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NEUTROSOPHIC HYPERIDEALS

OF Γ-SEMIHYPERRINGS

Debabrata Mandal

Abstract. The purpose of this paper is to introduced neutrosophic hyperide-

als of a Γ-semihyperring and consider some operations on them to investigate
some of its basic properties.

1. Introduction

Hyperstructures, in particular hypergroups, were introduced in 1934 by Marty
[12] at the eighth congress of Scandinavian Mathematicians. The notion of alge-
braic hyperstructure has been developed in the following decades and nowadays by
many authors, especially Corsini [2, 3], Davvaz [5, 6, 7, 8, 9], Mittas [13], Spar-
talis [16], Stratigopoulos [17] and Vougiouklis [20]. Basic definitions and notions
concerning hyperstructure theory can be found in [2].

The classical notion of rings was extended by hyperrings, substituting both or
only one of the binary operations of addition and multiplication by hyperoperations.
Hyperrings were introduced by several authors in different ways. If only the addition
is a hyperoperation and the multiplication is a binary operation, then we say that
R is a Krasner hyperring [4]. Davvaz [5] has defined some relations in hyperrings
and prove isomorphism theorems. For a more comprehensive introduction about
hyperrings, we refer to [9].

As a generalization of a ring, semiring was introduced by Vandiver [18] in
1934. A semiring is a structure (R; +; ·; 0) with two binary operations + and · such
that (R; +; 0) is a commutative semigroup, (R; ·) a semigroup, multiplication is
distributive from both sides over addition and 0 ·x = 0 = x ·0 for all x ∈ R. In [19],
Vougiouklis generalizes the notion of hyperring and named it as semihyperring,
where both the addition and multiplication are hyperoperation. Semihyperrings
are a generalization of Krasner hyperrings. Note that a semiring with zero is a
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semihyperring. Davvaz in [12] studied the notion of semihyperrings in a general
form.

The concept of a fuzzy set, introduced by Zadeh in his classical paper [21],
provides a natural framework for generalizing some of the notions of classical al-
gebraic structures.As a generalization of fuzzy sets, the intuitionistic fuzzy set was
introduced by Atanassov [1] in 1986, where besides the degree of membership of
each element there was considered a degree of non-membership with (membership
value + non-membership value)6 1. There are also several well-known theories, for
instances, rough sets, vague sets, interval-valued sets etc. which can be considered
as mathematical tools for dealing with uncertainties.

In 2005, inspired from the sport games (winning/tie/ defeating), votes, from
(yes /NA /no), from decision making(making a decision/ hesitating/not making),
from (accepted /pending /rejected) etc. and guided by the fact that the law of
excluded middle did not work any longer in the modern logics, F. Smarandache [15]
combined the non-standard analysis [8, 18] with a tri-component logic/set/probability
theory and with philosophy and introduced Neutrosophic set which represents the
main distinction between fuzzy and intuitionistic fuzzy logic/set. Here he included
the middle component, i.e., the neutral/ indeterminate/ unknown part (besides
the truth/membership and falsehood/non-membership components that both ap-
pear in fuzzy logic/set) to distinguish between ’absolute membership and relative
member- ship’ or ’absolute non-membership and relative non-membership’.

Using this concept, in this paper, I have defined neutrosophic ideals of Γ-
semihyperrings and study some of its basic properties.

2. Preliminaries

Let H be a non-empty set and let P (H) be the set of all non-empty subsets of
H. A hyperoperation on H is a map ◦ : H ×H → P (H) and the couple (H, ◦) is
called a hypergroupoid. If A and B are non-empty subsets of H and x ∈ H, then
we denote

A ◦B = ∪
a∈A,b∈B

a ◦ b, x ◦A = x ◦A and A ◦ x = A ◦ x

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z ∈ H we have
(x ◦ y) ◦ z = x ◦ (y ◦ z) which means that

∪
u∈x◦y

u ◦ z = ∪
v∈y◦z

x ◦ v.

A semihyperring is an algebraic structure (R,+, ·) which satisfies the following
properties:

(i) (R,+) is a commutative semihypergroup;
(ii) (R, ·) is a semihypergroup;
(iii) Multiplication is is distributive with respect to hyperoperation + that is

x · (y + z) = x · y + x · z, (x+ y) · z = x · z + y · z
(iv) 0 · x = 0 = x · 0 for all x ∈ R.
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A semihyperring (R,+, ·) is called commutative if and only if a · b = b · a for all
a, b ∈ R. Vougiouklis in [19] and Davvaz in [6] studied the notion of semihyperrings
in a general form, i.e., both the sum and product are hyperoperations.

A semihyperring (R,+, ·) with identity 1R ∈ R means that 1R · x = x · 1R = x
for all x ∈ R. An element x ∈ R is called unit if there exists y ∈ R such that
1R = x · y = y · x.

A nonempty subset S of a semihyperring (R,+, ·) is called a sub-semihyperring
if a+ b ⊆ S and a · b ⊆ S for all a, b ∈ S. A left hyperideal of a semihyperring R is
a non-empty subset I of R satisfying

(i) If a, b ∈ I then a+ b ⊆ I;
(ii) If a ∈ I and s ∈ R then s · a ⊆ I;
(iii) I ̸= S.

A right hyperideal of R is defined in an analogous manner and an hyperideal
of R is a nonempty subset which is both a left ideal and a right ideal of R. We now
recall the definition of Γ-semihyperring from [11].

Let R be a commutative semihypergroup and Γ be a commutative group. Then
R is called a Γ-semihyperring if there exists a map R × Γ × R → P (R) ( (a, α, b)
7→ aαb) for a, b ∈ R, α ∈ Γ and P (R)−the set of all non-empty subsets of R,
satisfying the following conditions:

(i) (a+ b)αc = aαc+ bαc,
(ii) aα(b+ c) = aαb+ aαc,
(iii) a(α+ β)b = aαb+ aβb,
(iv) aα(bβc) = (aαb)βc

for all a, b, c ∈ S and for all α, β ∈ Γ.
We say that R is a Γ-semihyperring with zero, if there exists 0 ∈ R such that

a ∈ a+ 0 and 0 ∈ 0αa, 0 ∈ aα0 for all a ∈ R and α ∈ Γ.
For more results on semirings and neutrosophic sets we refer to [6, 10] and

[15] respectively.

3. Main Results

Definition 3.1. [15] A neutrosophic set A on the universe of discourse X is
defined as

A = {< x,AT (x), AI(x), AF (x) >, x ∈ X},
where

AT , AI , AF : X →]−0, 1+[

and
−0 6 AT (x) +AI(x) +AF (x) 6 3+.

From philosophical point of view, the neutrosophic set takes the value from real
standard or non-standard subsets of ]−0, 1+[. But in real life application in scientific
and engineering problems it is difficult to use neutrosophic set with value from real
standard or non-standard subset of ]−0, 1+[. Hence we consider the neutrosophic
set which takes the value from the subset of [0, 1].

Throughout this section unless otherwise mentionedR denotes a Γ-semihyperring.
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Definition 3.2. Let µ = (µT , µI , µF ) be a non empty neutrosophic subset of a
semihyperring R (i.e. anyone of µT (x), µI(x) or µF (x) not equal to zero for some
x ∈ S). Then µ is called a neutrosophic left hyperideal of R if

(i) inf
z∈x+y

µT (z) > min{µT (x), µT (y)}, inf
z∈xγy

µT (z) > µT (y)

(ii) inf
z∈x+y

µI(z) > µI(x)+µI(y)
2 , inf

z∈xγy
µI(z) > µI(y)

(iii) sup
z∈x+y

µF (x+ y) 6 max{µF (x), µF (y)}, sup
z∈xγy

µF (z) 6 µF (y).

for all x, y ∈ R and γ ∈ Γ.
Similarly we can define neutrosophic right hyperideal of R.

Example 3.1. Let R = {a, b, c, d}, Γ = Z2. Define the hyperoperation ⊕ and
the multiplication ⊙ on R as follows:

⊕ a b c d
a a {a, b} {c, d} {c, d}
b {a, b} b {c, d} {c, d}
c {c, d} {c, d} c {c, d}
d {c, d} {c, d} {c, d} d

and

⊙ a b c d
a {a, b} {a, b} {a, b} {a, b}
b {a, b} {a, b} {a, b} {a, b}
c {a, b} {a, b} {c, d} {c, d}
d {a, b} {a, b} {c, d} {c, d}

Also, for x, y ∈ R and α ∈ Z2, define xαy = {a, b}. Then (R,⊕,⊙) is a
Γ-semihyperring.

Define neutrosophic subset µ of R by µ(a) = (0.5, 0.3, 0.4), µ(b) = (0.6, 0.3, 0.4),
µ(c) = (0.7, 0.4, 0.2), µ(d) = (0.8, 0.4, 0.1). Then µ is a neutrosophic left hyperideal
of R.

Theorem 3.1. A neutrosophic set µ of R is a neutrosophic left hyperideal
of R if and only if any level subsets µT

t := {x ∈ S : µT (x) > t, t ∈ [0, 1]},
µI
t := {x ∈ S : µI(x) > t, t ∈ [0, 1]} and µF

t := {x ∈ S : µF (x) 6 t, t ∈ [0, 1]} are
left hyperideals of R.

Proof. Assume that the neutrosophic set µ of R is a neutrosophic left hyper-
ideal of R. Then anyone of µT , µI or µF is not equal to zero for some x ∈ S i.e.,
in other words anyone of µT

t , µ
I
t or µF

t is not equal to zero for all t ∈ [0, 1]. So it is
sufficient to consider that all of them are not equal to zero.

Suppose x, y ∈ µt = (µT
t , µI

t , µF
t ) and s ∈ R. Then

inf
z∈x+y

µT (z) > min{µT (x), µT (y)} > min{t, t} = t

inf
z∈x+y

µI(z) > µI(x)+µI(y)
2 > t+t

2 = t

sup
z∈x+y

µF (x+ y) 6 max{µF (x), µF (y)} 6 max{t, t} = t

which implies x+ y ⊆ µT
t , µ

I
t , µ

F
t i.e., x+ y ⊆ µt. Also

inf
z∈sγx

µT (z) > µT (x) > t

inf
z∈sγx

µI(z) > µI(x) > t

sup
z∈sγx

µF (z) 6 µF (x) 6 t
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Hence sγx ⊆ µt. Therefore µt is a left hyperideal of R.
Conversely, suppose µt(̸= ϕ) is a left hyperideal of S. If possible µ is not a

neutrosophic left hyperideal. Then for x, y ∈ S anyone of the following inequality
is true.

inf
z∈x+y

µT (z) < min{µT (x), µT (y)}

inf
z∈x+y

µI(z) < µI(x)+µI(y)
2

sup
z∈x+y

µF (x+ y) > max{µF (x), µF (y)}

For the first inequality, choose t1 = 1
2 [ inf

z∈x+y
µT (z) +min{µT (x), µT (y)}]. Then

inf
z∈x+y

µT (z) < t1 < min{µT (x), µT (y)} which implies x, y ∈ µT
t1 but x+ y ̸⊆ µT

t1 - a

contradiction.
For the second inequality, choose t2 = 1

2 [ inf
z∈x+y

µI(z)+min{µI(x), µI(y)}]. Then

inf
z∈x+y

µI(z) < t2 < µI(x)+µI(y)
2 which implies x, y ∈ µI

t2 but x + y ̸⊆ µI
t2 - a

contradiction.
For the third inequality, choose t3 = 1

2 [ sup
z∈x+y

µF (x+ y) + max{µF (x), µF (y)}].

Then sup
z∈x+y

µF (x + y) > t3 > max{µF (x), µF (y)} which implies x, y ∈ µF
t3 but

x+ y ̸⊆ µF
t3 - a contradiction.

So, in any case we have a contradiction to the fact that µt is a left hyperideal
of R. Hence the result follows. �

Definition 3.3. Let µ and ν be two neutrosophic subsets of S. The intersection
of µ and ν is defined by

(µT ∩ νT )(x) = min{µT (x), νT (x)},

(µI ∩ νI)(x) = min{µI(x), νI(x)},

(µF ∩ νF )(x) = max{µF (x), νF (x)}

for all x ∈ S.

Proposition 3.1. Intersection of a nonempty collection of neutrosophic left
hyperideals is a neutrosophic left hyperideal of R.

Proof. Let {µi : i ∈ I} be a non-empty family of neutrosophic left hyperideals
of S and x, y ∈ S and γ ∈ Γ. Then

inf
z∈x+y

( ∩
i∈I

µT
i )(z) = inf

z∈x+y
inf
i∈I

µT
i (z)

> inf
i∈I

{min{µT
i (x), µ

T
i (y)}}

= min{inf
i∈I

µT
i (x), inf

i∈I
µT
i (y)}

= min{( ∩
i∈I

µT
i )(x), ( ∩

i∈I
µT
i )(y)}
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inf
z∈x+y

( ∩
i∈I

µI
i )(z) = inf

z∈x+y
inf
i∈I

µI
i (z)

> inf
i∈I

µI
i (x)+µI

i (y)
2

=
inf
i∈I

µI
i (x)+inf

i∈I
µI
i (y)

2

=
∩

i∈I
µI
i (x)+ ∩

i∈I
µI
i (y)

2

sup
z∈x+y

( ∩
i∈I

µF
i )(z) = sup

z∈x+y
sup
i∈I

µF
i (z)

6 sup
i∈I

{max{µF
i (x), µ

F
i (y)}}

= max{sup
i∈I

µF
i (x), sup

i∈I
µF
i (y)}

= max{( ∩
i∈I

µF
i )(x), ( ∩

i∈I
µF
i )(y)}

inf
z∈sγx

( ∩
i∈I

µT
i )(z) = inf

z∈sγx
inf
i∈I

µT
i (z) > inf

i∈I
µT
i (x) = ( ∩

i∈I
µT
i )(x).

inf
z∈sγx

( ∩
i∈I

µI
i )(z) = inf

z∈sγx
inf
i∈I

µI
i (z) > inf

i∈I
µI
i (x) = ( ∩

i∈I
µI
i )(x).

sup
z∈sγx

( ∩
i∈I

µF
i )(z) = sup

z∈sγx
sup
i∈I

µF
i (z) 6 sup

i∈I
µF
i (x) = ( ∩

i∈I
µF
i )(x).

Hence ∩
i∈I

µi is a neutrosophic left hyperideal of R. �

Definition 3.4. Let R, S be Γ-semihyperrings and f : R → S be a function.
Then f is said to be a homomorphism if for all a, b ∈ R and γ ∈ Γ

(i) f(a+ b) ⊆ f(a) + f(b)

(ii) f(aγb) ⊆ f(a)γf(b)

(iii) f(0R) = 0S where 0R and 0S are the zeroes of R and S respectively.

Proposition 3.2. Let f : R → S be a morphism of Γ-semihyperrings. Then

(i) If ϕ is a neutrosophic left hyperideal of S, then f−1(ϕ) [14] is a neutro-
sophic left hyperideal of R.

(ii) If f is surjective morphism and µ is a neutrosophic left hyperideal of R,
then f(µ) [14] is a neutrosophic left hyperideal of S.

Proof. Let f : R → S be a morphism of Γ-semihyperrings.
(i) Let ϕ be a neutrosophic left hyperideal of S and r, s ∈ R and γ ∈ Γ.

inf
z∈r+s

f−1(ϕT )(z) = inf
z∈r+s

ϕT (f(z)) > inf
f(z)⊆f(r)+f(s)

ϕT (f(z))

> min{ϕT (f(r)), ϕT (f(s))} = min{(f−1(ϕT ))(r), (f−1(ϕT ))(s)}.

inf
z∈r+s

f−1(ϕI)(z) = inf
z∈r+s

ϕI(f(z)) > inf
f(z)⊆f(r)+f(s)

ϕI(f(z))

> ϕI(f(r))+ϕI(f(s))
2 = (f−1(ϕI))(r)+(f−1(ϕI))(s)

2 .
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sup
z∈r+s

f−1(ϕF )(z) = sup
z∈r+s

ϕF (f(z)) 6 sup
f(z)⊆f(r)+f(s)

ϕF (f(z))

6 max{ϕF (f(r)), ϕF (f(s))} = max{(f−1(ϕF ))(r), (f−1(ϕF ))(s)}.

Again

inf
z∈rγs

(f−1(ϕT ))(z) = inf
z∈rγs

ϕT (f(z)) > inf
f(z)⊆f(r)γf(s)

ϕT (f(z))

> ϕT (f(s)) = (f−1(ϕT ))(s)

inf
z∈rγs

(f−1(ϕI))(z) = inf
z∈rγs

ϕI(f(z)) > inf
f(z)⊆f(r)γf(s)

ϕI(f(z))

> ϕI(f(s)) = (f−1(ϕI))(s)

sup
z∈rγs

(f−1(ϕF ))(z) = sup
z∈rγs

ϕF (f(z)) 6 sup
f(z)⊆f(r)γf(s)

ϕF (f(z))

6 ϕF (f(s)) = (f−1(ϕF ))(s)

Thus f−1(ϕ) is a neutrosophic left hyperideal of R.

(ii)Suppose µ be a neutrosophic left hyperideal of R and x
′
, y

′ ∈ S. Then

inf
z′∈x′+y′

(f(µT ))(z
′
) = inf

z′∈x′+y′
supµT (z)
z∈f−1(z′ )

> inf
z′∈x′+y′

supµT (z)
x∈f−1(x′ ),y∈f−1(y′ )

> sup{min{µT (x), µT (y)}}

= min{supµT (x)
x∈f−1(x′ )

, supµT (y)
y∈f−1(y′ )

} = min{(f(µT ))(x
′
), (f(µT ))(y

′
)}

inf
z′∈x′+y′

(f(µI))(z
′
) = inf

z′∈x′+y′
supµI(z)
z∈f−1(z′ )

> inf
z′∈x′+y′

supµI(z)
x∈f−1(x′ ),y∈f−1(y′ )

> sup µI(x)+µI(y)
2

= 1
2 [supµ

I(x)
x∈f−1(x′ )

+ supµI(y)
y∈f−1(y′ )

] = 1
2 [(f(µ

I))(x
′
) + (f(µI))(y

′
)]

sup
z′∈x′+y′

(f(µF ))(x
′
+ y

′
) = sup

z′∈x′+y′
inf µF (z)

z∈f−1(x′+y′ )

6 sup
z′∈x′+y′

inf µF (z)
x∈f−1(x′ ),y∈f−1(y′ )

6 inf{max{µF (x), µF (y)}}

= max{inf µF (x)
x∈f−1(x′ )

, inf µF (y)
y∈f−1(y′ )

} = max{(f(µF ))(x
′
), (f(µF ))(y

′
)}

Again

inf
z′∈x′γ′y′

f(µT )(z
′
) = inf

z′∈x′γ′y′
sup µT (z)
z∈f−1(z′ )

> sup µT (z)
x∈f−1(x′ ),y∈f−1(y′ )

> sup µT (y)
y∈f−1(y′ )

= f(µT )(y
′
)



160 D. MANDAL

inf
z′∈x′γ′y′

f(µI)(z
′
) = inf

z′∈x′γ′y′
sup µI(z)
z∈f−1(z′ )

> sup µI(z)
x∈f−1(x′ ),y∈f−1(y′ )

> sup µI(y)
y∈f−1(y′ )

= f(µI)(y
′
)

sup
z′∈x′γ′y′

f(µF )(z
′
) = sup

z′∈x′γ′y′
inf µF (z)
z∈f−1(z′ )

6 inf µF (z)
x∈f−1(x′ ),y∈f−1(y′ )

6 inf µF (y)
y∈f−1(y′ )

= f(µF )(y
′
)

Thus f(µ)is a neutrosophic left hyperideal of S. �
Definition 3.5. Let µ and ν be two neutrosophic subsets of R. The cartesian

product of µ and ν is defined by

(µT × νT )(x, y) = min{µT (x), νT (y)}

(µI × νI)(x, y) =
µI(x) + νI(y)

2
(µF × νF )(x, y) = max{µF (x), νF (y)}

for all x, y ∈ R.

Theorem 3.2. Let µ and ν be two neutrosophic left hyperideals of R. Then
µ× ν is a neutrosophic left hyperideal of R×R.

Proof. Let (x1, x2), (y1, y2) ∈ R×R. Then

inf(µT × νT )(z1, z2)
(z1,z2)∈(x1,x2)+(y1,y2)

= inf(µT × νT )(z1
z1∈x1+y1,z2∈x2+y2

, z2)

= inf min{µT (z1),
z1∈x1+y1,z2∈x2+y2

νT (z2)}

> min{min{µT (x1), µ
T (y1)},min{νT (x2), ν

T (y2)}}
= min{min{µT (x1), ν

T (x2)},min{µT (y1), ν
T (y2)}}

= min{(µT × νT )(x1, x2), (µ
T × νT )(y1, y2)}.

inf(µI × νI)(z1, z2)
(z1,z2)∈(x1,x2)+(y1,y2)

= inf(µI × νI)(z1
z1∈x1+y1,z2∈x2+y2

, z2)

= inf µI(z1)+νI(z2)
2

z1∈x1+y1,z2∈x2+y2

> 1
2{

µI(x1)+µI(y1)
2 + νI(x2)+νI(y2)

2 }
= 1

2{
µI(x1)+νI(x2)

2 + µI(y1)+νI(y2)
2 }

= 1
2{(µ

I × νI)(x1, x2) + (µI × νI)(y1, y2)}.

sup(µF × νF )(z1, z2)
(z1,z2)∈(x1,x2)+(y1,y2)

= sup(µF × νF )(z1
z1∈x1+y1,z2∈x2+y2

, z2)

= supmax{µF (z1),
z1∈x1+y1,z2∈x2+y2

νF (z2)}

6 max{max{µF (x1), µ
F (y1)},max{νF (x2), ν

F (y2)}}
= max{max{µF (x1), ν

F (x2)},max{µF (y1), ν
F (y2)}}

= max{(µF × νF )(x1, x2), (µ
F × νF )(y1, y2)}.
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inf(µT × νT )((z1, z2))
(z1,z2)∈(x1,x2)γ(y1,y2)

= inf(µT × νT )(z1, z2)
(z1,z2)∈(x1γy1,x2γy2)

= inf min{µT (z1),
z1∈x1γy1,z2∈x2γy2

νT (z2)}

> min{µT (y1), ν
T (y2)} = (µT × νT )(y1, y2).

inf(µI × νI)((z1, z2))
(z1,z2)∈(x1,x2)γ(y1,y2)

= inf(µI × νI)(z1, z2)
(z1,z2)∈(x1γy1,x2γy2)

= inf µI(z1)+νI(z2)
2

z1∈x1γy1,z2∈x2γy2

> µI(y1)+νI(y2)
2 = (µI × νI)(y1, y2).

sup(µF × νF )((z1, z2))
(z1,z2)∈(x1,x2)γ(y1,y2)

= sup(µF × νF )(z1, z2)
(z1,z2)∈(x1γy1,x2γy2)

= supmax{µF (z1), ν
F (z2)}

z1∈x1γy1,z2∈x2γy2

6 max{µF (y1), ν
F (y2)} = (µF × νF )(y1, y2).

Hence µ× ν is a neutrosophic left hyperideal of R×R. �

Theorem 3.3. Let µ be a neutrosophic subset of R. Then µ is a neutrosophic
left hyperideal of R if and only if µ× µ is a neutrosophic left hyperideal of R×R.

Proof. The proof follows by routine verification. �

Definition 3.6. Let µ and ν be two neutrosophic sets of a semiring R. Define
composition of µ and ν by

µT ◦ νT (x) = sup

x∈

n∑
i=1

aiγibi

{min
i
{µT (ai), ν

T (bi)}}

= 0, if x cannot be expressed as above

µI ◦ νI(x) = sup

x∈

n∑
i=1

aiγibi

∑n
i=1

µI(ai)+νI(bi)
2n

= 0, if x cannot be expressed as above

µF ◦ νF (x) = inf

x∈

n∑
i=1

aiγibi

{max
i

{µF (ai), ν
F (bi)}}

= 0, if x cannot be expressed as above

where x, ai, bi ∈ R for i = 1, ..., n.

Theorem 3.4. If µ and ν be two neutrosophic left hyperideals of R then µoν
is also a neutrosophic left hyperideal of R.
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Proof. Suppose µ, ν be two neutrosophic hyperideals of R and x, y ∈ R. If
x + y is not equal to

∑n
i=1 aiγibi, for ai, bi ∈ R and γi ∈ Γ, then there is nothing

to proof. So, assume that x+ y is not equal to
∑n

i=1 aiγibi. Then

inf
z∈x+y

(µT oνT )(z)

= sup{min
i

z∈x+y∈

n∑
i=1

aiγibi

{µT (ai), ν
T (bi)}}

> sup

x∈

n∑
i=1

ciγidi, y ∈
n∑

i=1

eiδifi

{min
i
{µT (ci), ν

T (di), µ
T (ei), ν

T (fi)}}

= min{ sup

x∈

n∑
i=1

ciγidi

{min
i
{µT (ci), ν

T (di)}}, sup

y∈

n∑
i=1

eiδifi

{min
i
{µT (ei), ν

T (fi)}}}

= min{(µT oνT )(x), (µT oνT )(y)}

inf
z∈x+y

(µIoνI)(z)

= sup

z∈x+y∈

n∑
i=1

aiγibi

∑n
i=1

µI(ai)+νI(bi)
2n

> sup

x∈

n∑
i=1

ciγidi, y ∈
n∑

i=1

eiδifi

∑n
i=1

µI(ci)+νI(di)+µI(ei)+νI(fi)
4n

> 1
2 [ sup

x∈

n∑
i=1

ciγidi

∑n
i=1

µI(ci)+νI(di)
2n , sup

y∈

n∑
i=1

eiδifi

∑n
i=1

µI(ei)+νI(fi)
2n ]

= (µIoνI)(x)+(µIoνI)(y)
2

sup
z∈x+y

(µF oνF )(z)

= inf

z∈x+y∈

n∑
i=1

aiγibi

{max
i

{µF (ai), ν
F (bi)}}

6 inf

x∈

n∑
i=1

ciγidi, y ∈
n∑

i=1

eiδifi

{max
i

{µF (ci), ν
F (di), µ

F (ei), ν
F (fi)}}

= max{ inf

x∈

n∑
i=1

ciγidi

{max
i

{µF (ci), ν
F (di)}}, inf

y∈

n∑
i=1

eiδifi

{min
i
{µF (ei), ν

F (fi)}}}

= max{(µF oνF )(x), (µF oνF )(y)}
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inf
z∈xγy

(µT oνT )(z) = sup

z∈xγy∈

n∑
i=1

aiγibi

{min
i
{µT (ai), ν

T (bi)}}

> sup

z∈xγy∈

n∑
i=1

xδieiγifi

{min
i
{µT (xδiei), ν

T (fi)}}

> sup

y∈

n∑
i=1

eiγifi

{min
i
{µT (ei), ν

T (fi)}} = (µT oνT )(y)

inf
z∈xγy

(µIoνI)(z) = sup

z∈xγy∈

n∑
i=1

aiγibi

∑n
i=1

µI(ai)+νI(bi)
2n

> sup

z∈xγy∈

n∑
i=1

xδieifi

∑n
i=1

µI(xδiei)+νI(fi)
2n

> sup

y∈

n∑
i=1

eiγifi

∑n
i=1

µI(ei)+νI(fi)
2n = (µIoνI)(y)

sup
z∈xγy

(µF oνF )(z) = inf

z∈xγy∈

n∑
i=1

aiγibi

{max
i

{µF (ai), ν
F (bi)}}

6 inf

z∈xγy∈

n∑
i=1

xδieifi

{max
i

{µF (xei), ν
F (fi)}}

6 inf

y∈

n∑
i=1

eiγifi

{max
i

{µF (ei), ν
F (fi)}} = (µF oνF )(y)

Hence µoν is a neutrosophic left hyperideal of R. �

Conclusion: This is the introductory paper on neutrosophic hyperideals of semi-
hyperrings in the sense of Smarandache[15]. Our next aim to use these results to
study some other properties such prime neutrosophic hyperideal, semiprime neutro-
sophic hyperideal,neutrosophic bi-hyperideal, neutrosophic quasi-hyperideal, radicals
etc..
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