rotenone
Plumbagin

tochrome be;) and cytochrome ¢ oxidase. Alternative oxidase as a cyanide (CN ™) insensitive — branched pathway ( shown in a bro-
ken line) and glycerol —3 — phosphate ( glycerol -3 —P) dehydrogenase are also included in the respiratory chain. A part of the py-
rimidine biosynthesis is shown and linked to coenzyme ubiquinone. The ubiquinone plays a central role for electron and proton trans-
ferring coenzyme. Cytochrome ¢ (Cyt ¢, a component of cytochrome be, complex) is also shown serving an electron transferring pro-
tein. Glycolysis, possibly links to the TCA cycle, is operating in the cytosol. The tree — bars indicate known active sites of inhibitors
and the antimalarial atvaquone, plumbagin. The diagram is adapted from web site: http: //sites. huji. ac. il/malaria.
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Figure 7 A schematic representation of de novo heme biosynthetic pathway of Plasmodium falciparum. The par-
asites heme pathway operates in three possible compartmentations: mitochondrion, apicoplast and cytosol. Solid
and broken indicate eight enzymatic Reactions (1—8) and proposed exchange of metabolites among three subcel-
lular compartments, respectively. d-aminolevulenic acid synthase catalyzes the condensation of succinyl — CoA
and glycine (Reaction 1) to produce §-aminolevulenic acid (ALA) in the mitochondrion, porphobilinogen syn-
thase and hydroxylmethylbilane synthase catalyze ALA to prophobilinogen ( Reaction 2) and then to hydroxymeth-
ylbilane (Reaction 3) in the apicoplast. The fourth and the fifth enzymes, uroporphyrinogenlll ( Urogenlll) syn-
thase (Reaction 4) catalyzing the production of Urogenlll, and Urogenlll decarboxylase ( Reaction 5) converting
Urogenlll to coproporphyrinogenlll ( Coprogenlll), occur also in the apicoplast. The last three enzymes of the
pathway, CoprogenllIl oxidase ( Reaction 6) catalyzing Coprogenlll to protoporphyrinogenIX ( Protogen 1X), Pro-
togenIX oxidase ( Reaction 7) converting ProtogenIX to protoporphyrin IX ( ProtolX), and ferrochelatase ( Reac-
tion 8) producing heme from ProtoXI, are possibly operating in either cytosol or mitochondrion. The hypothetical

pathway for the functional heme biosynthesis in the parasite is adapted from Sato et al **.

(©2008. Asian Pacific Journal of Tropical Medicine. <43 .
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35 kb of its original algal plastid genome and synthe-
sizes 23 proteins' ', Apicoplast DNA is inherited
only through the female gamete ', and the organ-
elle DNA replication occurs by a unique enzyme
complex synthesized by an open reading frame enco-
ding contiguous DNA polymerase, DNA primer and
DNA helicase components ''**'. More than 500 pro-
teins predicted to function in the apicoplast have
been identified using the bioinformatic approaches
and experimental evidences, leading to rapid ad-
vancement in metabolic maps and functional determi-

[125]

nations We have summarized the present

knowledge on properties, stuctures, genomics,

transcriptomics, proteomics, and metabolic/func-

tional roles in the mitochondrion and apicoplast of
P. falciparum (Table 2,3).

Aided by the recent progress of the malarial ge-
nome database, we now have a better understanding
of several metabolic networks confined with the api-
coplast. The primary ones are type II fatty acid bio-
synthesis (acetyl-CoA --- > fatty acids) and isopre-
noid biosynthesis ( non-mevalonate pathway). The
type Il de novo fatty acid synthetic pathway is cata-
lyzed by separate enzymes as demonstrated in bacte-
ria and plants, unlike the type 1 fatty acid pathway
in mammals which were shown to be multifunctional

[12
enzymes

*I. Detailed characterization of lipoylation
pathways involving pyruvate dehydrogenase complex
indicates that the apicoplast can function in conver-
ting pyruvate to acetyl-CoA for use in fatty acid bio-
synthesis which it is absent in the mitochondrion
1126171 " but the other lipoylation pathway involving
a-keto acid dehydrogenase complex is located in the

106 .
%1 " This is an unusual

parasite “s mitochondrion
property of the mitochondrion, named as the strange
organelle '**' . The organelle cannot produce acetyl-
CoA, but takes it up from the apicoplast for the TCA
cycle to generate NADH and other metabolites. In
the isoprenoid biosynthesis using isopentenyl diphos-
phate as the precursor, the apicoplast operates the
non-mevalonate pathway using the enzymes 1-deoxy-

( DOXP)

DOXP reductoisomerase, similar to those of bacteria
[123]

D-xylulose-5-phosphate synthase and
and algae

It has been proposed earlier that the malaria
parasite imports a nearly complete set of host-cell
heme biosynthetic enzymes to use for its own ma-
U291 Later, all
eight enzymes required for the heme de novo pathway

chinery apparatus to produce heme

<44 .

have been identified in the nuclear genome of the
parasite '°'". The malaria parasite, unlikes any other
organisms, has the ability to synthesize heme de novo
by sharing the pathway within the boundaries of the
apicoplast and the mitochondrial organelle ( Figure
7) 1% 12 B0 The localization of the first three en-
zymes, &-aminolevulenic acid synthase ( ALAS),

synthase ( PBGS ) and
hydroxylmethylbilane synthase (HMBS) operating in

porphobilinogen

the pathway has been verified using a GFP reporter
in live transfected P. falciparum "' . ALAS is tar-
geted to the mitochondrion, but PBGS and HMBS
are targeted to the apicoplast. The fourth and the
fifth enzymes, uroporphyrinogen Il  synthase
(UROS, Reaction 4) and uroporphyrinogen III de-
carboxylase ( UROD, Reaction 5), have apparent
apicoplast targeting sequences at their N-terminus.
The last three enzymes of the pathway, coproporphy-
rinogen III oxidase ( CPO, Reaction 6), protopor-
phyrinogen IX ( PPO, Reaction 7) and ferrochelatase
(FC, Reaction 8), lack the bipartite sub-structures
[94]

at their N-terminus '~ '. Hence enzymes UROS and
UORD are predicted to be apicoplastic proteins, and
enzymes CPO, PPO and FC are either cytosolic or
mitochondrial proteins. This suggests a mechanistic
model for multiple intracellular localization of the
parasite organelle proteins, especially in the de novo
heme biosynthesis. Some human mitochondrial pro-
teins have also multiple subcellular compartments,
their detailed targeting mechanisms recently re-
viewed'"”'". Compartmentation of all heme enzymes
in the parasite remains to be verified. It has been
hypothesized that an exchange of metabolites in the
pathway to produce heme between the two organelles
ensues, including organelle attachment'™'®'. The
proposed contact/attachment of both organelles is
evident by visualizing their close apposition on sub-
cellular fractionations and electron micrographs using
either P. falciparum ( Figure 4) or other malaria par-

. 30, 132
asites [ ] .

CONCLUSIONS AND FUTURE PROSPECTS

Based on the morphological, biochemical and genet-
ic findings in the asexual and sexual stages of the hu-
man malaria parasite P. falciparum, mitochondrial
heterogeneity may have functional significance for
growth and development and completion of life cy-
cle. The mitochondrial structures and functions may
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reflect an evolution of Plasmodium spp. in which
they are living in relatively low oxygen environments
of the human host to maintain their redox balance,
and also an organelle metabolic adaptation to life in
the mosquito vector. It is necessary to study the bio-
chemistry and physiology of the mitochondrion in
more detail, for instance, membrane potential,
differences in the mechanism of energy metabolism,
functionality of the tricarboxylic acid cycle, oxida-
tive phosphorylation and ATP synthesis, functional
properties of the electron transport complexes, roles
of ubiquinone and heme biosynthesis, and oxygen
tension on the survival of the parasites circulating in
the human blood!™ """ I

Regulation of the tricarboxylic acid cycle, the
electron transport system and the oxidative phospho-
rylation for energy metabolism needs to be consid-

d 17770 1341

ere Understanding of the parasite s or-

ganelle biogenesis is still requiring, including the in-
volvement of cellular signaling essential for the

! In addition, detailed internal organiza-

process
tion of the organelle related to its metabolic adapta-
tion and heterogeneity should be further elucidated
using novel electron microscopic tomography '*> !

Special thanks to the malarial genome database
te " about 250-380 proteins are predicted to target to
the mitochondrion post-translationally. These in-
clude some enzymes of the pyruvate dehydrogenase
complex, the complete tricarboxylic acid cycle en-
zymes, many electron transport complexes and ATP

synthase!* #3119 8 Bunctional analyses re-
main to be elucidated using techniques such as gene

knock-out, RNA interference,
[32. 35, 42]

microarray and
metabolomics . The mitochondrion is a che-
motherapeutic target for antimalarial drug develop-
ment, for example, the enzyme dihydroorotate dehy-

136 .
3 In our post-genomics era, pro-

drogenase
teomics should be performed with mitochondria from
all stages of the human parasite, in the presence or
absence of any novel compounds affecting biogenesis
and functions of the organelle. Identification of
genes/proteins responsible for the mitochondrial
heterogeneity throughout the life cycle of the parasite

is, likewise, necessary.
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