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ARTICLE INFO ABSTRACT

Article history: Objective: Nowadays, Pseudomonas aeruginosa (P. aeruginosa), the highly regarded
Received 27 Aug 2015 opportunistic pathogen, is the leading cause of morbidity and mortality worldwide. The
Received in revised form 27 Oct 2015 P. aeruginosa type IV pili (T4P) as a multiple functional surface organelle in the
Accepted 9 Nov 2015 development of acute P. aeruginosa infections have been well documented. Today, in
Available online 8 Jan 2016 silico analysis is a quick, and cost-effective tool for vaccine development.

Methods: In present study, several turns' motifs along with the chimeric protein were
predicted. Based on the hydropathy analysis, numerous antibody-accessible hydrophilic
regions were characterized in the chimeric protein. A synthetic chimeric gene, encoding
integrated PilQ and disulphide loop region of PilA, was designed. Modeling was done to
predict the 3D structure of protein. The model was validated by using Ramachandran plot
statistics and by ProSA server. Identification of B-cell and T-cell corresponding epitopes
was done by using appropriate servers.

Results: The closer 3D model to the native form of the chimeric protein was achieved.
Validation results showed that 95.1% residues were in favor region and 3.6% of amino
acid residues were in the allowed region. The B-cell epitope mappings showed that
almost all the epitopes had irregular enriched structures. The major histocompatibility
complex binding sequence prediction identified several human major histocompatibility
complex class I and II restricted T-cell epitopes. The integrated PilQ and PilA disulphide
loop encoding regions in the frame of pET28a(+) vector were expressed and purified
efficiently.

Conclusions: We expect that the two recognized antigenic determinants from our
chimeric protein, “AYHKGNWSGYGKDGNIGIKDEDGMNCGPIAGSCTFPTTGTS-
KSPSPFVDLGAKDATSG” and “GPIAGSCTFPTTGTSKSPSP”, can be able to evoke
strong both humoral and cell-mediated immune responses in mouse models.
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1. Introduction infectious diseases such as chronic obstructive pulmonary dis-
ease, cystic fibrosis and ventilator-associated pneumonia. Today,

Pseudomonas aeruginosa (P. aeruginosa), as an important  P. aeruginosa infections in extensive burn and immune-
opportunistic human pathogen, can cause various types of  compromised patients have high morbidity and mortality
rates''. Once P. aeruginosa colonizes in human host, the

bacterium often spreads rapidly and can cause tissue
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adhesion to various receptors”’. The C-terminal disulphide loop
(DSL) region of PilA serves as a functional binding domain of
T4P in P. aeruginosa. Previous studies confirmed that the
LDsq of piliated P. aeruginosa strains was 10-fold higher than
non-piliated mutants'*!. Earlier studies showed that specific
humoral immunity against the DSL region of pilA can be
protective!®’). The presence of the protective continuous
epitope, two P-turns within the DSL region and its unique
curved shape conformation led to production of good-quality,
cross-reactive against  this  region™. In
P. aeruginosa, the outer membrane PilQ, as a gated channel,
facilitates extrusion and retraction of T4P through across the
outer membrane. The PilQ molecule is extremely stable T4P
biogenesis machine which belongs to the GspD secretin super
family"’. In P. aeruginosa, only about 200-300 residues in the
C-terminal region of the PilQ monomer make up conserved
domain. The PilQ multimeric
P. aeruginosa cell membrane!”. The P. aeruginosa PilQ
protein was known as an efficient Th17 cell activator and
elicited strong interleukin-17 inducer!'"!. Up to now, numerous
methods were experienced to produce a therapeutic and
effective antiserum against P. aeruginosa. Despite long period
efforts, some of them were not cost-effective and had several
disadvantages. However, there is no commercial vaccine against
P. aeruginosa available on the market”. In this study, we
decided to exploit bioinformatic tools and modeling approach
to better evaluate and characterize the PilQ monomer protein
integrated with major pilin DSL region of P. aeruginosa
PAO1 strain. These immunoinformatics tools help us to
choose appropriate antigenic and immunogenic areas of the
recombinant integrated PilQ380-706 and DSL region (QD).
Our results indicate essential characteristics of QD as an
appropriate vaccine candidate. Finally, we expressed and
purified QD by bacterial expression system. The results of our
study are discussed in details in the following paragraphs.

antibodies

channel is abundant in

2. Materials and methods
2.1. Primary sequence analysis and construct design

The sequence 380-706 of PilQ and DSL region of PilA
molecule from P. aeruginosa PAO1 strain were retrieved from
gene Bank (NCBI, http://www.ncbi.nlm.nih.gov) in FASTA
format with accession numbers NP_253727.1 and NP_253215.1
respectively. Selected sequence of PilQ was subjected to blastp
against non-redundant protein sequence database (http://blast.
ncbi.nlm.nih.gov/Blast.cgi). The resulted sequences with a
similarity > 90%, coverage > 90%, and E-value < 107* were
selected and aligned with multiple sequence alignment tools
from European Bioinformatics Institute server (http://www.ebi.
ac.uk)!"? In the next step, we used the helix-forming sequence
(Glu-Ala-Ala-Ala-Lys) [(EAAAK)4] as an integrating linker
between PilQ and PilA DSL region'”’. In actual fact, in the
study, the longest, solvent-exposed
sequence of PilQ from P. aeruginosa was selected which
attached to the DSL by the linker sequence. Schematic repre-
sentation of chimeric QD domains was designed by Domain
Graph 2.0"*. The primary structure and the several basic
physicochemical properties of the QD sequences were
evaluated by using ProtParam tool (http://web.expasy.org/

conserved and well

protparam/). The protein sub-cellular localization of QD
among Gram-negative bacteria was predicted by PSLpred server
PSLpred
uses a hybrid approach-based method within overall high ac-
curacy of 91.2%!""%\. Presence of signal sequence in our chimeric
sequence was checked by SignalP (http://www.cbs.dtu.dk/
services/SignalP-3.0/)!"°", and Signal-3L software (http://www.
csbio.sjtu.edu.cn/bioinf/Signal-3L/)!""!,

The solubility of QD was analyzed by Recombinant Protein
Solubility Prediction (http://biotech.ou.edu/#rt) with accuracy of
949%!"%). The QD surface accessibility was calculated by Immune
Epitope Database (IEDB) surface accessibility prediction (http://
tools.immuneepitope.org) at default threshold. The QD encoding
sequence was optimized by ExPASy tools (http://www.expasy.
org/) based on 15% cut-off for codon efficiency and except for
positions with strong secondary structures. The chimeric QD
encoding sequence in frame of expression vector pET28a(+)
plasmid was constructed by Biomatik Corporation, Canada. The
Escherichia coli (E. coli) BL21 (DE3) was used as host
expression strain.

(http://www.imtech.res.in/raghava/pslpred/). server

2.2. Antigenicity prediction

The potential hydrophilic regions and antigenicity value
prediction were performed based on Kyte-Doolittle technique
[19], Hopp/Woods hydrophilicity scalel20], Kolaskar and
Tongaonkar method by IEDB B-cell antigenic prediction site
[21]. We used VaxiJen v2.0 server (http://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.html) to ensure accuracy of
antigenic areas[22]. VaxiJen is the first server for alignment-
independent prediction of protective antigens solely based on
the physicochemical properties of proteins for vaccine
development.

2.3. Prediction of protein secondary and 3D structures

The secondary structure of QD was studied by the MINNOU
server (http://minnou.cchmc.org/) by using default parameters.
The a, B, and Y turn prediction was analyzed by the AlphaPred,
BetaTPred2, and GammaPred servers, respectively™ !, The
IMTECH server also predicted weakly polar interactions
between the side-chain aromatic rings and hydrogen's of back-
bone amides (Ar-HN interactions)°..

The 3D structure of QD was predicted by online iterative
threading assembly refinement (I-TASSER) software at http://
zhanglab.ccmb.med.umich.edu/I-TASSER/?7,  The predicted
result was validated by ProSA server (https://www.came.sbg.
ac.at/prosa.php)?®. In proteomics studies, structure refinement
model is a closer form of molecule to the native structure.

The refinement process was done in terms of H-hydrogen
bonding networks, backbone topology, chain residue standing,
and atomic-level energy minimization. The selected 3D struc-
ture of QD was corrected by minimization of atomic-level
energy by using ModReiner online server (http://zhanglab.
ccmb.med.umich.edu/ModRefiner/)*. We used the refined
model at predictions of discontinuous B-cell epitopes. After
refinement process, the 3D modeling of QD was visualized
by ChemBio office The 3D hydrophobicity
modeling of QD was predicted by Discovery Studio
(Accelrys Co. Ltd) software.

software.
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2.4. Identification of antigenic B-cell epitopes

B-cell epitope mapping to discovery of protective B-cell
epitope plays a critical role in vaccine development process. For
prediction of continuous B-cell epitopes (20 mers), the full-length
sequence of QD was subjected to BCPreds (http://ailab.ist.psu.
edu/bepreds/) (cutoff score > 0.8)"". BCPreds utilizes both
BCPred and amino acid pair (AAP) prediction methods with
specificity of 75%. The predicted epitopes by BCPreds server
were confirmed by two other web servers, ABCpred (http://
www.imtech.res.in/raghava/abcpred/) and VaxiJen 3,
The ones with cutoff score > 0.8 were selected for ABCpred
and VaxilJen server. In the next level, we used IEDB BepiPred
tool  (http://www.cbs.dtu.dk/services/BepiPred/) to  predict
flexible length linear B-cell epitopes with threshold of 0.50
using a combination of a hidden Markov model and a
propensity scale method?. For prediction of discontinuous B-
cell epitopes, we used CBTOPE (http://www.imtech.res.in/
raghava/cbtope/) and DiscoTope servers (http:/www.cbs.dtu.dk/
services/DiscoTope/)*. The CBTOPE server uses the primary
structure of a protein for prediction with the overall accuracy of
85%. DiscoTope server uses 3D structure of proteins®*. The
default threshold of the DiscoTope server was —3.7 to facilitate
specifying the epitope residues.

servers!

2.5. Prediction of T-cell epitopes

Prediction of human leukocyte antigen (HLA) restricted
peptides within QD as an antigen was detected by ProPred-I
server (http://www.imtech.res.in/raghava/propredl) for predic-
tion of major histocompatibility complex (MHC) class-I binding
sites (47 alleles)®!, and ProPred server (http:/www.imtech.res.
in/raghava/propred) for MHC class-I HLA-DR binding site
prediction (51 alleles)*®!, by using matrix-based TEPITOPE al-
gorithm. In addition, in the case of PropPred, 4% default
threshold level and 5% proteasome filter were selected. The ICsg
of common epitopes from both servers was calculated by using
quantitative prediction of binding affinity of peptide-MHC
binding site in MHCPred (http://www.ddg-pharmfac.net/
mhcpred/MHCPred/)?7). Epitopes with ICso
value < 1000 nmol/L. for allele DRB1*0101 were selected as
a good-quality epitope.

2.6. Overexpression and purification

The constructed plasmid pET28a(+)/QD was transformed
into the E. coli BL21 (DH3) competence cells according to
invitrogen™ protocol. The transformed cells were incubated at
37 °C in Luria-Bertani (LB) agar containing kanamycin
(50 pg/mL) for overnight. After incubation, the plasmid was
extracted from single colony by using the commercial extraction
kit (GeneJET plasmid miniprep kit, Fermentas, Germany). The
accuracy of the transformation was verified by PCR reaction and
enzymatic double digestion by using the Bam HI and Hind III
restriction enzymes. In order to detect the integrated QD
encoding sequence in the frame of pET28a(+) expression vector,
the forward: F-5-CGTTGGCTACGACAAAAGCC-3’ and
reverse: R-5-GTACGGCAGTTCACCCAGAA-3' primers were
designed in the current study by Primer-3 software**!.

The QD protein was expressed by incubation of trans-
formed BL21 cells in LB broth containing kanamycin

(50 pg/mL) medium supplemented with 2.5 mmol/L isopro-
pyl-B-p-thiogalactopyranoside (IPTG). The chimeric QD gene
expression was studied at 37 °C at different post-induction
intervals (4, 6 and 8 h). The expressed QD protein was pu-
rified by nickel-nitrilotriacetic acid magnetic agarose beads
according to a protocol previously described with slight
modification®!. The expression of the recombinant protein
was monitored in each elute fraction by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis analysis. Immune
blotting analysis was performed as previous protocol“’’. The
QD protein quantification was measured by the Bradford
method.

3. Results
3.1. Sequence analysis and antigenic segments

Multiple sequence alignment of selected PilQ sequence
showed highly conserved amino acids among the selected
important P. aeruginosa strains: PAO1, B136, LESB58, M18,
NCGM2, PA7, DK2, SCV20265 and PA14 (Figure 1). Sche-
matic depiction of chimeric QD domains was shown in Figure 2.
The physical and chemical parameters of the chimeric QD
protein were shown in Table 1. The number of negatively
charged residues was slightly higher than positively charged
residues.

The PSLpred server identified QD as a periplasmic protein
with the reliability index of 1. No potential signal peptide was
detected in the QD protein by Signal-3L and SignalP servers.
The QD sequence had a 95% chance of solubility when
overexpressed in E. coli. The average score of surface
accessibility was 1.000. The minimum and maximum scores
and applied threshold were 0.059, 5.865 and 1.000 respec-
tively. The Emini server detected some surface-accessible
patches in different lengths along with full-length QD pro-
tein (Table 2).

3.2. Prediction of secondary structure

The MINNOU server defined each residue into o-helix, B-
sheet, and random coil structures. The MINNOU server showed
8 d-helix, 18 P-sheet and 26 random coil segments along with
the QD (Figure 3). Turn elements in protein structure were lo-
cations where the protein chain turned around its direction. The
prediction showed 6 o turns, 18 3 turns, and 18 7y turns identified
in the chimeric antigen (Table 3). NHPred server predicted just
four weakly polar Ar (i)-HN (i+1) interactions in QD protein.
The donor and acceptor residues and their respective positions
were Tyr7-Ala8, Phel7-GIn18, Tyr 48-Gln 49, and Tyr 84-Asp
85. The 3D modeling was completed based on multiple-
threading alignments, sequence homology comparison, and
comparative modeling methods by I-TASSER. Three 3D model
structures for QD protein were predicted. The top confidence
score (C-score) of the models was —0.97. The expected template
modeling (TM)-score for this model was 0.48 + 0.15. The
estimated root-mean-square deviation was 10.4 + 4.6 A. This
model was used for evaluation and refinement. The ProSA-web
server validated the QD protein structure quality. In the ProSA
system, an overall quality score for a specific input structure was
calculated. The Z-score, —3.49 of QD was in the range of native
conformations (Figure 4).


http://ailab.ist.psu.edu/bcpreds/
http://ailab.ist.psu.edu/bcpreds/
http://www.imtech.res.in/raghava/abcpred/
http://www.imtech.res.in/raghava/abcpred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.imtech.res.in/raghava/cbtope/
http://www.imtech.res.in/raghava/cbtope/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.imtech.res.in/raghava/propred1
http://www.imtech.res.in/raghava/propred
http://www.imtech.res.in/raghava/propred
http://www.ddg-pharmfac.net/mhcpred/MHCPred/
http://www.ddg-pharmfac.net/mhcpred/MHCPred/

134

Alireza Salimi Chirani et al./Journal of Acute Disease 2016; 5(2): 131-142

PAO1 ELIQVNYAKAADIAKLFQSVTSDGGQEGKEGGRGSITVDDRTNSIIAY QPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW

B136-33

ELIQVNYAKAADIAKLFQSVTSDGGQEGKEGGRGSITVDDRTNSITAY QPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW

LESB58 ELIQVNYAKAADIAKLFQSVTSDGGQEGKEGGRGSITVDDRTNSIIAY QPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW
MiI8 ELIQVNYAKAADIAKLFQSVTSDGGQEGKEGGRGSITVDDRTNSITAY QPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW
NCGM2.S1 ELIQVNYAKAADIAKLFQSVTSDGGQEGKEGGRGSITVDDRTNSIIAYQPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW
PA7 ELIQVNYAKAADIAKLFQSVTSDGGQEGKEGGRGSITVDDRTNSIIAYQPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW
DK2 ELIQVNYAKAADIAKLFQSVTSSG—EEKENSRGSITVDDRTNSIIAYQPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW

SCV20265 ELIQVNYAKAADIAKLFQSVTSSG—EEKENSRGSITVDDRTNSIIAYQPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW
UCBPP-PA14 ELIQVNYAKAADIAKLFQSVTSSG—EEKENSRGSITVDDRTNSIIAY QPQERLDELRRIVSQLDIPVRQVMIEARIVEANVGYDKSLGVRWGGAYHKGNW

PAO1 SGYGKDGNIGIKDEDGMNCGPIAGSCTFPTTGTSKSPSPFVDLGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEIVSQPKVVTSDKETAKILKGSEVP
Bl SGYGKDGNIGIKDEDGMNCGPIAGSCTFPTTGTSKSPSPFVDLGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEIVSQPKVVTSDKETAKILKGSEVP
LESBS8 RGYGKDGNIGIKDEDGMNCGPIAGNCTFPTTGTSKSPSPFVDLGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEIVSQPKVVTSDKETAKILKGSEVP
Mi8 NGYGKDGNIGIKDEDGMNCGPIAGNCTFPTTGTSKSPSPFVDLGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEIVSQPKVVTSDKETAKILKGSEVP
NCGM2.S1 NGYGKDGNIGIKDEDGMNCGPIAGNCTFPTTGTSKSPSPFVDLGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEIVSQPKVVTSDKETAKILKGSEVP
PA7 NAYGKDGNMGIKDEEGLNCGPIAGNCSFPTVGTNKSPSPFVDLGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEIISQPKVVTSDKETAKILKGSEVP
DK2 NSYGKNGNMGIKDKEGYNCGPFQGQCTFPTR—DNSPTPFVDMGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEVVSQPKVVTSDKETAKILKGSEIP

SCV20265 NSYGKNGNMGIKDKEGYNCGPFQGQCTFPTR—DNSPTPFVDMGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEVVSQPKVVTSDKETAKILKGSEIP
UCBPP-PA14 NSYGKNGNMGIKDKEGYNCGPFQGQCTFPTR—DNSPTPFVDMGAKDATSGIGIGFITDNIILDLQLSAMEKTGNGEVVSQPKVVTSDKETAKILKGSEIP

PAOI YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDYQNMLNGVPPINKNEVNAKILVNDGETIVIGGVFSNEQSKSVEKVPFLGELPYLGR
Bl YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDY QNMLNGVPPINKNEVNAKILVNDGETIVIGGVFSNTQSKSVDKVPFLGELPYLGR
LESBS8 YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDFDRALNGVPPINKNEVNAKILVNDGETIVIGGVESNTQSKSVDKVPFLGELPYLGR
M18 YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDFDRALNGVPPINKNEVNAKILVNDGETIVIGGVFSNTQSKSVDKVPFLGELPYLGR
NCGM2.S1  YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDFDRALNGVPPINKNEVNAKILVNDGETIVIGGVFSNEQTKAVDKVPFLGELPYLGR
PA7 YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDY QNMLNGVPPINKNEVNAKILVNDGETIVIGGVFSNTQSKAVDKVPFLGELPYLGR
DK2 YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDFQNALNGVPPINKNEVNAKILVNDGETIVIGGVFSNTQSKAVDKVPFLGELPYLGR
SCV20265  YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDFQNALNGVPPINKNEVNAKILVNDGETIVIGGVFSNTQSKAVDKVPFLGELPYLGR

UCBPP-PA14 YQEASSSGATSTSFKEAALSLEVTPQITPDNRIIVEVKVTKDAPDFQNALNGVPPINKNEVNAKILVNDGETIVIGGVFSNTQSKAVDKVPFLGELPYLGR

PAO1 LFRRDTVTDRKNELLVFLTPRIMNN
Bl LFRRDTVTDRKNELLVFLTPRIMNN
LESBS8 LFRRDTVSDVKNELLVFLTPRIMNN
Mi8 LFRRDTVSDVKNELLVFLTPRIMNN
NCGM2.S1 LFRRDTVSDVKNELLVFLTPRIMNN
PA7 LFRRDTVVDRKNELLVFLAPRIMNN
DK2 LFRRDTVSDTKNELLVFLTPRIMNN

SCV20265 LFRRDTVSDTKNELLVFLTPRIMNN

UCBPP-PA14 LFRRDTVSDTKNELLVFLTPRIMNN

Figure 1. The multiple sequence alignment of PilQ380-706 among P. aeruginosa strains: PAO1, B136, LESB58, M18, NCGM2, PA7, DK2, SCV20265

and PA14.

PilQ region 380-706

PilA DSL region
(EAAAK), linker

\35|2 3|65

z"""‘— Sectetin 549706 -
| | | ]

1 67 170

|
327 347 367
PilA region

Figure 2. Schematic representation of P. aeruginosa PAOI antigenic
construct consisting of PilQ regions and the C-terminal DSL region of PilA
integrated by helix-forming linker (EAAAK),.

Table 1

Physicochemical properties of QD shown by ProtParam server.

Characteristics Property
Number of amino acids 367
Molecular weight (dalton) 39361.4
Total number of negatively 49
charged residues (Asp + Glu)

Total number of positively 42
charged residues (Arg + Lys)

Theoretical isoelectric point (pI) 5.14

Estimated half-life

Instability index

Extinction coefficient
value at 280 nm

Aliphatic index

Grand average hydropathy

1 h (mammalian reticulocytes,
in vitro); 30 min

(yeast, in vivo); > 10 h

(E. coli, in vivo)

32.09 (classified as

stable protein)

27550 mg/mL

82.92
-0.342

3.3. Evaluation and refinement of QD 3D model

The QD protein structure refinement showed several struc-
tural changes in the structure which scattered throughout the
length of the protein (Figure 5). After refinement process, the
most abundant structural conversion throughout full-length

Table 2
Prediction of surface-accessible sequences of QD by Emini server.

Peptide Start position End position Peptide length
DGGQEGKEG 23 31 9
YQPQERLDEL 48 57 10
TGTSKSP 132 138 7
VPYQEA 201 206 6
KVTKDAPDYQN 240 250 11
INKNEV 258 263 6
NEQSKSV 283 289 7
LFRRDTVTDRKN 304 315 12
STQDPMF 354 360 7

recombinant QD protein was conversion of random-coil into
turn element features. The comparison of conformational change
of QD structure before and after refinement process was shown
in detail in Table 4.

3.4. Model stability assessment

Structure validation and assessment of model stability were
calculated by using Ramachandran (¢/¢) plot provided by
RAMPAGE server. The Ramachandran plot analysis of the
model prior to refinement showed that 293 residues (80.3%)
were in favor regions (A, B and L) and 46 (12.6%) of amino acid
residues were in the allowed regions (a, b, 1, and p) of the plot.
The number of residues in outlier region was 26 (7.1%)
(Figure 6A).

In the next step, after refinement, corresponding plot revealed
that 347 (95.1%) residues from improved model were in favor
regions (A, B and L) and 13 (3.6%) of residues were in the
allowed regions (a, b, 1, and p) of the plot. Only 5 (1.4%) res-
idues of QD were in outlier region. The five residues that
covered the unflavored position (Ser87, Pro202, 227, 231,
Pro256) were demonstrated by red dots in Figure 6B.
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Figure 3. Analysis of QD protein secondary structure by MINNOU server.

Green and red colors represent [3-sheet and o-helix structures respectively while the blue line represents random coil. The orange columns show confidence

of prediction for each position.
3.5. Hydropathy analysis

Based on the Kyte-Doolittle method, there were three hy-
drophobic regions in the full-length QD protein. The major
hydrophobic area was extended from the amino acid 150 to 165.
Based on the Hopp-Woods scale, the regions of 31-35, 48-50,
181-200, 230-242, 306-318, 332-341 contained the potential
hydrophilic region. After refinement process, 3D hydrophobicity
modeling of QD represented several antibody-accessible hy-
drophilic surfaces (Figure 7).

3.6. Antigenicity prediction

IEDB B-cell analysis resource revealed several antigenic
sites listed in Table 5 by Kolaskar and Tongaonkar antigenicity

Table 3
The number and position of turns along with full QD sequence predicted
from primary structure of QD protein.

Position

1-17, 52-61, 69-81, 163-173, 189-
196, 216-224, 262-267, 315-319,
325-352

17-21, 33-39, 43-47, 88-92, 127-
129, 141-143, 152-160, 179-181,
185-188, 224-226, 235-242, 267-
270, 274-281, 319-322

21-33, 39-43, 47-52, 61-69, 81-88,
92-127, 129-141, 143-152, 160-
163, 173-179, 181-185, 196-216,
226-235, 242-262, 270-274, 281-
315, 322-325, 352-367

21-30, 111-140, 246-255, 286-295,
305-310, 346-365

19-35, 39-43, 63-71, 91-94, 97-
100, 105-152, 158-163, 172-184,
188-192, 196-200, 206-212, 218-
224, 229-233, 242-256, 269-273,
282-299, 304-313, 320-367
21-33, 40-43, 65-67, 97-100, 108-
143, 147-152, 159-162, 174-177,
189-191, 207-209, 230-233, 243-
256, 271-273, 283-299, 306-313,
327-332, 340-343, 345-367

Conformation Number

o-helix 9

[3-strand 14

Random coil 18

o turns 6

B turns 18

Y turns 18

!:,
‘lf'°

Z-score

‘.;';s
A

200 400 600 800 1000
Number of residues
X-ray B Nuclear magnetic resonance
Figure 4. The ProSA-web Z-score plot.
The Z-scores of all recorded protein chains in Protein Data Bank deter-
mined by X-ray crystallography (light blue) or nuclear magnetic resonance
spectroscopy (dark blue) with respect to their number of residues. The Z-

score plot for QD (< 10) is shown as a black dot.

Figure 5. The 3D structure of QD protein.
Before (up) and after (down) refinement process as viewed by ChemBio
office software.



136 Alireza Salimi Chirani et al./Journal of Acute Disease 2016; 5(2): 131-142

Table 4
Comparison of conformational change of QD structure before and after
refinement process.

Position Before After
refinement refinement

42-43, 74-75-76, 80-81, 88-89, Coil Sheet

114-115, 123, 134, 158, 178-179,

188, 194-195-196, 201-202-203,

228-229, 238-239

164-165, 247-248, 328-327, Coil Turn

333-332

254 Coil Helix

33-34, 125-126, 205, Turn Coil

302-303-304

61-62-63-64, 172 Turn Helix

54-55-56, 189-190-191-192 Helix Coil

197-198-199, 250 Helix Turn

prediction method. The prediction showed the shortest sequence
consisting of 6 amino acids with the start position of 265 and the
longest one consisting of 25 residues with the start position of
57. Overall prediction for the QD by VaxiJen server classified
QD as probable antigens with a value of 0.63, above the normal
threshold value of 0.40.

3.7. Identification of B-cell and T-cell epitopes

A good antigenic and immunogenic vaccine candidate should
be hydrophobic and can provoke both B-cell and T-cell medi-
ated immunity. Therefore, QD protein was first subjected to
BCpreds server. The server generated 18 linear B-cell epitopes
with specificity of 75%.

In general, antigenic epitopes having BCpreds cutoff value of
> 0.6 were selected. The sequences were further checked by
using ABCpred and VaxiJen servers based on former criteria as
mentioned (Table 6).

The prediction results by three servers showed the five
topmost scoring patches centered on residues Q26 (score:
2.136), G117 (score: 2.120), E172 (score: 1.872), S208 (score:
1.713) and T174 (score: 1.175). The patches Q26 and G117
were located in the N-terminal while the patches centered at
T174, E172 and S208 were located at the middle region of the
QD protein. The IEDB BepiPred tool predicted 11 continuous
B-cell epitopes in variable length. The longest one was
composed of 58 amino acids in contrast to the shortest one of 7
amino acids. Most of them got high VaxilJen scores (Table 7).
Furthermore, several surface-exposed conformational epitopes
were discovered by CBTOPE (Table 8) and DiscoTope server
(Table 9).

The QD full-length sequences were analyzed for T-cell
restricted epitopes. For screening T-cell restricted antigenic
epitopes, ProPred (HLA-DR restricted patches) (Table 10) and
ProPred-1 (47 alleles for MHC class-I binding sites) (Table 11)
identified several common T-cell restricted epitopes that shared
continuous B-cell epitope sequences.

These antigenic epitopes can provoke both humoral and
cellular mediated immunity (Table 10).

3.8. In vitro production

By specific primers and PCR reaction, double digestion and
sequencing method, we identified the transformed construct. The
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Figure 6. The QD protein structure validation before (A) and after
refinement (B) by using Ramachandran plot.

Figure 7. The 3D hydrophobicity modeling of QD after refinement pro-
cess.

The brown color represents the most hydrophobic region while the
blue color indicates antibody-accessible and high-score hydrophilic
residues.
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Table 5
The highest scores of antigenic sequences in the full-length QD by using
Kolaskar and Tangaonkar prediction method by IEDB B-cell analysis
resource.

Start End Peptide Length
position position

10 21 AADIAKLFQSVT 12
45 51 IMAYQPQ 7
57 81 LRRIVSQLDIPVRQVMIEARIVEAN 25
121 130 GPIAGSCTFP 10
137 145 SPSPFVDLG 9
163 169 ILDLQLS 7
179 188 IVSQPKVVTS 10
198 206 GSEVPYQEA 9
218 228 EAALSLEVTPQ 11
234 244 RIIVEVKVTKD 11
265 270 AKILVN 6
274 280 TIVIGGV 7
287 304 KSVEKVPFLGELPYLGRL 18
316 323 ELLVFLTP 8
346 355 AKGVWACKST 10

Table 6

expected band of the PCR product (658 bp) was detected
(Figure 8A).

The integrity of pET28a(+)/QD plasmid was confirmed by
double digestion method (Figure 8B).

The higher amount of recombinant protein was achieved by
incubation in LB broth containing kanamycin (50 pg/mL) me-
dium and the addition of 2.5 mmol/L IPTG for 6 h and 8 h
induction by IPTG at 37 °C and with shaking at 250 rRPM
(Figure 9).

The reasonable yield of pure QD protein was obtained in this
study (Figure 10). By the Bradford method, up to 2 mg of the
recombinant QD from a 500 mL IPTG-inoculated culture was
detected.

Finally, the purified QD was confirmed by western immu-
noblotting method (Figure 11).

The QD protein epitopes identified by BCpreds (BCPred + AAP), ABCpred and VaxiJen modules.

Position Epitopes BCpreds score ABCpred score VaxiJen score
169 SAMEKTGNGEIVSQPKVVTS 1.000 0.84 0.9800
49 QPQERLDELRRIVSQLDIPV 1.000 0.65 0.0755
121 GPIAGSCTFPTTGTSKSPSP 1.000 0.84 0.5900
190 KETAKILKGSEVPYQEASSS 1.000 0.76 0.3096
249 QNMLNGVPPINKNEVNAKIL 1.000 0.68 0.3111
25 GQEGKEGGRGSITVDDRTNS 1.000 0.93 1.8956
196 LKGSEVPYQEASSSGATSTS 0.996 0.82 1.4226
98 KGNWSGYGKDGNIGIKDEDG 0.994 0.79 1.1962
324 RIMNEAAAKEAAAKEAAAKE 0.973 0.68 1.0548
172 EKTGNGEIVSQPKVVTSDKE 0.970 0.82 1.0544
93 GGAYHKGNWSGYGKDGNIGI 0914 0.87 0.5406
224 EVTPQITPDNRIIVEVKVTK 0.887 0.87 0.7278
246 PDYQNMLNGVPPINKNEVNA 0.816 0.71 -0.0414
348 GVWACKSTQDPMFTPKGCDN 0.777 0.88 0.6156
346 AKGVWACKSTQDPMFTPKGC 0.688 0.92 0.1984
227 PQITPDNRIIVEVKVTKDAP 0.475 0.69 0.5948
Table 7 Table 8

The prediction of the significant liner B-cell epitopes from QD protein by
using IEDB analysis resource.

Start End Peptide Peptide VaxiJen
position position length  score
20 41 VTSDGGQEGKEG 22 2.3713
GRGSITVDDR
47 55 AYQPQERLD 9 0.8772
82 85 VGYDKSLGVR 4 1.3896
95 152 AYHKGNWSGYGKD 58 0.8271
GNIGIKDEDGMNCGPI
AGSCTFPTTGTSKSPS
PFVDLGAKDATSG
171 181 MEKTGNGEIVS 11 2.0123
184 193 KVVTSDKETA 10 0.8268
200 216 EVPYQEASSSGATSTSF 17 1.2107
226 232 TPQITPD 7 2.6047
241 249 VTKDAPDYQ 11 0.6501
308 316 DTVTDRKNE 9 1.1910

Prediction of QD discontinuous B-cell epitopes by using CBTOPE
server.

Amino acid Position Probability scale
DIAKL 12-16 4
TSDG 21-24 4
TVDD 36-40 4
A 47 4
DIP 65-67 4
v 78 4
GYD 83-85 4
SLGVRW 87-92 4
KG 98-99 4
S 102 4
KDGNIGIKDEDGM 106-118 4
GP 121-122 4
CTF 127-129 4
L 144 4

(continued on next page)
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Table 10
Common T-cell restricted epitopes from QD protein (51 human MHC

Table 8 (continued)

Prediction of discontinuous B-cell epitopes from QD by using DiscoTope server.

Amino acid Position Probability scale . i
class-II alleles with threshold value = 4) that may induce both the B-cell
= Ferllss 4 and T-cell immunity.
FI 157-158 4
L 168 4 Position ~HLA-DR Number of Vaxilen 1Cso
KTG 173-175 4 alleles MHC class II score value
EIV 178-180 4 restricted binding alleles
PK 183-184 4 epitopes
¥ ;8; i 36-44 ITVDDRTNS 8 1.7011 5.45
EA 205-206 4 82-90 VGYDKSLGV 15 0.5413 217.27
SSGATS 208-213 4 104-112  YGKDGNIGI 10 2.0035 109.14
KE 217-218 4 117-126 MNCGPIAGS 9 0.7500 45.08
EV 224.295 4 129-137 FPTTGTSKS 6 1.8216 5.20
VT 241-242 4 141-149 FVDLGAKDA 11 1.2758 2.24
DA 244245 4 185-193 VVTSDKETA 11 1.2436 602.56
QNMLN 249.253 5 229-237 ITPDNRIIV 8 0.3716 98.40
GVP 254.256 4 237-245 VEVKVTKDA 14 1.2626  3118.89
A 265 4
G 279 4
EQS 284-286 4
VP 292-293 4 Table 11
gllé ;gg-ggg i Common MHC 1 (47) alleles restricted epitopes from recombinant QD
RRDT 3 06:3 09 4 protein with 4% threshold that may induce both the B-cell and T-cell
VTD 310-312 5 immunity.
RKN SLsl 4 Position Predicted MHC Number of VaxiJen ICs, value
NE 327-328 4
C 350 4 class-I alleles MHC class I  score
QD 356.357 4 restricted epitopes binding alleles
PMFT 358-361 5 37-45 TVDDRTNSI 12 0.7172 4.95
PKGCDN 362-367 4 96-104 YHKGNWSGY 14 2.0035 21.48
98-106 KGNWSGYGK 5 0.7500 1931.97
121-129 GPIAGSCTF 10 1.8216 1918.67
127-136  CTFPTTGTSK 3 1.2758 81.66
133-141 GTSKSPSPF 8 -0.8234 198.61
324-332 RIMNEAAAK 8 0.5258 5.74
Table 9

Amino acid Position Contact number Propensity score DiscoTope score

Y 7 14 -2.290 -3.636

S 22 7 -2.998 -3.458

G 24 4 -1.933 -2.171

QEGKEG 26-31 10-22-7-8-26-0 0.459, —-0.313, 0.815, 1.007, 0.456, 1.125 -0.744, —2.807, —0.084, —0.029,

—2.587, 0.996

RG 33-34 1-13 -0.986, —2.462 —-0.988, —3.674

D 39 0 —4.156 -3.678

YQPQERLDELRRI 48-60 19-6-1-11-7-2-3 —1.403, -0.731, 1.235, 2.345, 1.305, -3.426, —1.337, 0.978, 0.810, 0.350,
-0-8-16-20-4-8 1.660, 2.948, 2.694, 1.891, 1.060, 1.239, 2.264, 2.384, 0.754, —0.902,

0.250, —1.221, —2.966 -2.079, —1.541, -3.545

SQLDI PVRQ V 62-71 3-14-18-4-5-15 -3.243, —1.783, -0.927, —1.955, -0.891, -3.215, -3.188, -2.891, -2.191, —1.364,
-13-10-0-8 -2.208, —2.414, —1.784, -2.247, -2.390  -3.679, -3.631, —2.729, —1.989, —3.035

GAYHKGN 94-107  20-16-11-17-5-0-1 -0.899, 0.265, 2.291, 3.065, 4.598, 5.072, -3.095, —1.605, 0.762, 0.757, 3.495, 4.489,

WSGYGKD -13-1-1-24-0-8-20  5.465, 4.935, 5.282, 4.256, 1.919, 4,722, 2.872, 4.560, 3.652, —1.062,

1.220, —-0.256, —0.418 1.080, —1.146, —2.670

AS 206-207 2-5 —1.490, -2.991 —1.549, -3.222

NGVPPINKNE 253-262  7-11-6-14-4-1 -0.789, 0.008, —0.893, —1.301, —1.504, —1.258, —1.480, -2.762,
-8-14-3 0.586, 0.035, —0.365, —1.164, —1.670 0.059, —0.084, —1.243, —2.640, —1.823

EQ 284-285 5-0 -2.710, -2.378 -2.974, -2.104

V TDR 310-313 12-0-8-0 -2.610, —0.544, —-0.226, -1.914 -3.690, —0.481, —1.120, —1.694

T 355 0 -3.961 -3.505

KGC 363-366 3-7-6 -0.506, —-0.822, —2.355 -0.792, —1.533, -2.774
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Lane 1 Lane?2 Lane 3 Lane 4 Lane I Lane2 Lane3

5400 bp

Figure 8. Identification of pET28a(+)/QD by PCR and restriction enzyme digestion.

A: Electrophoresis analysis (1%) and expected band of chimeric QD gene after PCR; Lane 1: 50 bp DNA ladder; Lane 2: Single expected band of
QD gene (658 bp) isolated from positive recombinant E. coli BL21 (DE3) strains; Lane 3: Negative control; Lane 4: PCR product of QD gene in
frame of synthetic pET28a(+)/QD as positive control; B: Double digestion of recombinant pET28a(+)/QD with Bam HI, Hind III restriction
enzymes; Lane 1: Double digestion result of the pET28a(+)/QD (pET28a: 5400 bp and chimeric QD: 1119 bp); Lane 2: Negative control; Lane 3:
1 kb DNA marker.
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Figure 9. Analysis of chimeric QD protein expression at different har-
vesting time in 2.5 mmol/L IPTG concentration.
Lane 1: No-induced; Lane 2: 2 h after induction; Lane 3: 4 h after induc-
tion; Lane 4: 6 h after induction; Lane 5: 8 h after induction; Lane 6:
marker. -5
-5

5

Figure 11. Western blotting analysis of expressed recombinant QD by
using His-Tag antibody.

Lane 1: Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel
electrophoresis; Lane 2: Western blots with mouse monoclonal anti-His-
Tag antibody; Lane 3: M-pre-stained protein weight marker (Thermo Sci-
entific Fermentas).

Figure 10. Purification of His-tagged recombinant QD by using nickel-
nitrilotriacetic acid agarose. The fractions were analyzed by SDS-PAGE.
Lane 1: Marker proteins (Fermentas# SM0431); Lane 2: Cleared lysate
containing induced recombinant QD; Lane 3: Flow through; Lane 4:
Washed with the buffer containing 20 mmol/L imidazole; Lane 5: Washed
with the buffer containing 50 mmol/L imidazole; Lanes 6-7: Washed with
the buffer containing 150 mmol/L imidazole; Lane 8: Washed with the
buffer containing 250 mmol/L imidazole; Lane 9: Eluted recombinant
protein with modified method and buffer; Lane 10: Eluted recombinant
protein with standard method.
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4. Discussion

Host's innate and adaptive immunity plays a significant role
in prevention, recognition, clearance and controlling of acute
P. aeruginosa infection. However, P. aeruginosa may develop
several strategies to circumvent the host's immune response
and also antibiotic tolerance. Despite all efforts, the future of
immunization against P. aeruginosa remains controversial and
there still is no a truly effective vaccine available”. Former
studies showed that efficiency of immunization with outer
membrane proteins and T4P components induced enhanced
clearance of P. aeruginosa®”. In this study, the highly
conserved segments of PilQ combined to DSL domain as an
adhesive part of T4P major subunit is assumed to be a
strong and protective immunogen against most of
P. aeruginosa strains®!. The roles of linkers to improve
immunogenicity and reduce reactogenicity of fusion protein
have been confirmed. In this study, the two domains of
recombinant QD (the chimeric PilQ and the DSL region of
PilA) were separated by four repeated Glu-Ala-Ala-Ala-Lys
peptide sequences as a helix-forming linker. The three-
repeated alanine between Glu~ and Lys" as solvent-exposed
salt bridge stabilized o-helix structure formation™'!. Small-
angle X-ray scattering based studies showed that the longer
linkers (n = 4, 5) in comparison to the short linkers (n = 2, 3)
can efficiently solvate chimeric proteins. In addition, a-helix-
forming linkers such as four repeated EAAAK sequence are
more elongated than flexible linkers, and can separate different
domains efficiently'**.

Estimated pl value (pI < 7) showed acidic property of QD
which facilitated the efficient purification process. The low
quantity coefficient at 280 nm represents the low number of
tryptophan, tyrosine, and disulfide bonds. The high aliphatic
index indicates the thermal stability of QD for a wide range of
temperature. The low rate of grand average of hydropathicity
index of recombinant QD (-0.342) indicates that our chimeric
protein is hydrophilic molecule. ProtParam server recognized
QD as a stable protein (instability index: 32.09). The estimated
half-life of greater than 10 h in E. coli is attractive character-
istic for QD as a vaccine candidate. The PilQ as a member of
the secretin family of outer membrane proteins is involved in
secretion of T4P in P. aeruginosa in acute phase of
infection**!.

Up to date, several vaccine candidates have been analyzed
against P. aeruginosa infections**, as regards, QD was not
listed as an effective immunogen and vaccine candidate.
However, native PilQ was just introduced as good Thl7-
stimulating protein'''. The high solubility (99.5%) implies that
QD could be purified under native state when expressed in
E. coli. Random coil in QD (53.13%) was the frequent
structure. In spite of the fact that a protein with its native 3D
structure could be an excellent candidate for immunogenic
studies, QD should be purified with denaturants like guanidine
hydrochloride or urea. Unlike majority of the proteins, the QD
secondary structures contain higher percentage of random coils
and B-sheet. Random coil structures allow for better
recognition of conformational epitope by antibodies'*’!. The
turn motifs are located on the surface of proteins where they
could be accessed easily to immune system. The numbers of
B, and v turns in compare to ¢ motif in the QD were high.
Structural and functional characterization of a protein is one
frequent dilemma in biology.

In this study, both comparative and ab initio methods were
considered for prediction of 3D structure of QD protein. The
appropriate accuracy and reliability assessments revealed that
the predicted 3D structure of I-TASSER could be accurate and
reliable. The structure of QD was refined in atomic level and the
initial model closer to the native structure was obtained.

The accuracy of the predicted QD 3D structure is clarified by
TM-score and C-score. The TM score or TM-score as a measure
of similarity between two protein structures is more accurate
than the often used root-mean-square deviation. The TM-score
between (0, 1], indicates the difference between two structures
where 1 indicates a perfect match between two structures. The
estimated TM-score (0.48 + 0.15) confirmed the precision of the
predicted model. A TM-score > 0.5 generally points to the
correct topology. C-score is used for estimating the quality of
predicted models by I-TASSER in the range of [-5, 2], where a
C-score of higher value implies a model with a high confidence.
These clarify accuracy of the predicted QD 3D structure. Z-sore
as a symbol of the deviation of total energy of molecular
structure categorizes QD in the range of native conformations.
The Ramachandran plot revealed desirable stability in the
chimeric QD protein. The ability to induce adaptive immune
response is another main feature of an efficient vaccine candi-
date. B-cell and T-cell epitope mapping is critical strategy in
vaccine design possess and antibody production. The BCPreds
was the main modules to predict continuous B-cell epitopes.
Several high score 20 mers B-cell restricted epitopes were
achieved by BCPreds server and most of them obtained the high
ABCpred and VaxiJen scores.

Polar amino acids are those with side chains that prefer to
reside in an aqueous (i.e. water) environment. All the predicted
epitopes were rich of polar amino acids. The amino acids Glu
and Asn were the most abundant clearly polar amino acids in
epitope sequences. Specific AAPs of epitope sequences Y: G
and P: D were presented in the predicted sequences“®. Further
comparative analysis of the secondary structure results and
predicted linear epitope sequences showed almost of the
continuous B-cell epitope patches in antibody-accessible areas
which significantly enriched with (irregular) random coil and
turn structures compared to non-epitopic parts. These flexible
secondary structures involve in conformational change of epi-
topes upon antibody binding. It has been observed that almost
90% of all B-cell epitopes are conformational epitopes**.
CBTOPE and DiscoTope servers discovered a wide range of
B-cell epitope protein which scattered
throughout the QD protein. Since the DiscoTope calculates
surface accessibility and predicts discontinuous B-cell epitopes
from protein 3D structures, it seems to be more reliable. If
enough quantities of peptide from an antigen bind to a MHC
on the surface of antigen presenting cells, the T-cell can
prompt the cellular immunity'*’.

Despite of progress in various computational methods on
evaluating the success of various MHC-peptide binding pre-
diction, there is no consensus on a perfect method'**!. However,
in this study, ProPred and ProPred-I servers discovered a lot of
HLA-A, HLA-B, HLA-C (MHC class I proteins) and HLA-DR
(MHC class II) restricted epitopic fractions from full-length
QD protein. ProPred or ProPred-I recognized that QD protein
could bind to several different types of HLA alleles which
could trigger immune response. In the next step, comparative
analysis of the continuous B-cell epitope results and predicted
T-cell restricted epitopes showed several T-cell epitopes

discontinuous
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derived from B-cell binding sequences from QD protein which
possibly will evoke strong both humoral and cell-mediated
immune responses. The two peptide sequences of QD anti-
gen, “AYHKGNWSGYGKDGNIGIKDEDGMNCGPIAGSCT
FPTTGTSKSPSPFVDLGAKDATSG” and “GPIAGSCTFPTT
GTSKSPSP” possessed these properties. In this study, E. coli
BL21 (DE3) strain as suitable prokaryotic expression system
could express heterologous QD protein. In this study, the
E. coli BL21 (DE3) strain showed significant expression after
6-8 h of induction at 37 °C. There was no toxic effect of QD
protein on the E. coli BL21 cells. The poly-histidine-tag
sequence efficiently helped the purification of QD by Ni%*-
affinity chromatography method. Our antigen remains to be
tested for the immunological efficacy.

Several regions of QD recombinant protein from
P. aeruginosa were found to be efficient antigens. Almost all
conserved QD antigenic patches were enriched with irregular
coil and turn motif. Our predictions showed that the QD
chimeric protein with several T-cell epitopes derived from B-cell
epitopes could be expressed efficiently in E. coli BL21 (DE3)
strain and could serve as a good subunit of vaccine candidate
against P. aeruginosa.
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