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Abstract 

In this paper, we investigate a new solution for combined amplitude and phase modulation 
by employing elliptical signals. Signal characteristics of the proposed schemes are analyzed 
and then detection methods are investigated. The derived closed-form BER approximations, 
i.e. theoretical analysis results, are shown to be in agreement with simulation results. 
Furthermore, both results show that proposed schemes, compared conventional modulation 
schemes, can achieve better noise performance while suffering lower spectral efficiency, and 
can better realize trade-offs between error probability and spectral efficiency by dynamically 
varying eccentricity.  
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1. Introduction 

Owing to the high spectral efficiency, quadrature amplitude modulation (QAM), especially 
16QAM, have been intensively studied in 1990’s [1]-[9]. Two types of 16QAM have shown 
advantages in different applications. 16QAM of square mapping (16 Square-QAM) has better 
power efficiency while 16QAM of star mapping (16 Star-QAM) is more attractive in mobile 
radio communication. 

By employing elliptical carriers, some modulation schemes generally defined as Elliptical 
Modulation Schemes (EMSs), were proposed and investigated  in our previous works [10]- 
[14]. Compared to conventional modulation schemes, EMSs have shown some attractive 
characteristics, among which the impressive one is that EMSs can realize more flexible trade-
offs spectral efficiency and error probability by dynamically varying eccentricity.  

In this paper, we aim to realize combined amplitude and phase modulation by employing 
elliptical signals. The proposed 16-ary schemes are defined as 16-ary Elliptical Amplitude 
Phase Modulation (16-EAPM). Similar with 16QAM, according to the characteristics of 
signal constellation, two types of 16-EAPM are defined as 16 Square-EAPM and 16 Star-
EAPM respectively. 

Rest of this paper is organized as follows. Characteristics of 16-EAPM signals are derived 
and analyzed in sect.2; demodulation methods of 16-EAPM signals are discussed in sect.3; 
closed-form BER approximations are derived in sect.4; simulations are carried out and the 
achieved results are compared with analytical results in sect.5; finally the paper is concluded 
in sect.6.  

 
2. Signal Characteristics of 16-EAPM 
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2.1. Signal Expression 

General expressions of 16-EAPM signals are given by 
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as shown in Fig.1, a is semi-major axis, which also denotes signal amplitude; ec is 
eccentricity, αi is offset inclination angle of an ellipse, φj is phase defined based on major-axis 
of the ellipse and we call it major-axis-based phase; θk is signal phase and θk =αi+φj (i, j and k 
are integers); R(t,ec,φj) denotes an elliptical radius normalized by semi-major axis and its 
expression is given by 
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where ωr is revolution angular frequency of elliptical radius, and the elliptical signals used in 
this paper are generated by setting same value for ωr and carrier angular frequency ωc. 

For M-EPSK defined in [11], φj is equal to either of 0 and π, then (2) is simplified to 
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and accordingly, (1) is simplified to 

)cos(),()( kcc tetRats       .                                              (4) 

In M-EAPM, amplitude variations are achieved by varying semi-major axis of the ellipse. 
Then M-EAPM signals can be generally expressed as: 

 )cos(),()( kccn tetRats   ,                                               (5) 

where an (n is an integer) is semi-major axis and which also denotes distance between 
constellation point and centre point; definitions of other variables are referred to (1) and (2).  

To show the characteristics that elliptical signals are used as transmission carriers in M-
EPSK, in [11], we illustrated constellations of M-EPSK based on ellipses. Similarly, in Fig.2 
and Fig.3, we demonstrate constellations of two types of 16-EAPM based on ellipses.  

In Fig.3, R and r denote outer ring and inner ring respectively, and R=a1, r=a2. Let β denote 
the ring ratio (outer ring to inner ring), according to [3], optimum β is equal to 
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Figure 1. Definitions of variables in an elliptical signal 
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Firstly, we derive signal expressions of 16-EAPM based on their initial definitions as 
combined amplitude and phase modulations.  In 16 Square-EAPM, as shown in Fig.4, ellipses 
can be divided into three groups according to their values of semi-major axis, and signal 
phase θ equals to offset inclination angle of α. Accordingly, signal expressions are derived by 
substituting combinations of semi-major axis and signal phase to (5) 
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where f(i) and φ are given by 
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and without losing a generality, we define a3>a2>a1. 
In 16 Star-EAPM, ellipses have two values of semi-major axis and signal space is equally 

partitioned into 8 regions, then signal expression is given by 
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where n=1,2; k=1,2,…8.  
Based on (7) and (9), general expressions of 16-EAPM signals can be given by: 
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where 
22
QIn aaa   ,                                                         (11) 

here, aI and aQ denote amplitudes of in-phase and quadrature phase components, respectively; 
definitions of the other variables are referred to (1); CEI and CEQ are orthogonal to each other. 

0011

00100000

0001

1100

11011111

1110 0110

01110101

0100

1001

10001010

1011

I

Q

3d

-3d

-d

d

3dd-d-3d

I

Q

16 Square-QAM 16 Square-EAPM

Carrier
Replacement

0011

00100000

0001

1100

11011111

1110 0110

01110101

0100

1001

10001010

1011

I

Q

3d

-3d

-d

d

3dd-d-3d

0011

00100000

0001

1100

11011111

1110 0110

01110101

0100

1001

10001010

1011 0011

00100000

0001 0011

00100000

0001 0011

00100000

0001

1100

11011111

1110 1100

11011111

1110 1100

11011111

1110 0110

01110101

0100 0110

01110101

0100 0110

01110101

0100

1001

10001010

1011 1001

10001010

1011 1001

10001010

1011

I

Q

3d

-3d

-d

d

3dd-d-3d

I

Q

I

Q

3d

-3d

-d

d

3dd-d-3d

3d

-3d

-d

d

3d

-3d

-d

d

3d

-3d

-d

d

3dd-d-3d 3dd-d-3d 3dd-d-3d

I

Q

I

Q

II

QQ

16 Square-QAM 16 Square-EAPM

Carrier
Replacement

 
Figure 2.  Constellations of 16-EAPM and 16QAM of square mapping 
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Figure 3. Constellations of 16-EAPM and 16QAM of Star mapping 
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Figure 4. Decomposed constellation of  16 Square-EAPM 

 
16QAM modulated signals generally are given by 

)sin()cos()( tAtAts cQcI    ,                         (12) 

where AI and AQ are signal amplitudes of in-phase and quadrature phase components, 
respectively; c represents carrier angular frequency  [15].  

Orthogonal signals of CEI and CEQ are used as transmission carriers in 16-EAPM. Then 
from (10) and (12), we know that 16-EAPM signals can be derived from 16QAM signals by 
replacing sinusoid carriers with elliptical carriers.  

 
2.2. Frequency Spectrum 

Frequency spectrums of 16-EAPM are calculated using Maple and MATLAB [16]. In 
comparison with 16QAM, extra two variables of eccentricity and signal phase might 
influence frequency spectrums in 16-EAPM. To investigate influence caused by these two 
variables, we demonstrate the frequency spectrum by varying both signal phase and 
eccentricity.  

High-power side lobe (HPSL): when an eccentricity is set to a large value, in frequency 
spectrums of 16-EAPM, some side lobes are observed with substantially higher power than 
other side lobes. Compared to 16QAM, in 16-EAPM, attenuation of such side lobes will 
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cause non-neglectable power loss and waveform distortion. For an easy explanation, we 
define these distinctive side lobes as high-power side lobes in this paper. 

In frequency spectrums generated based on random data of transmitted signals, we have 
observed that power and number of HPSL increase with the increase of eccentricity. Fig.5 and 
Fig.6 show frequency spectrums of 16-EAPM generated by varying the eccentricity to four 
different values respectively, and two types of frequency spectrums have shown similar 
characteristics. We also notice that centre frequency of all HPSLs equals to odd number of 
normalized frequency (3fc and 5fc).  

According to characteristics of frequency spectrums, 16 Star-EAPM signals are divided 
into two groups and 16 Square-EAPM signals are divided into three groups. Fig.7 and Fig.8 
show frequency spectrums of different groups of signals with eccentricity of 0.9 for 16 Star-
EAPM and 16 Square-EAPM, respectively. In both schemes, frequency spectrums generated 
based on different groups of signals differ slightly in magnitude of HPSL, but same order of 
HPSL appears at the same eccentricity. 

By varying the eccentricity from 0.1 to 0.9 with unit increment of 0.1, the first order of 
HPSL appears when eccentricity exceeds 0.4, with 3fc as its centre frequency; the second 
order of HPSL appears when eccentricity exceeds 0.7, with 5fc as its centre frequency. As an 
instance, such characteristics of frequency spectrums are demonstrated in Fig.9. 

 
3. Demodulation of 16-EAPM Signals 
 

Fig.10 shows envelope variation of elliptical carriers with eccentricity of 0.9 in one symbol 
duration, from which we know that the envelope varies in a duration that equals to half 
symbol duration. Then by sampling a virtual constellation defined based on ellipses in one 
symbol duration, achieved samples, i.e., signal components, have different values of envelope. 
In this case, it is easy to understand that signal components with different envelopes have 
different levels of noise immunity, and the signal components with peak envelope have better 
noise immunity than other signal components. To achieve efficient and stable performance, 
we supposed to detect M-EPSK signals based on the signal components with peak value of 
envelope in [11] and [12], then dc voltage outputs achieved in I and Q channels respectively 
are expressed as 
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In [17], for MPSK, dc voltage outputs are given by 
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in above expressions, both a(ec) and A denote amplitudes. 
Since the derivation of dc voltage outputs in 16-EAPM is similar with that in M-EPSK 

[11], here, we skip the step and only demonstrate demodulation processing based on dc 
voltage outputs. 
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Figure 5. Frequency spectrums of 16 Star-EAPM based on random data 
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Figure 6. Frequency spectrums of 16 Square-EAPM based on random data 
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Figure 8. Frequency spectrums of 16 Square-EAPM with eccentricity of 0.9 
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Figure 9. Frequency spectrums of 16 Star-EAPM based on a single signal 
 

In 16 Star-QAM, the first bit is decided by amplitude detection and the other three bits are 
decided by phase detection. Similarly, as shown in Fig.11, detection of 16 Star-EAPM signals 
is also accomplished by two steps: two-level amplitude detection combined with phase 
detection of 8-EPSK signals. 

Assuming that in 16 Star-EAPM, dc voltage outputs are extracted from signal components 
with peak value of envelope, then we have 
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In 16 Star-QAM, two dc voltage outputs are given by: 
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in (15) and (16), an(ec) and An (n=1,2) denote signal amplitudes. 
Without losing a generality, we assume that (6) also exists in 16 Star-EAPM, then ratio of 

dc voltage output of 16 Star-EAPM_ec to 16 Star-QAM can be derived and expressed as (for 



International Journal of Advanced Science and Technology 

Volume 6, May, 2009 

 

 

58 
 

presentation simplicity, 16 Star-EAPM with eccentricity of ec and 16 Square-EAPM with 
eccentricity of ec respectively are denoted by 16 Star-EAPM_ec and 16 Square-EAPM_ec). 
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Similarly, ratio of dc voltage output of 16 Square-EAPM_ec to 16 Square-QAM can be 
derived 

n

cn

QAMSquareQ

eEAPMSquareQ

QAMSquareI

eEAPMSquareI

A

ea

V

V

V

V
cc

)(

16_

)(16_

16_

)(16_ 






       ,                            (18) 

where both an(ec) and An (n=1,2,3) denote distances between constellation points to the centre 
point of constellation. 

In constellation of 16 Square-EAPM, four signals in the same quadrant also consist of a 
small square. Based on this characteristic, constellations of 16 Square-EAPM are divided into 
four sub-coordinates. In Fig.12, the first subscript number represents quadrant in coordinate 
and the second subscript number represents quadrant in one of four sub-coordinates. Then for 
four signals in the same quadrant, difference in both amplitude and phase can be alternated to 
phase difference in one of sub-coordinates. Thus, signals can be detected by combining phase 
detection in coordinate and phase detection in sub-coordinate. 

In Fig.13, before processor block of ‘proc.2’ performing logic decision, dc voltage outputs 
are alternated to I/Q components of signal amplitudes in either of four sub-coordinates, 
through up-shifting or down-shifting signal levels by a constant value according to their 
polarities (positive or negative).  

As shown in Fig.13, decisions of phase detection in sub-coordinates are made based on 
results of phase detection in coordinates, so we need to analyze whether or not error detection 
in coordinate will lead to error detection in sub-coordinate, and consequently cause 
accumulative error detection. This question is equivalent to whether or not phase detection in 
coordinate and phase detection in sub-coordinates are independent to each other. Based on 
Gray code bit mapping and symmetry of the square constellation, analysis of signals in either 
of four quadrants will reach same conclusion. Without losing a generality, we carry out 
analysis based on signals in the first quadrant. In coordinate, either the case of noise 
exceeding 3d on either I or Q axis or the case of noise exceeding d on both axes are 
insignificant.  Thus,  when  considering error detections  in  coordinate  for signals  in the first 
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Figure 12. Decision regions of 16 Square-EAPM signals 
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Figure 13. Receiver functional block diagrams for further processing based on dc 

voltage outputs in 16 Square-EAPM 
 
quadrant, it is reasonable to assume that a bit error is most likely to exist between following 
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signal pairs: Q12→Q21, Q13→Q24, Q13→Q42, Q14→Q41. By referring to Fig.2, we know that the 
last two digit bits of each pair  of  signals  are same for all above signal pairs,  so error 
detection in coordinate (the first two bits) will not lead to error detection in either of four sub-
coordinates (the other two bits). In other words, phase detection in coordinate and phase 
detection in sub-coordinates are independent to each other with respect to the probability of 
error detection. 

Above analysis on demodulations of 16-EAPM show that the further processing based on 
dc voltage outputs is a linear process. 

Based on fixed signal power, (17) and (18) are directly proportional to eccentricity. In 
following analysis, we will show that (17) and (18) can approximately but not accurately 
express the performance comparison results, especially when eccentricity is set to a large 
value. 

 

4. Derivation of BER Approximations 

4.1 An Increment of Decision Radius 

In 16 Square-QAM, let d denote decision radius, then from signal constellations we have 

,   18    , 10     , 2 321 dAdAdA                                
 
(19) 

and An (n=1,2,3) is signal amplitude. Then average signal power is calculated by 
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Assuming same decision radius, in 16 Star-QAM, 









dAR

dAr
drrR

61.4

61.2
2

8
sin2

2

1        ,                        (21) 

where definitions of r and R can be referred to (6). Then average signal power equals to 
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Results derived in (20) and (22) are same with that achieved in [18]. 
Based on (17) and (18), once an=An exist between 16-EAPM and 16QAM of same code bit 

mapping, same decision radius of d can be achieved for all schemes, and in such a case, 
average signal powers of 16-EAPM are given by 
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where an and bn (n=1,2,3) are semi-major axis and semi-minor axis of an ellipse, respectively. 
Assuming same decision radius, we compare average signal powers for four schemes. Let 

k1(ec) denote ratio of average signal power of 16 Square-EAPM_ec to 16 Square-QAM, and 
let k2(ec) denote ratio of average signal power of 16 Star-EAPM_ec to 16 Star-QAM, then  

)(1)()( 2
21 cccc ekeekek       . 

                                      
(25) 
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Since k1(ec) and k2(ec) have same value, we use k(ec) to express the ratio value. 
In following evaluations, we assume same average signal power for four schemes, and 

assume optimum detection with perfect carrier tracking, frequency tracking and symbol 
synchronization [13], [20]. 

Let h(ec) denote ratio of decision radius of  16-EAPM_ec to 16QAM of same code bit 
mapping, then according to relationship between bit energy and  decision radius, h(ec) can be 
derived from (25) as 

 
4 2
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From the results we know that based on same average signal power, 16-EAPM can achieve 
larger decision radius compared to 16QAM of same code bit mapping, and the advantage can 
be strengthened by increasing eccentricity. 

4.2 Comparison of Signal-to-noise Ratio 

According to analysis to frequency spectrums of 16-EAPM in sect.2, increase of 
eccentricity leads to increase on both the power and the number of high-power side lobe 
(HPSL). Compared to 16QAM, in 16-EAPM, frequency spectrums becomes distinctive when 
the eccentricity exceeds 0.5, and which may lead to following two effects on decision 
parameters of performance: 

 Increased system noise equivalent bandwidth; 
 Increased power loss caused by attenuation of side lobes. 

Both effects lead to performance degradation of 16-EAPM.  
In 16QAM, relationship of C/N and Eb/N0 is expressed as: 
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where T is one symbol duration and Bn is system noise equivalent bandwidth [19].  
We use Bn(ec) to denote optimum value of system noise equivalent bandwidth of 16-

EAPM_ec. Compared to Bn of 16QAM, Bn(ec) achieves substantial increment when the 
eccentricity exceeds 0.5. In consequence, compared to 16QAM, in 16-EAPM, extra power 
loss caused by attenuating HPSLs also becomes substantial. Here we calculate this power loss.  

Let P0, Pn (n=1,2,…) and Psum denote power of main lobe, power of the nth order of HPSL 
and sum power of all HPSLs, respectively, then 
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where |H(fn)| represents absolute normalized magnitude of the nth order of HPSL. Values of 
|H(fn)| can be calculated from frequency spectrums. 

Then signal power of 16-EAPM_ec can be expressed as 

cccc eremeHPSLeBneEAPM PPPP __)()(16   ,                                  (29) 

where PBn(ec) denotes power of frequency components within bandwidth of Bn(ec), PHPSL_ec is 
sum power of all HPSLs calculated by (28), Prem_ec is power of remaining frequency 
components. 

Similarly, for a 16QAM signal, we have  
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remBnQAM PPP 16  ,                                                  (30) 

where P, PBn and Prem are signal power, power of frequency components within bandwidth of 
Bn, and power of remaining frequency components, respectively. 

In (30), Prem only consists of small ratio of whole signal power. Similarly, in (29), Prem_ec is 
also neglectable compared to signal power. Thus, following relationship can be derived from 
(29) and (30) 
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Let ρ(ec) denote the ratio of PBn(ec) to PBn, then we can derive 
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Both of PBn and PBn(ec) are mainly consisted of mainlobe power. In (32), value of ρ(ec) will 
be slightly increased if we substitute PBn and PBn(ec) with mainlobe powers of 16QAM and 16-
EAPM respectively; however, since this approximate treatment can substantially simplify 
computation in (32),  we calculate ρ(ec) from (28) by employing the solution. The achieved 
results for 16-EAPM with eccentricities of 0.8 and 0.9 are shown in below. 

For two modulation schemes of square mapping, 

     970.0)8.0( ce ,
   948.0)9.0( ce  ;                            (33) 

for two modulation schemes of star mapping, 

    972.0)8.0( ce ,   949.0)9.0( ce  .                            (34) 

Based on comparison between simulation results and analytical results, we will discuss 
later in this paper, about the influence of above approximate solution to the derived BER 
approximations. 

Both increments of system noise equivalent bandwidth and power loss of received signals 
caused by attenuation of HPSLs lead to degradation of signal-to-noise ratio. When making 
comparison of signal-to-noise ratio between 16QAM and 16-EAPM, we assume same signal 
bit energy and same noise power spectral density. Let Eb/N0 and (Eb/N0)ec denote ratios of bit-
energy-to-noise-power-spectral-density of 16QAM and 16-EAPM_ec respectively, then 
relationship between (Eb/N0)ec and Eb/N0 is expressed as 
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where Bn(ec) denotes system noise equivalent bandwidth of 16-EAPM_ec when using an 
optimum receiver filter, ρ(ec) is defined in (32);  see other variables in (27). 

In 16QAM, BnT=1 when using a matched filter, then (35) can be simplified to  
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By alternating (Eb/N0)ec to Eb/N0 according to (36), it enables to compare performance 
between 16-EAPM and 16QAM of same code bit mapping based on required Eb/N0. 

4.3 BER Approximations 

BER approximations of M-QAM of square mapping are generally given by  
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where n denotes average number of closest signals of each constellation point, and d is 
decision radius [21]. 

In 16 Square-QAM, decision radius is given by 
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where Eb denotes bit energy [22]. 
In 16 Square-EAPM, decision radius is calculated from (26) and (38) as 
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Furthermore, in 16-EAPM, instead of Eb/N0, (Eb/N0)ec is used. Therefore, BER 
approximation of 16 Square-EAPM is derived by substituting (36) and (39) to (37) 
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(40) 

As for comparison, BER expression of 16 Square-QAM is also shown here [23] 
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Using initial assumption of coherent reception in an AWGN channel, bit error probability 
of 16 Star-QAM calculated using the signal-space method is given by 
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here β denotes optimum ring ratio, then by referring to (6), we have 

  887.0    , 285.0    , 284.0  FED  .                              (44) 

By substituting (44) to (42), we obtain BER approximation of 16 Star-QAM 
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which is consistent with the result shown in [24]. 
By employing the same principle applied in deriving error probability of 16 Square-EAPM 

from that of 16 Square-QAM, we derive BER approximation of 16 Star-EAPM from that of 
16 Star-QAM, which is given by 
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(46) 

5. Comparison and Discussion 

In the interest of verifying correctness and accuracy of the derived BER approximations, 
we carry out simulations to calculate error probability of 16-EAPM with large eccentricities, 
and then compare the analytical results with simulation results. 

In simulations, demodulation methods illustrated in Sect.3 are employed. Main simulation 
parameters are defined and shown in Table 1. Two types of 16-EAPM have shown efficient 
performance based on same simulation parameters. In addition, elliptical filters used here 
have same bandwidth with the one used in 8-EPSK [11].  

In (40) and (46), values of ρ(ec) can be approximately calculated using (33) and (34), then 
once values of Bn(ec)T are known, theoretical error probability of 16-EAPM can be  
computed.  However, the optimum filter should be designed based on trade-offs between 
waveform distortion and signal-to-noise ratio in terms of error performance, and based on 
trade-offs between power efficiency and spectrum efficiency. Thus, definition and design of 
the optimum filter consist of complex works, and which is left for our future study. Since 
efficient performance are achieved in simulations, we calculate Bn(ec)T based on parameters 
shown in Table 1 and apply the achieved value to compute theoretical error probability.  

According to Table 1, Bn(ec)T equals to 1.19. By substituting Bn(ec)T=1.19 and (33) to (40), 
we derive BER approximation of 16 Square-EAPM _0.9, which is given by 
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Similarly, we derive BER approximations of 16 Square-EAPM_0.8, 16 Star-EAPM_0.8 
and 16 Star-EAPM _0.9 and show the results in below: 

2

00

3627.1
5

4

4

3
3627.1

5

4

4

3

































N

E
Q

N

E
QP bb

B
   ,                              (48) 






















 3627.177.1

4

1
3627.157.0

2

1

00 N

E
Q

N

E
QP bb

B
     ,                              (49) 






















 8315.177.1

4

1
8315.157.0

2

1

00 N

E
Q

N

E
QP bb

B
    .                               (50) 

In Fig.14 and Fig.15, we compare analytical results, which are calculated using (47)~(50), 
with simulation results achieved based on parameters defined in Table 1. Error probabilities 
of two types of 16QAM are calculated using (41) and (45), respectively. For both types of 16-
EAPM, simulation results are slightly worse than analytical results. This degradation of Eb/N0 
approximates to 0.29dB for 16 Square-EAPM_0.9 and approximates to 0.26dB for 16 Star-
EAPM_0.9; and the degradations approximate to 0.12dB and 0.1dB for 16 Square-QAM_0.8 
and 16 Star-EAPM_0.8, respectively. 
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We think it is waveform filtering that has caused above performance degradation in 
simulation results compared to analytical results in 16-EAPM. When eccentricities are set to 
large values, waveform filtering attenuates high power side lobes, attenuation of such side 
lobes then causes waveform distortion and lead to increase of k(ec) in (25). Consequently, 
waveform filtering degrades the noise performance.  Since this influence has not been taken 
into account in deriving BER approximations, theoretical BER approximations derived in 
(40) and (46) can only be closely approached, but can not be perfectly realized. 

 
Table 1. Simulation Parameters 
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Figure 14. BER comparison of analytical results vs. simulation results 
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Figure 15. BER comparison of analytical results vs. simulation results 
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Based on the analytical results, 16-EAPM_0.8 and 16-EAPM_0.9 can achieve advantage 

of 1.344dB and 2.628dB Eb/N0 over 16QAM of same code bit mapping respectively, at the 
expense of reducing bandwidth efficiency around 16.0%; 16 Star-EAPM_0.8 can improve 
error performance compared to 16 Square-QAM, and 16 Star-EAPM_0.9 has better error 
performance than 16 Square-EAPM_0.8.  

 
6. Conclusion 

In this paper, we investigate a new solution of realizing combined amplitude and phase 
modulation by employing elliptical signals. Two types of 16-ary Elliptical Amplitude Phase 
Modulation (16-EAPM) are defined as 16-EAPM of square mapping (16 Square-EAPM) and 
16-EAPM of star mapping (16 Star-EAPM). Compared to 16QAM, in 16-EAPM of same 
code bit mapping, decision radius and occupied bandwidth are increased when increasing 
eccentricity. The former increment contributes toward improving error performance, while 
the latter increment degrades error performance, and our evaluation confirmed that the former 
increment is more substantial than the latter increment in terms of their effects to error 
probability. Thus, 16-EAPM can realize better noise performance than 16QAM of same code 
bit mapping while decreasing spectral efficiency. Evaluation results also show that in 16-
EAPM, error probability is directly proportional to eccentricity while spectral efficiency is 
inversely proportional to eccentricity. This enables 16-EAPM to realize more flexible 
tradeoffs between error probability and spectral efficiency by dynamically varying 
eccentricity. BER approximations have been derived for 16-EAPM and which agree with 
simulation results. 

The theoretical BER has not been perfectly realized by simulation when eccentricity is set 
to a large value. In applications, characteristics of filters combined with corresponding system 
noise equivalent bandwidth will decide how close achieved performance can approach 
theoretical results. In future works, definition and design of the optimum filter with optimum 
value of system noise equivalent bandwidth need to be studied, so as to realize efficient trade-
offs between power efficiency and bandwidth efficiency. In addition, we also need to 
investigate carrier tracking problems that 16-EAPM will encounter in mobile fading channels.  
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